


700 South Riverside Drive • Seattle, WA 98108 P: 206 331-3873 F: 206 774-5958

# **TRANSMITTAL**

| TO:       | Hoffman Pacifc,<br>600 Stewart Stre<br>Suite 1000 |                                                                  |                 |              | DATE:           | 5/16/2019                                            |
|-----------|---------------------------------------------------|------------------------------------------------------------------|-----------------|--------------|-----------------|------------------------------------------------------|
|           | Seattle, WA 9810                                  | )8                                                               |                 |              | RE:             | Phase 2 Hydroacoustic Monitoring<br>Final Report     |
| ATTN:     | Bryan Lammers,                                    | Brandon Brody-H                                                  | eim             |              | PROJECT:        | 9074 – Seattle Ferry Terminal at<br>Colman Dock MACC |
| WE ARE    | SENDING YOU:                                      | Herewith                                                         | Under           | Separate Co  | over            | Certs                                                |
|           |                                                   | X Submittal                                                      | Shop [          | Drawings     | Other           |                                                      |
| QUANTI    | ΓΥ                                                |                                                                  |                 | DESCRIPTI    | ON              |                                                      |
| 1         | PPM Submit                                        | tal 21.6 – Phase 2                                               | Hydroacoustic   | Monitoring   | Final Report -  | - General Conditons. 1-07.6(6)                       |
| 1         | Phase 2 Hyd                                       | Iroacoustic Monito                                               | oring Fina Repo | ort          |                 |                                                      |
|           |                                                   |                                                                  |                 |              |                 |                                                      |
|           |                                                   |                                                                  |                 |              |                 |                                                      |
|           |                                                   |                                                                  |                 |              |                 |                                                      |
|           |                                                   |                                                                  |                 |              |                 |                                                      |
| THESE ITE | MS ARE TRANSM                                     | NITTED AS CHECK                                                  | ED BELOW:       |              |                 |                                                      |
|           | proval. Please re                                 |                                                                  | y with approva  | l and any co | prrection notat | tions                                                |
|           |                                                   | oval. Please return                                              |                 |              |                 |                                                      |
|           |                                                   | posal on work indi                                               |                 | _            | Earwour         | general information.                                 |
|           |                                                   |                                                                  | -               |              |                 | -                                                    |
|           | • •                                               | proceed with cons                                                |                 |              |                 | use as requested                                     |
|           |                                                   | ontract will follow                                              |                 | uments.      | For your 1      |                                                      |
|           |                                                   | roceed immediatel                                                | у.              |              |                 | review and comments.                                 |
| For yo    | our signature and i                               | return.                                                          |                 | L            | Returned        | for Corrections (RFC).                               |
| Appro     | ved as Submitted                                  | (AAS).                                                           |                 |              | Resubmit        | Copies For Approval.                                 |
| Appro     | ved as Noted (AA                                  | N).                                                              |                 |              | For:            |                                                      |
| REMARKS:  | <u>.</u>                                          |                                                                  |                 |              |                 |                                                      |
|           |                                                   |                                                                  |                 |              |                 |                                                      |
|           |                                                   |                                                                  |                 | Sin          | cerely,         |                                                      |
| Copy To:  |                                                   | IAN CONSTRUCTION CO                                              |                 | PA           | CIFIC PILE &    | MARINE, L.P.                                         |
|           | contract documents. C                             | en reviewed for general confor<br>Contractor's review does not r | elieve the      | _            |                 |                                                      |
|           | requirements of the co                            | r of responsibility for complia<br>ontract, including completene |                 |              |                 |                                                      |
|           | this submittal.<br>05/17/2019                     |                                                                  | - 1-07.6        |              |                 |                                                      |
|           | Date<br>Brandon Brody-H<br>Reviewed By            | Submittal#<br>Heim                                               |                 |              |                 |                                                      |



# COLMAN DOCK SEASON 2 HYDROACOUSTIC MONITORING REPORT

May 14, 2019

Prepared For: Pacific Pile&Marine Prepared By:

······))**)** 

# THE GREENBUSCH GROUP, INC.

1900 West Nickerson Street Suite 201 Seattle, Washington 98119

#### **Table of Contents**

| 1.0 | Executive Summary                                   | . 1 |
|-----|-----------------------------------------------------|-----|
| 2.0 | Introduction                                        |     |
| 3.0 | Nomenclature                                        | . 2 |
| 4.0 | Hydroacoustic Monitoring and Reporting Requirements | . 4 |
| 4.1 | Project Specifications                              | . 4 |
| 4.2 | WSDOT Underwater Noise Monitoring Plan              |     |
| 4.3 | Greenbusch Underwater Noise Monitoring Plan         | . 5 |
| 5.0 | Pile and pile driving equipment Information         | . 5 |
| 6.0 | Measurement Methodology                             | . 7 |
| 6.1 | Equipment                                           | . 7 |
| 6.2 | Measurement Locations                               | . 8 |
| 7.0 | Impact Pile Driving analysis and results            | 10  |
| 7.1 | Temporary Work Trestle 24-Inch Piles                | 11  |
| 7.2 | North Trestle 36-Inch Piles                         |     |
| 7.3 | Passenger Only Ferry Float 36-Inch Piles            | 16  |
| 7.4 | South Notch Piles 36-Inch Piles                     | 18  |
| 8.0 | Distance to Disturbance and Injury Thresholds       | 21  |
| 8.1 | Marine Mammal Threshold Distances                   | 22  |
| 8.2 | Fish Threshold Distances                            | 23  |
| 9.0 | References                                          | 25  |

# List of Tables

| Table 5.1 Summary Pipe Piles, Feet                        | 6  |
|-----------------------------------------------------------|----|
| Table 6.1 Hydroacoustic Monitoring Equipment              | 7  |
| Table 6.2 Hydrophone Location Summary, Feet               | 9  |
| Table 7.1 Marine Mammal Functional Hearing Groups         | 10 |
| Table 7.2 Pile 2 Underwater Sound Levels, dB re: 1 µPa    | 12 |
| Table 7.3 Pile 3 Underwater Sound Levels, dB re: 1 µPa    | 12 |
| Table 7.4 Chainsaw Underwater Sound Levels, dB re: 1 µPa  | 13 |
| Table 7.5 N12.5-NJ Underwater Sound Levels, dB re: 1 μPa  | 14 |
| Table 7.6 N11-NG Underwater Sound Levels, dB re: 1 μPa    | 15 |
| Table 7.7 N11.5-NG Underwater Sound Levels, dB re: 1 µPa  | 15 |
| Table 7.8 POF-E Underwater Sound Levels, dB re: 1 µPa     | 17 |
| Table 7.9 POF-D Underwater Sound Levels, dB re: 1 μPa     | 17 |
| Table 7.10 POF-F Underwater Sound Levels, dB re: 1 µPa    | 18 |
| Table 7.11 S26-SG Underwater Sound Levels, dB re: 1 μPa   | 19 |
| Table 7.12 S26-SF.3 Underwater Sound Levels, dB re: 1 μPa | 20 |
| Table 7.13 S26-SE.5 Underwater Sound Levels, dB re: 1 µPa | 20 |
| Table 8.1 Marine Mammal Thresholds, dB re: 1 μPa (RMS)    | 22 |
| Table 8.2 Distances to Marine Mammal Thresholds           |    |
| Table 8.3 Threshold Levels for Fish, dB re: 1 μPa         | 23 |
| Table 8.4 Distances to Fish Thresholds                    | 24 |

# List of Figures

| Figure 2.1 Vicinity Map of Seattle Multimodal Terminal at Colman Dock Project | . 2 |
|-------------------------------------------------------------------------------|-----|
| Figure 5.1 Bubble Curtain                                                     | . 6 |
| Figure 5.2 Operating Bubble Curtain                                           | . 6 |
| Figure 6.1 Hydroacoustic Monitoring Equipment                                 |     |

| Figure 7.1 Temporary Work Trestle 24-Inch Pile and Hydrophone Locations     | 11 |
|-----------------------------------------------------------------------------|----|
| Figure 7.2 Chainsaw Underwater Frequency Spectra, dB re: 1 µPa              | 13 |
| Figure 7.3 North Trestle 36-Inch Pile and Hydrophone Locations              | 14 |
| Figure 7.4 Passenger Only Ferry Float 36-Inch Pile and Hydrophone Locations | 16 |
| Figure 7.5 South Notch 36-Inch Pile and Hydrophone Locations                | 19 |
| Figure 8.1 Marine Mammal Disturbance and Injury Zones                       | 23 |
| Figure 8.2 Fish Injury and Effective Quiet Zones                            | 24 |

May 14, 2019 Page 1 of 25 Colman Dock Season 2 Hydroacoustic Monitoring Report

# 1.0 EXECUTIVE SUMMARY

This Technical Report presents the results of underwater sound level measurements made between October 2018 and January 2019 during the installation of 24-inch and 36-inch steel pipe piles driven with a diesel impact hammer. This monitoring was conducted during Season 2 of the Seattle Multimodal Terminal at Colman Dock ("Project").

Average underwater 90% RMS (RMS<sub>90</sub>) sound levels measured approximately 33 feet (10 meters) from impact pile driving ranged between 162 and 179 dB re: 1  $\mu$ Pa for the 24-inch diameter piles driven for the Temporary Work Trestle and 172 and 193 dB re: 1  $\mu$ Pa for the 36-inch diameter piles driven at the North Trestle, Passenger Only Ferry Floats, and South Notch. Average peak sound levels measured during the installation of the 24-inch diameter piles ranged between 178 and 190 dB re: 1  $\mu$ Pa and 187 and 204 dB re: 1  $\mu$ Pa for 36-inch diameter piles.

Based on the highest average broadband  $RMS_{90}$  sound levels measured by the far-field hydrophone, the distance required for underwater sound levels to reach the marine mammal detection (Level B) threshold of 160 dB re: 1 µPa was estimated to be 3,341 feet. The distance required to reach the 180 dB re: 1 µPa injury threshold (Level A) for cetaceans was calculated to be 155 feet and 33 feet for pinnipeds.

#### 2.0 INTRODUCTION

This Hydroacoustic Monitoring Report presents the results of underwater sound levels measured during the installation of 24-inch and 36-inch steel pipe piles with a diesel impact hammer during Season 2 (2018/2019 in-water work window) of the Seattle Multimodal Terminal at Colman Dock Project ("Project").

The Project Specifications and the Underwater Noise Monitoring Plan issued by the Washington State Department of Transportation (WSDOT), dated July 27, 2016 includes requirements for hydroacoustic monitoring. These requirements include the number of piles to be monitored, hydroacoustic monitoring equipment, signal processing requirements, measurement locations, analysis methodology, and information required to be reported to the Services. This Hydroacoustic Monitoring Report fulfills the Project's hydroacoustic monitoring and reporting requirements.

The Project is located west of Alaskan Way between Marion Avenue and Yesler Way in downtown Seattle, Washington (see Figure 2.1). Underwater sound level measurements were conducted between October 2018 and January 2019.

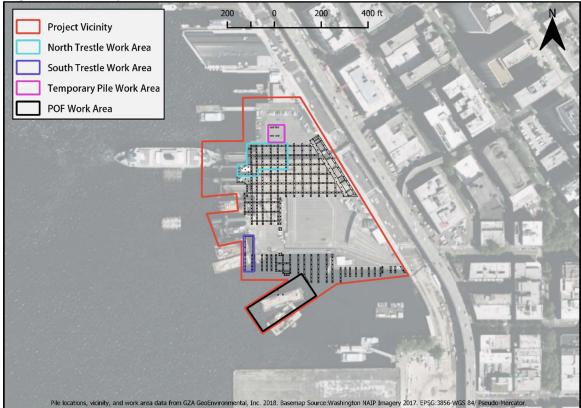



Figure 2.1 Vicinity Map of Seattle Multimodal Terminal at Colman Dock Project

#### 3.0 NOMENCLATURE

The auditory response to sound is a complex process that occurs over a wide range of frequencies and intensities. Decibel levels, or "dB," are a form of shorthand that compresses this broad range of levels with a convenient, logarithmic scale.

Decibels are defined as the squared ratio of the sound pressure level (SPL) with a reference sound pressure. The reference pressure for airborne sound is 20 micropascals ( $\mu$ Pa) and for underwater sound the reference pressure is 1  $\mu$ Pa. The use of 20  $\mu$ Pa in air is convenient because 1 dB re: 20  $\mu$ Pa correlates to the human threshold for hearing. It is important to note that because of these different reference pressures, airborne and underwater sound levels cannot be directly compared.

The following descriptors are referenced in this Report:

#### Peak

The peak sound pressure level is the instantaneous absolute maximum pressure observed during a measured event. Peak pressure can be presented as a pressure or dB referenced to a standard pressure (20  $\mu$ Pa for airborne and 1  $\mu$ Pa for underwater).

# • Root Mean Square (RMS)

The RMS level is the square root of the average squared pressure over a given time period. For vibratory pile driving RMS levels are calculated over 10 second periods. In hydroacoustics, the RMS level has been used by the National Marine Fisheries Service (NMFS) in criteria for assessing sound pressure impact on marine mammals.

# • 90% Root Mean Square (RMS<sub>90</sub>)

The RMS<sub>90</sub> level is used for the analysis of impact pile driving and is the RMS level containing 90 percent of the energy in a pile strike. The RMS<sub>90</sub> energy is established between the 5% and 95% of the pile energy and is calculated for each pile strike.

# • Sound Exposure Level (SEL)

The SEL is the squared sound pressure integrated or summed over time, referenced to a standard pressure squared (20  $\mu$ Pa for airborne and 1  $\mu$ Pa for underwater), normalized to one second, and converted to decibels.

# • Cumulative Sound Exposure Level (cSEL)

The cSEL is the SEL accumulated over time. In this report cSEL is calculated by combining the single strike SEL values for each pile.

# 4.0 HYDROACOUSTIC MONITORING AND REPORTING REQUIREMENTS

Requirements for the Project's hydroacoustic monitoring, signal processing, and reporting are included in the Project Specifications dated July 21, 2017; the Seattle Multimodal Terminal at Colman Dock-Phase 1 Underwater Noise Monitoring Plan authored by WSDOT dated July 27, 2016; and the Colman Dock Phase 2 Underwater Noise Monitoring Plan issued by The Greenbusch Group, Inc. dated October 25, 2018. Underwater sound level limits are not included in either the Project Specifications or the Underwater Noise Monitoring Plans authored by WSDOT and Greenbusch.

#### 4.1 **Project Specifications**

Section 00 72 00 1-07.6(6) of the Project Specifications includes the following underwater noise monitoring requirements for the Contractor:

- The Contractor will comply with the provisions of the Underwater Noise Monitoring Plan authored by WSDOT. To comply with the WSDOT Underwater Noise Monitoring Plan, the Contractor will conduct hydroacoustic monitoring during construction to document the sound transmission during impact pile driving of steel piles.
- A representative subset of impact driven steel piles will be monitored at the start of each in-water work season, per the noise monitoring plan.
- Underwater sound levels will be continuously monitored for the entire duration of each pile being driven.
- The Contractor shall provide qualified staff and appropriate equipment to conduct impact driven steel pile hydroacoustic monitoring. Only staff with appropriate hydroacoustic expertise, as approved by the Contracting Agency, shall perform this monitoring.

#### 4.2 WSDOT Underwater Noise Monitoring Plan

The Underwater Noise Monitoring Plan issued by WSDOT includes requirements regarding the number of piles to be monitored, hydroacoustic monitoring equipment, signal processing requirements, measurement locations, analysis methodology and information required to be reported to the Services.

The WSDOT Underwater Noise Monitoring Plan requires hydroacoustic monitoring locations to be 33 feet (10 meters) away from the pile at mid water depth and 3H, where H is the water depth of the pile being monitored. The 3H hydrophone should be at 80% of the water depth at the measurement location. Monitoring locations are required to have a clear acoustic line-of-sight between the pile and the hydrophones.

Sound levels measured at these locations must include the frequency spectrum, ranges, means, and  $L_{50}$  for peak, RMS<sub>90</sub> and SEL<sub>90</sub> sound pressure levels for each marine mammal functional hearing group as well as the broadband sound pressure levels.  $L_{50}$  levels reported in this document are the median sound levels from each pile drive. The estimated distance at which peak, RMS and cSEL values exceed the respective threshold values must also be reported.

May 14, 2019 Page 5 of 25 Colman Dock Season 2 Hydroacoustic Monitoring Report

# 4.3 Greenbusch Underwater Noise Monitoring Plan

The Colman Dock Phase 2 Underwater Noise Monitoring Plan authored by the Greenbusch Group, Inc. was prepared based on the requirements of the Project Specifications and the WSDOT Underwater Noise Monitoring Plan and provides details of how the hydroacoustic monitoring will be implemented. The Greenbusch Underwater Noise Monitoring Plan includes specific types of equipment that will be used during the monitoring, the resumes of hydroacoustic monitoring staff and a discussion of which piles will be monitored.

# 5.0 PILE AND PILE DRIVING EQUIPMENT INFORMATION

During Season 2, all steel pipe piles were initially driven with a vibratory hammer and proofed using a diesel impact hammer. The piles for the Temporary Work Trestle are 24-inch steel pipe piles with wall thicknesses of ½-inch. North Trestle, Passenger Only Ferry Float, and South Notch piles are 36-inch steel pipe piles and are approximately 90-feet long. All piles except for the Temporary Work Trestle piles have a wall thickness of one inch. The substrate is primarily composed of sand, shell hash, silt and includes some gravel and cobble.

The piles for the Temporary Work Trestle were driven with an ICE I-100V2 diesel impact hammer. The ICE I-100 V2 has a maximum energy rating of 330,760 foot-pounds, a ram weight of 22,050 pounds and a stroke length of 11.81 feet. Specifications for the ICE I-100V2 are shown in the Appendix.

All other piles installed during hydroacoustic monitoring were driven using a Delmag D100-52 diesel impact hammer with an energy rating of 248,063 foot-pounds. The ram weighed 22,050 pounds with a stroke length of 11.25 feet. A cut sheet of the Delmag D100-52 diesel impact hammer can be found in the Appendix of this Report.

Table 5.1 provides a summary of the steel pipe piles driven with the impact pile drivers during hydroacoustic monitoring.

| Pile ID  | Date Sound<br>Driven Attenuation |                   | Distance to<br>Water's Edge | Water<br>Depth | Embedment <sup>1</sup> | Number of<br>Strikes <sup>2</sup> |  |
|----------|----------------------------------|-------------------|-----------------------------|----------------|------------------------|-----------------------------------|--|
|          |                                  | 7                 | Temporary Work              | Trestle        |                        |                                   |  |
| Pile 2   | 10/21/18                         | Bubble            | 130                         | 14             | 69                     | 178                               |  |
| Pile 3   | 10/21/10                         | Curtain           | 150                         | 20             | 63                     | 126                               |  |
|          |                                  |                   | North Trestle               | 9              |                        |                                   |  |
| N12.5-NJ | 12/7/18                          |                   | 210                         | 27             | 58                     | 272                               |  |
| N11-NG   | 1/10/10                          | Bubble<br>Curtain | 210                         | 25             | 57                     | 401                               |  |
| N11.5-NG | 1/10/19                          | Guitain           | 220                         | 24             | 48                     | 136                               |  |
|          |                                  | Pa                | ssenger Only Fer            | ry Floats      |                        |                                   |  |
| POF-E    |                                  |                   | 500                         | 47             | 43                     | 43                                |  |
| POF-D    | 12/11/18                         | Bubble<br>Curtain | 520                         | 47             | 43                     | 54                                |  |
| POF-F    |                                  | Guitain           | 485                         | 46             | 36                     | 72                                |  |
|          |                                  |                   | South Notch                 | ו              |                        |                                   |  |
| S26-SG   |                                  |                   | 505                         | 40             | 37                     | 181                               |  |
| S26-SF.3 | 12/14/18                         | Bubble<br>Curtain | 510                         | 42             | 35                     | 139                               |  |
| S26-SE.5 |                                  | Gartain           | 515                         | 44             | 33                     | 161                               |  |

#### Table 5.1 Summary Pipe Piles, Feet

1. North Trestle and Passenger Only Ferry Float embedment depth listed on pile logs. South Notch embedment was estimated from water depth and minimum tip elevations listed on pile schedule. Temporary Work Trestle embedment estimated from water depth and minimum top elevations shown on plans.

2. Number of strikes included in analysis.

During hydroacoustic monitoring an unconfined bubble curtain was used during all impact pile driving. The unconfined bubble curtain consisted of six 2.5-inch nominal diameter aluminum rings with four rows of 1/16<sup>th</sup> inch diameter bubble release holes in the axial direction. Photos of the unconfined bubble curtain are shown in Figure 5.1 and Figure 5.2. The system design calculations and drawings of the bubble curtain are provided in the Appendix.

#### Figure 5.1 Bubble Curtain



#### Figure 5.2 Operating Bubble Curtain



#### 6.0 MEASUREMENT METHODOLOGY

#### 6.1 Equipment

The hydroacoustic monitoring equipment used during Season 2 is identified in Table 6.1.

| Make and Model             | Quantity | Description                 | Serial Number |  |  |  |
|----------------------------|----------|-----------------------------|---------------|--|--|--|
| Brüel & Kjaer Type 2250    | 1        | Sound Level Analyzer        | 3006756       |  |  |  |
| Reson TC-4013              | 2        | Hydrophono                  | 2513032       |  |  |  |
| Resolt 1C-4013             |          | Hydrophone                  | 0712213       |  |  |  |
| Brück & Kieger Type 2647 A | 2        | Charge Converter (1 m)//nC) | 2638259       |  |  |  |
| Brüel & Kjaer Type 2647-A  | 2        | Charge Converter (1 mV/pC)  | 2582112       |  |  |  |
| Brüel & Kjaer 1704-A-002   | 1        | Signal Conditioner          | 101161        |  |  |  |
| G.R.A.S. Type 42AC         | 1        | Pistonphone                 | 201835        |  |  |  |
| Tascam DR-100MKIII         | 1        | Digital Audio Recorder      | 1690316       |  |  |  |

| Table 6.1 | Hydroacoustic  | Monitoring          | Equipment |
|-----------|----------------|---------------------|-----------|
|           | Tryuroacoustic | INIOT III OF III IQ | Lyuphon   |

Hydroacoustic monitoring equipment was factory calibrated within 1 year of the measurement date. Calibration tones were also recorded before and after each day of monitoring for verification of calibration factors during post-processing. Hydrophones were calibrated using the G.R.A.S. pistonphone.

Underwater sound levels were measured using two Reson TC-4013 hydrophones connected to the Brüel & Kjaer Type 2647-A charge converters and Brüel & Kjaer 1704-A-002 signal conditioner. The signal conditioner was connected to the Tascam DR-100KMIII digital audio recorder, which recorded the signals as WAV files at a sample rate of 48,000 samples per second for subsequent signal analysis. The Brüel & Kjaer Type 2250 allowed for real-time approximations of peak and cSEL sound levels while the measurements were being performed. A photo of the hydroacoustic monitoring equipment is provided Figure 6.1.

# Gara and a second and and a second and a s

Figure 6.1 Hydroacoustic Monitoring Equipment

May 14, 2019 Page 8 of 25 Colman Dock Season 2 Hydroacoustic Monitoring Report

#### 6.2 Measurement Locations

Two hydrophones were used to measure underwater sound produced by impact pile driving. One near-field hydrophone was located at mid water depth approximately 33 feet (10 meters) from the pile. A far-field hydrophone was positioned at approximately 80% water depth 3H from the pile, where H was the water depth at the pile. Whenever possible, the hydrophones were positioned with a clear acoustic line-of-sight between the hydrophones and the pile.

The distances between the hydrophones and piles were verified using a laser distance measurement device. Water depth was measured at all monitoring locations prior to deploying the hydrophones. Hydrophones were secured to existing portions of Colman Dock, boats, and construction platforms.

In addition to water depth measurements, tidal information was obtained from NOAA Station #9447130 and was used to track tidal changes during construction. Table 6.2 presents the depths of the hydrophones, water depth at the measurement locations as well as distances between the hydrophones and piles. Figures illustrating the hydroacoustic measurement positions are presented in Section 7.1 through Section 7.4 of this Report.

| Pile ID     | Hydrophone | Depth at<br>Measurement<br>Location | Hydrophone<br>Depth | Distance to Pile |  |  |
|-------------|------------|-------------------------------------|---------------------|------------------|--|--|
|             | Т          | emporary Work Tre                   | stle                |                  |  |  |
| Pile 2      | Near-Field | 26                                  | 14                  | 36               |  |  |
| Plie 2      | Far-Field  | 48                                  | 38                  | 143              |  |  |
| Pile 3      | Near-Field | 38                                  | 20                  | 36               |  |  |
| Plie 3      | Far-Field  | 48                                  | 38                  | 168              |  |  |
|             |            | North Trestle                       |                     |                  |  |  |
| N12.5-NJ    | Near-Field | 38                                  | 24                  | 33               |  |  |
| IN 12.3-INJ | Far-Field  | 32                                  | 28                  | 100              |  |  |
|             | Near-Field | 36                                  | 18                  | 33               |  |  |
| N11-NG      | Far-Field  | 38                                  | 30                  | 140              |  |  |
| N11.5-NG    | Near-Field | 36                                  | 18                  | 35               |  |  |
| INTT.5-ING  | Far-Field  | 38                                  | 30                  | 140              |  |  |
|             | Pas        | senger Only Ferry F                 | Floats              |                  |  |  |
| POF-E       | Near-Field | 34                                  | 20                  | 45               |  |  |
| FOF-E       | Far-Field  | 30                                  | 24                  | 175              |  |  |
| POF-D       | Near-Field | 34                                  | 18                  | 58               |  |  |
| FOF-D       | Far-Field  | 36                                  | 26                  | 160              |  |  |
| POF-F       | Near-Field | 34                                  | 18                  | 33               |  |  |
| POF-F       | Far-Field  | 36                                  | 26                  | 181              |  |  |
|             |            | South Notch                         |                     |                  |  |  |
| S26-SG      | Near-Field | 37                                  | 24                  | 31               |  |  |
| 320-36      | Far-Field  | 37                                  | 24                  | 115              |  |  |
| S26-SF.3    | Near-Field | 37                                  | 24                  | 32               |  |  |
| 320-37.3    | Far-Field  | 37                                  | 24                  | 80               |  |  |
| S26-SE.5    | Near-Field | 37                                  | 24                  | 36               |  |  |
| 320-3E.3    | Far-Field  | 37                                  | 24                  | 65               |  |  |

#### Table 6.2 Hydrophone Location Summary, Feet

# 7.0 IMPACT PILE DRIVING ANALYSIS AND RESULTS

Data collected during impact pile driving were analyzed to determine the range, mean,  $L_{50}$  and standard deviation of peak, RMS<sub>90</sub> and SEL values as well as the cSEL of each pile for each marine mammal functional hearing group as required by the WSDOT Underwater Noise Monitoring Plan. The marine mammal functional hearing groups are provided in Table 7.1. Periods when pile driving was not occurring under full power were excluded from this analysis. Reported sound levels from the near-field hydrophone have been normalized to 33 feet (10 meters) from the piles using the practical spreading model. For additional information on the practical spreading model please see Section 8.0 of this Report.

| Functional Hearing Group | Low Frequency | High Frequency |
|--------------------------|---------------|----------------|
| Low-Frequency Cetaceans  | 7 Hz          | 20 kHz         |
| Mid-Frequency Cetaceans  | 150 Hz        | 20 kHz         |
| High-Frequency Cetaceans | 200 Hz        | 20 kHz         |
| Pinnipeds                | 75 Hz         | 20 kHz         |

**Table 7.1** Marine Mammal Functional Hearing Groups

Source: NOAA Guidance Document: "Data Collection Methods to Characterize Impact and Vibratory Pile Driving Source Levels Relevant to Marine Mammals" dated January 31, 2012

Standard deviation and  $L_{50}$  were calculated using decibel values and mean values were calculated using mean sound pressure levels.

Data analysis was conducted for each marine mammal functional hearing group by applying a band pass filter to remove frequencies from the signal that are not included in the functional hearing group being analyzed. These filters provide a roll-off of more than 40 dB per decade. In addition to the marine mammal functional hearing groups, the data was also analyzed without the band pass filter to produce broadband results.

The RMS<sub>90</sub> was established between the 5<sup>th</sup> percentile and 95<sup>th</sup> percentile for each recorded pile strike. Figures illustrating the waveforms produced by the pile strikes that generated the absolute highest peak sound pressure level from each pile are provided in the Appendix of this Report. The green portion of these waveforms represents the duration of the strike containing 90% of the acoustical energy.

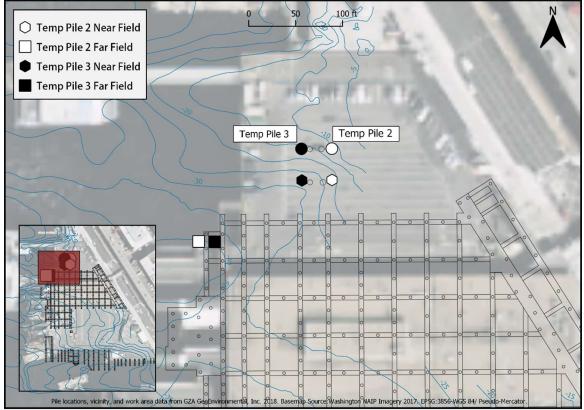
SEL values were calculated for each pile strike over the duration of the strike containing 90% of the acoustic energy using the following formula:

$$SEL = RMS(dB) + 10\log_1(\tau)$$

Where  $\tau$  is the time interval containing 90% of the acoustic energy in each pile strike.

cSEL values were calculated by combining the single strike SEL values for each pile. The resulting cSEL values from each pile driven were combined (logarithmically) to produce daily cSEL values.

Details and results of the hydroacoustic monitoring at the temporary work platform, North Trestle, Passenger Only Ferry Floats, and South Notch are provided in Section 7.1 through Section 7.4.


May 14, 2019 Page 11 of 25 Colman Dock Season 2 Hydroacoustic Monitoring Report

# 7.1 Temporary Work Trestle 24-Inch Piles

Hydroacoustic data was collected during the installation of two 24-inch steel pipe piles at the Temporary Work Trestle during the afternoon of October 21, 2017. During the measurements the water temperature was approximately 55 degrees Fahrenheit and there was no precipitation. During the drive of Pile 2 the ICE I-100 V2 diesel impact hammer was misfiring and the piston height varied throughout the pile drive.

Both the near and far-field hydrophones were suspended from portions of the existing Colman Dock and a direct path of acoustical transmission was maintained between the near-field hydrophone and the piles during all pile driving. The sound paths between the far-field hydrophone and piles were likely obstructed by piles supporting the existing dock. The locations of the hydrophones and the piles are shown in Figure 7.1.





A summary of underwater sound levels produced by impact pile driving for the Temporary Work Trestle are shown in Table 7.2 and Table 7.3.

| Frequency       |                                                                                           | Peak |     |      |                 |         | RMS <sub>90</sub> |         |          |                 |     | SEL |     |      |     |      |
|-----------------|-------------------------------------------------------------------------------------------|------|-----|------|-----------------|---------|-------------------|---------|----------|-----------------|-----|-----|-----|------|-----|------|
| Range           | Min                                                                                       | Max  | SD  | Mean | L <sub>50</sub> | Min     | Max               | SD      | Mean     | L <sub>50</sub> | Min | Max | SD  | Mean | L50 | cSEL |
|                 | Near-Field Hydrophone (measured 36 feet from pile, reported levels normalized to 33 feet) |      |     |      |                 |         |                   |         |          |                 |     |     |     |      |     |      |
| Unweighted      | 166                                                                                       | 181  | 2.9 | 178  | 178             | 154     | 163               | 2.2     | 162      | 162             | 144 | 153 | 2.1 | 152  | 152 | 174  |
| 7 Hz - 20 kHz   | 166                                                                                       | 181  | 2.9 | 178  | 178             | 154     | 163               | 2.2     | 162      | 162             | 144 | 153 | 2.2 | 152  | 152 | 174  |
| 150 Hz - 20 kHz | 166                                                                                       | 181  | 2.9 | 178  | 178             | 151     | 167               | 3.1     | 165      | 165             | 138 | 151 | 3.1 | 149  | 149 | 171  |
| 200 Hz - 20 kHz | 166                                                                                       | 181  | 2.9 | 178  | 178             | 151     | 167               | 3.0     | 165      | 165             | 138 | 151 | 3.2 | 149  | 149 | 171  |
| 75 Hz - 20 kHz  | 166                                                                                       | 181  | 2.9 | 178  | 178             | 152     | 167               | 3.4     | 165      | 165             | 139 | 151 | 2.9 | 149  | 150 | 172  |
|                 |                                                                                           |      |     | F    | ar-Field        | d Hydro | phone             | (143 fe | eet from | pile)           |     |     |     |      |     |      |
| Unweighted      | 151                                                                                       | 161  | 1.7 | 160  | 160             | 143     | 152               | 1.8     | 151      | 152             | 135 | 143 | 1.8 | 142  | 143 | 165  |
| 7 Hz - 20 kHz   | 151                                                                                       | 161  | 1.7 | 160  | 160             | 143     | 152               | 1.9     | 151      | 151             | 135 | 143 | 1.8 | 142  | 143 | 165  |
| 150 Hz - 20 kHz | 151                                                                                       | 161  | 1.7 | 160  | 160             | 131     | 144               | 2.9     | 142      | 142             | 122 | 133 | 2.6 | 131  | 132 | 154  |
| 200 Hz - 20 kHz | 151                                                                                       | 161  | 1.7 | 160  | 160             | 130     | 143               | 2.9     | 141      | 141             | 121 | 132 | 2.6 | 130  | 131 | 153  |
| 75 Hz - 20 kHz  | 151                                                                                       | 161  | 1.7 | 160  | 160             | 133     | 145               | 2.7     | 143      | 143             | 125 | 135 | 2.4 | 133  | 134 | 156  |

#### Table 7.2 Pile 2 Underwater Sound Levels, dB re: 1 $\mu$ Pa

#### Table 7.3 Pile 3 Underwater Sound Levels, dB re: 1 $\mu$ Pa

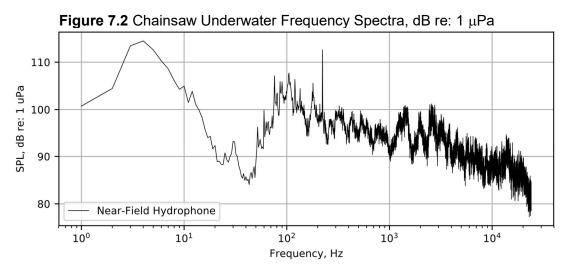
| Frequency       | Peak                                                                                      |     |     |      |                 | RMS <sub>90</sub> |       |         |          |                 | SEL |     |     |      |                 | cSEL |
|-----------------|-------------------------------------------------------------------------------------------|-----|-----|------|-----------------|-------------------|-------|---------|----------|-----------------|-----|-----|-----|------|-----------------|------|
| Range           | Min                                                                                       | Max | SD  | Mean | L <sub>50</sub> | Min               | Max   | SD      | Mean     | L <sub>50</sub> | Min | Max | SD  | Mean | L <sub>50</sub> | COEL |
|                 | Near-Field Hydrophone (measured 36 feet from pile, reported levels normalized to 33 feet) |     |     |      |                 |                   |       |         |          |                 |     |     |     |      |                 |      |
| Unweighted      | 166                                                                                       | 194 | 3.5 | 190  | 190             | 155               | 176   | 3.0     | 174      | 174             | 147 | 166 | 2.8 | 164  | 164             | 185  |
| 7 Hz - 20 kHz   | 166                                                                                       | 194 | 3.5 | 190  | 190             | 155               | 178   | 3.2     | 174      | 174             | 146 | 166 | 2.8 | 164  | 164             | 185  |
| 150 Hz - 20 kHz | 166                                                                                       | 194 | 3.5 | 190  | 190             | 147               | 181   | 4.5     | 179      | 179             | 139 | 166 | 3.6 | 163  | 164             | 184  |
| 200 Hz - 20 kHz | 166                                                                                       | 194 | 3.5 | 190  | 190             | 146               | 181   | 4.5     | 179      | 179             | 138 | 166 | 3.6 | 163  | 164             | 184  |
| 75 Hz - 20 kHz  | 166                                                                                       | 194 | 3.5 | 190  | 190             | 148               | 181   | 4.4     | 179      | 179             | 140 | 166 | 3.4 | 163  | 164             | 184  |
|                 |                                                                                           |     |     | F    | ar-Field        | d Hydro           | phone | (168 fe | eet from | pile)           |     |     |     |      |                 |      |
| Unweighted      | 151                                                                                       | 175 | 2.7 | 172  | 172             | 139               | 158   | 2.0     | 156      | 157             | 131 | 149 | 2.1 | 148  | 148             | 169  |
| 7 Hz - 20 kHz   | 151                                                                                       | 175 | 2.7 | 172  | 172             | 139               | 158   | 2.0     | 156      | 157             | 131 | 149 | 2.1 | 148  | 148             | 169  |
| 150 Hz - 20 kHz | 151                                                                                       | 175 | 2.7 | 172  | 172             | 132               | 163   | 3.9     | 160      | 160             | 124 | 148 | 3.2 | 146  | 146             | 167  |
| 200 Hz - 20 kHz | 151                                                                                       | 175 | 2.7 | 172  | 172             | 131               | 163   | 3.9     | 160      | 160             | 123 | 148 | 3.2 | 146  | 146             | 167  |
| 75 Hz - 20 kHz  | 151                                                                                       | 175 | 2.7 | 172  | 172             | 135               | 162   | 3.6     | 160      | 160             | 127 | 148 | 2.9 | 146  | 147             | 167  |

The underwater sound levels measured over the duration of each pile drive, the waveform of the of the pile strike which produced the absolute highest peak sound pressure level, and the average underwater frequency spectrum from all pile strikes are provided in the Appendix.

May 14, 2019 Page 13 of 25 Colman Dock Season 2 Hydroacoustic Monitoring Report

#### 7.2 North Trestle 36-Inch Piles

Hydroacoustic data was collected during impact pile driving of three 36-inch steel pipe piles. N12.5-NJ was driven the afternoon of December 7, 2018 and N11-NG and N11.5-NG were driven the afternoon of January 10, 2019. On December 7 the water temperature was approximately 52 degrees Fahrenheit and the water temperature was 50 degrees on January 10. There was no precipitation during either day of measurements.


Both hydrophones were suspended from portions of the existing Colman Dock structure. The near-field hydrophone maintained an unobstructed sound path to the piles. An unobstructed acoustic transmission path was unable to be established for the far-field hydrophone on December 7.

Soft start procedures were used prior to driving N12.5-NJ. Vibratory pile driving was occurring in other work areas during the measurements of N12.5-NJ and N11.5-NG. During the installation of N12.5-NJ the Passenger Only Ferry Float piles were being driven with a vibratory hammer. Piles were also being driven west of the North Trestle work area with a vibratory hammer during the beginning of impact pile driving of N11.5-NG.

In addition to vibratory pile driving, a diver was using an underwater chainsaw prior to impact pile driving on January 10, 2019. Although not required, hydroacoustic measurements were made of the chainsaw and analyzed to determine the resulting underwater sound levels. The resulting 1-second RMS, SEL and peak sound levels were calculated and are shown in Table 7.4 below. The underwater frequency spectrum from the chainsaw is shown in Figure 7.2.

| Frequency       |     |     | Peak |      |     |     | 1-Se | econd | RMS  |                 |     |     | SEL |      |                 | cSEL |
|-----------------|-----|-----|------|------|-----|-----|------|-------|------|-----------------|-----|-----|-----|------|-----------------|------|
| Range           | Min | Мах | SD   | Mean | L50 | Min | Max  | SD    | Mean | L <sub>50</sub> | Min | Max | SD  | Mean | L <sub>50</sub> | COEL |
| Unweighted      | 148 | 159 | 2.7  | 154  | 152 | 131 | 140  | 2.8   | 137  | 137             | 131 | 140 | 2.8 | 137  | 137             | 152  |
| 7 Hz - 20 kHz   | 148 | 159 | 2.7  | 154  | 152 | 130 | 140  | 2.8   | 137  | 137             | 130 | 140 | 2.8 | 137  | 137             | 152  |
| 150 Hz - 20 kHz | 148 | 159 | 2.7  | 154  | 152 | 129 | 140  | 3.2   | 137  | 137             | 129 | 140 | 3.2 | 137  | 137             | 151  |
| 200 Hz - 20 kHz | 148 | 159 | 2.7  | 154  | 152 | 129 | 140  | 3.3   | 137  | 137             | 129 | 140 | 3.3 | 137  | 137             | 151  |
| 75 Hz - 20 kHz  | 148 | 159 | 2.7  | 154  | 152 | 130 | 140  | 2.9   | 137  | 137             | 130 | 140 | 2.9 | 137  | 137             | 151  |

Table 7.4 Chainsaw Underwater Sound Levels, dB re: 1 µPa



The locations of the hydrophones and the piles are shown in Figure 7.3.

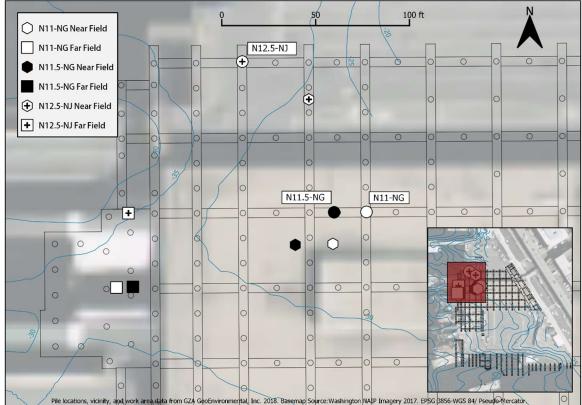



Figure 7.3 North Trestle 36-Inch Pile and Hydrophone Locations

A summary of underwater sound levels produced by impact pile driving for the North Trestle are shown in Table 7.5 to Table 7.7.

| Frequency       |     |     | Peak |      |                 |          |         | RMS     | 0        |                 |     |     | SEL |      |     | cSEL |
|-----------------|-----|-----|------|------|-----------------|----------|---------|---------|----------|-----------------|-----|-----|-----|------|-----|------|
| Range           | Min | Max | SD   | Mean | L <sub>50</sub> | Min      | Max     | SD      | Mean     | L <sub>50</sub> | Min | Max | SD  | Mean | L50 | COEL |
|                 |     |     |      | ٨    | lear-Fie        | eld Hydi | rophone | e (33 f | eet from | pile)           |     |     |     |      |     |      |
| Unweighted      | 178 | 193 | 2.8  | 187  | 187             | 167      | 176     | 1.8     | 172      | 172             | 158 | 166 | 1.6 | 162  | 162 | 187  |
| 7 Hz - 20 kHz   | 178 | 193 | 2.8  | 187  | 187             | 166      | 176     | 2.2     | 172      | 172             | 158 | 166 | 1.7 | 162  | 162 | 186  |
| 150 Hz - 20 kHz | 178 | 193 | 2.8  | 187  | 187             | 163      | 177     | 3.9     | 173      | 173             | 152 | 163 | 3.0 | 159  | 159 | 184  |
| 200 Hz - 20 kHz | 178 | 193 | 2.8  | 187  | 187             | 162      | 177     | 4.0     | 173      | 173             | 151 | 163 | 3.1 | 159  | 159 | 183  |
| 75 Hz - 20 kHz  | 178 | 193 | 2.8  | 187  | 187             | 164      | 178     | 3.3     | 173      | 173             | 153 | 164 | 2.6 | 160  | 160 | 185  |
|                 |     |     |      | F    | ar-Field        | d Hydro  | phone   | (100 fe | eet from | pile)           |     |     |     |      |     |      |
| Unweighted      | 161 | 177 | 4.0  | 171  | 170             | 150      | 163     | 3.0     | 157      | 157             | 142 | 152 | 2.2 | 147  | 147 | 171  |
| 7 Hz - 20 kHz   | 161 | 177 | 4.0  | 171  | 170             | 150      | 164     | 3.1     | 157      | 157             | 141 | 152 | 2.4 | 147  | 147 | 171  |
| 150 Hz - 20 kHz | 161 | 177 | 4.0  | 171  | 170             | 144      | 162     | 5.3     | 157      | 157             | 135 | 149 | 4.1 | 145  | 144 | 169  |
| 200 Hz - 20 kHz | 161 | 177 | 4.0  | 171  | 170             | 143      | 162     | 5.7     | 157      | 156             | 134 | 149 | 4.5 | 144  | 144 | 169  |
| 75 Hz - 20 kHz  | 161 | 177 | 4.0  | 171  | 170             | 146      | 163     | 4.4     | 158      | 157             | 137 | 151 | 3.4 | 145  | 145 | 170  |

Table 7.5 N12.5-NJ Underwater Sound Levels, dB re: 1  $\mu$ Pa

| Frequency       |     |     | Peak |      |                 |          |         | RMS      | 0        |                 |     |     | SEL |      |                 | -9EI |
|-----------------|-----|-----|------|------|-----------------|----------|---------|----------|----------|-----------------|-----|-----|-----|------|-----------------|------|
| Range           | Min | Max | SD   | Mean | L <sub>50</sub> | Min      | Max     | SD       | Mean     | L <sub>50</sub> | Min | Max | SD  | Mean | L <sub>50</sub> | cSEL |
|                 |     |     |      | ٨    | lear-Fie        | eld Hydi | rophone | e (33 fe | eet from | pile)           |     |     |     |      |                 |      |
| Unweighted      | 182 | 198 | 2.7  | 194  | 195             | 157      | 186     | 4.6      | 182      | 182             | 140 | 172 | 3.6 | 168  | 169             | 194  |
| 7 Hz - 20 kHz   | 182 | 198 | 2.7  | 194  | 195             | 157      | 186     | 4.6      | 182      | 182             | 140 | 172 | 3.6 | 168  | 169             | 194  |
| 150 Hz - 20 kHz | 182 | 198 | 2.7  | 194  | 195             | 158      | 187     | 4.7      | 182      | 183             | 140 | 172 | 4.2 | 168  | 169             | 194  |
| 200 Hz - 20 kHz | 182 | 198 | 2.7  | 194  | 195             | 158      | 186     | 4.7      | 182      | 183             | 140 | 171 | 4.2 | 167  | 169             | 193  |
| 75 Hz - 20 kHz  | 182 | 198 | 2.7  | 194  | 195             | 158      | 187     | 4.6      | 182      | 183             | 140 | 172 | 3.9 | 168  | 169             | 194  |
|                 |     |     |      | F    | ar-Field        | d Hydro  | phone   | (140 fe  | et from  | pile)           |     |     |     |      |                 |      |
| Unweighted      | 160 | 180 | 2.5  | 176  | 175             | 138      | 164     | 1.6      | 162      | 162             | 130 | 156 | 1.7 | 154  | 154             | 180  |
| 7 Hz - 20 kHz   | 160 | 180 | 2.5  | 176  | 175             | 138      | 164     | 1.6      | 162      | 162             | 130 | 155 | 1.7 | 153  | 153             | 180  |
| 150 Hz - 20 kHz | 160 | 180 | 2.5  | 176  | 175             | 138      | 167     | 4.4      | 163      | 163             | 129 | 154 | 3.6 | 150  | 151             | 177  |
| 200 Hz - 20 kHz | 160 | 180 | 2.5  | 176  | 175             | 138      | 167     | 4.9      | 162      | 162             | 129 | 154 | 4.0 | 150  | 151             | 176  |
| 75 Hz - 20 kHz  | 160 | 180 | 2.5  | 176  | 175             | 138      | 168     | 3.6      | 163      | 163             | 130 | 155 | 2.8 | 151  | 152             | 177  |

#### Table 7.6 N11-NG Underwater Sound Levels, dB re: 1 $\mu$ Pa

#### Table 7.7 N11.5-NG Underwater Sound Levels, dB re: 1 $\mu$ Pa

| Frequency       |     |          | Peak  |          |                 |          |          | RMS       | 0        |          |          |          | SEL     |      |                 | cSEL |
|-----------------|-----|----------|-------|----------|-----------------|----------|----------|-----------|----------|----------|----------|----------|---------|------|-----------------|------|
| Range           | Min | Max      | SD    | Mean     | L <sub>50</sub> | Min      | Max      | SD        | Mean     | L50      | Min      | Max      | SD      | Mean | L <sub>50</sub> | COEL |
|                 | Nea | ar-Field | Hydro | phone (r | neasur          | ed 35 fe | eet fron | n pile, i | reported | levels i | normaliz | zed to 3 | 33 feet | )    |                 |      |
| Unweighted      | 185 | 190      | 1.1   | 188      | 188             | 171      | 175      | 0.9       | 173      | 173      | 161      | 164      | 0.9     | 162  | 162             | 184  |
| 7 Hz - 20 kHz   | 185 | 190      | 1.1   | 188      | 188             | 171      | 175      | 0.9       | 173      | 173      | 161      | 164      | 0.9     | 162  | 162             | 184  |
| 150 Hz - 20 kHz | 185 | 190      | 1.1   | 188      | 188             | 171      | 178      | 1.6       | 175      | 175      | 158      | 164      | 1.3     | 161  | 161             | 183  |
| 200 Hz - 20 kHz | 185 | 190      | 1.1   | 188      | 188             | 171      | 178      | 1.7       | 175      | 175      | 158      | 164      | 1.4     | 161  | 161             | 182  |
| 75 Hz - 20 kHz  | 185 | 190      | 1.1   | 188      | 188             | 172      | 178      | 1.4       | 175      | 175      | 159      | 164      | 1.1     | 162  | 161             | 183  |
|                 |     |          |       | F        | ar-Field        | d Hydro  | phone    | (140 fe   | eet from | pile)    |          |          |         |      |                 |      |
| Unweighted      | 167 | 174      | 1.1   | 170      | 170             | 159      | 162      | 1.0       | 161      | 161      | 150      | 154      | 1.0     | 152  | 152             | 174  |
| 7 Hz - 20 kHz   | 167 | 174      | 1.1   | 170      | 170             | 158      | 162      | 1.1       | 160      | 160      | 149      | 153      | 1.0     | 152  | 151             | 173  |
| 150 Hz - 20 kHz | 167 | 174      | 1.1   | 170      | 170             | 152      | 161      | 1.6       | 156      | 156      | 141      | 148      | 1.6     | 145  | 144             | 166  |
| 200 Hz - 20 kHz | 167 | 174      | 1.1   | 170      | 170             | 151      | 160      | 1.7       | 156      | 155      | 140      | 148      | 1.8     | 144  | 144             | 165  |
| 75 Hz - 20 kHz  | 167 | 174      | 1.1   | 170      | 170             | 154      | 161      | 1.5       | 157      | 157      | 143      | 149      | 1.2     | 146  | 146             | 167  |

The underwater sound levels measured over the duration of each pile drive, the waveform of the of the pile strike which produced the absolute highest peak sound pressure level, and the average underwater frequency spectrum from all pile strikes are provided in the Appendix.

# 7.3 Passenger Only Ferry Float 36-Inch Piles

Underwater noise data was collected during impact pile driving of three 36-inch steel pipe piles for the Passenger Only Ferry (POF) Floats on December 11, 2018. During the measurements water temperature was approximately 51 degrees Fahrenheit and rain was falling at approximately 0.12 inches per hour.

The near-field hydrophone was suspended from a work skiff moored to temporary floating dock and the far-field hydrophone was deployed from a floating work platform moored to the south side of the construction site. Because of the pile locations, the near-field hydrophone was unable to be deployed 33 feet from all the piles, however an unobstructed sound path was maintained between both hydrophones and the piles during all impact pile driving. Soft start procedures were used before the drive of POF-E and POF-D. The locations of the hydrophones and the piles are provided in Figure 7.4.

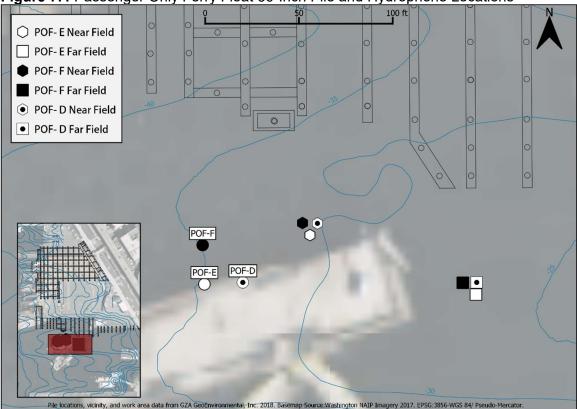



Figure 7.4 Passenger Only Ferry Float 36-Inch Pile and Hydrophone Locations

A summary of underwater sound levels produced by impact pile driving for the Passenger Only Ferry Floats are shown in Table 7.8 to Table 7.10.

| Frequency       |     |          | Peak  |          |                 |          |          | RMS       | 0        |                 |          |          | SEL     |      |                 | cSEL |
|-----------------|-----|----------|-------|----------|-----------------|----------|----------|-----------|----------|-----------------|----------|----------|---------|------|-----------------|------|
| Range           | Min | Max      | SD    | Mean     | L <sub>50</sub> | Min      | Max      | SD        | Mean     | L <sub>50</sub> | Min      | Max      | SD      | Mean | L <sub>50</sub> | COEL |
|                 | Nea | ar-Field | Hydro | phone (r | neasur          | ed 45 fe | eet fron | n pile, i | reported | levels r        | normaliz | zed to 3 | 33 feet | )    |                 |      |
| Unweighted      | 174 | 197      | 4.9   | 192      | 192             | 158      | 183      | 5.1       | 178      | 178             | 149      | 171      | 4.4     | 166  | 166             | 182  |
| 7 Hz - 20 kHz   | 174 | 197      | 4.9   | 192      | 192             | 158      | 183      | 5.0       | 178      | 178             | 149      | 171      | 4.4     | 166  | 166             | 182  |
| 150 Hz - 20 kHz | 174 | 197      | 4.9   | 192      | 192             | 160      | 183      | 4.7       | 178      | 179             | 147      | 170      | 4.6     | 166  | 166             | 182  |
| 200 Hz - 20 kHz | 174 | 197      | 4.9   | 192      | 192             | 160      | 183      | 4.7       | 178      | 178             | 147      | 170      | 4.6     | 165  | 165             | 182  |
| 75 Hz - 20 kHz  | 174 | 197      | 4.9   | 192      | 192             | 160      | 183      | 4.7       | 179      | 179             | 148      | 171      | 4.5     | 166  | 166             | 182  |
|                 |     |          |       | F        | ar-Field        | d Hydro  | phone    | (175 fe   | eet from | pile)           |          |          |         |      |                 |      |
| Unweighted      | 165 | 187      | 4.4   | 184      | 184             | 151      | 173      | 4.6       | 170      | 170             | 143      | 163      | 4.1     | 160  | 161             | 177  |
| 7 Hz - 20 kHz   | 165 | 187      | 4.4   | 184      | 184             | 151      | 173      | 4.7       | 170      | 170             | 143      | 162      | 4.2     | 160  | 161             | 177  |
| 150 Hz - 20 kHz | 165 | 187      | 4.4   | 184      | 184             | 151      | 174      | 4.6       | 171      | 171             | 140      | 162      | 4.5     | 160  | 160             | 176  |
| 200 Hz - 20 kHz | 165 | 187      | 4.4   | 184      | 184             | 151      | 174      | 4.5       | 171      | 171             | 140      | 162      | 4.5     | 160  | 160             | 176  |
| 75 Hz - 20 kHz  | 165 | 187      | 4.4   | 184      | 184             | 151      | 174      | 4.6       | 171      | 171             | 141      | 162      | 4.4     | 160  | 161             | 177  |

#### Table 7.8 POF-E Underwater Sound Levels, dB re: 1 $\mu$ Pa

# Table 7.9 POF-D Underwater Sound Levels, dB re: 1 $\mu$ Pa

| Frequency       |     |          | Peak  |          |                 |          |          | RMS       | 0        |                 |          |          | SEL     |      |                 | cSEL |
|-----------------|-----|----------|-------|----------|-----------------|----------|----------|-----------|----------|-----------------|----------|----------|---------|------|-----------------|------|
| Range           | Min | Max      | SD    | Mean     | L <sub>50</sub> | Min      | Max      | SD        | Mean     | L <sub>50</sub> | Min      | Max      | SD      | Mean | L <sub>50</sub> | COEL |
|                 | Nea | ar-Field | Hydro | phone (r | neasur          | ed 58 fe | eet from | n pile, l | reported | levels r        | normaliz | zed to 3 | 33 feet | )    |                 |      |
| Unweighted      | 184 | 205      | 3.1   | 202      | 203             | 170      | 191      | 3.1       | 189      | 189             | 157      | 178      | 3.0     | 176  | 176             | 193  |
| 7 Hz - 20 kHz   | 184 | 205      | 3.1   | 202      | 203             | 171      | 191      | 3.0       | 189      | 189             | 157      | 178      | 3.0     | 176  | 176             | 193  |
| 150 Hz - 20 kHz | 184 | 205      | 3.1   | 202      | 203             | 171      | 191      | 2.9       | 189      | 189             | 156      | 177      | 3.0     | 175  | 175             | 193  |
| 200 Hz - 20 kHz | 184 | 205      | 3.1   | 202      | 203             | 171      | 191      | 2.9       | 189      | 189             | 156      | 177      | 3.1     | 175  | 175             | 193  |
| 75 Hz - 20 kHz  | 184 | 205      | 3.1   | 202      | 203             | 171      | 191      | 2.9       | 189      | 189             | 157      | 178      | 3.0     | 176  | 176             | 193  |
|                 |     | •        | •     | F        | ar-Field        | d Hydro  | phone    | (160 fe   | eet from | pile)           |          |          |         |      |                 |      |
| Unweighted      | 172 | 194      | 3.1   | 191      | 191             | 157      | 182      | 3.7       | 179      | 178             | 147      | 169      | 3.1     | 166  | 166             | 184  |
| 7 Hz - 20 kHz   | 172 | 194      | 3.1   | 191      | 191             | 157      | 182      | 3.7       | 179      | 179             | 147      | 169      | 3.1     | 166  | 166             | 184  |
| 150 Hz - 20 kHz | 172 | 194      | 3.1   | 191      | 191             | 160      | 181      | 3.2       | 179      | 178             | 146      | 168      | 3.2     | 166  | 165             | 183  |
| 200 Hz - 20 kHz | 172 | 194      | 3.1   | 191      | 191             | 159      | 181      | 3.2       | 178      | 178             | 145      | 168      | 3.3     | 165  | 165             | 183  |
| 75 Hz - 20 kHz  | 172 | 194      | 3.1   | 191      | 191             | 159      | 182      | 3.3       | 179      | 179             | 147      | 169      | 3.2     | 166  | 166             | 184  |

| Frequency       |     |     | Peak | water c |                 |          | ,       | <b>RMS</b> s | •        |                 |     |     | SEL |      |     |      |
|-----------------|-----|-----|------|---------|-----------------|----------|---------|--------------|----------|-----------------|-----|-----|-----|------|-----|------|
| Range           | Min | Max | SD   | Mean    | L <sub>50</sub> | Min      | Max     | SD           | Mean     | L <sub>50</sub> | Min | Max | SD  | Mean | L50 | cSEL |
|                 |     | •   |      | ٨       | lear-Fie        | eld Hydi | rophone | e (33 fe     | eet from | pile)           |     |     |     |      |     |      |
| Unweighted      | 194 | 203 | 1.2  | 201     | 200             | 179      | 187     | 1.4          | 185      | 185             | 165 | 173 | 1.2 | 171  | 172 | 190  |
| 7 Hz - 20 kHz   | 194 | 203 | 1.2  | 201     | 200             | 179      | 188     | 1.4          | 185      | 185             | 165 | 173 | 1.2 | 171  | 172 | 190  |
| 150 Hz - 20 kHz | 194 | 203 | 1.2  | 201     | 200             | 179      | 188     | 1.4          | 186      | 186             | 164 | 173 | 1.3 | 171  | 171 | 190  |
| 200 Hz - 20 kHz | 194 | 203 | 1.2  | 201     | 200             | 178      | 188     | 1.4          | 186      | 186             | 164 | 173 | 1.3 | 171  | 171 | 190  |
| 75 Hz - 20 kHz  | 194 | 203 | 1.2  | 201     | 200             | 179      | 188     | 1.4          | 186      | 186             | 165 | 173 | 1.3 | 171  | 171 | 190  |
|                 |     |     | •    | F       | ar-Field        | d Hydro  | phone   | (181 fe      | et from  | pile)           |     |     |     |      |     |      |
| Unweighted      | 180 | 193 | 1.5  | 189     | 188             | 165      | 176     | 1.4          | 173      | 173             | 156 | 167 | 1.2 | 164  | 164 | 183  |
| 7 Hz - 20 kHz   | 180 | 193 | 1.5  | 189     | 188             | 165      | 176     | 1.4          | 173      | 173             | 156 | 167 | 1.2 | 164  | 164 | 183  |
| 150 Hz - 20 kHz | 180 | 193 | 1.5  | 189     | 188             | 167      | 180     | 1.6          | 177      | 177             | 155 | 166 | 1.3 | 163  | 164 | 182  |
| 200 Hz - 20 kHz | 180 | 193 | 1.5  | 189     | 188             | 167      | 180     | 1.6          | 177      | 177             | 154 | 166 | 1.4 | 163  | 163 | 182  |
| 75 Hz - 20 kHz  | 180 | 193 | 1.5  | 189     | 188             | 168      | 180     | 1.5          | 177      | 177             | 156 | 166 | 1.3 | 164  | 164 | 182  |

Table 7.10 POF-F Underwater Sound Levels, dB re: 1 μPa

Underwater sound levels measured over the duration of each pile drive, waveform of the pile strike which produced the absolute highest peak sound pressure level, and average underwater frequency spectrum from all pile strikes are provided in the Appendix.

# 7.4 South Notch Piles 36-Inch Piles

Hydroacoustic data was collected the morning of December 14, 2018 during impact pile driving of three 36-inch steel pipe piles at the South Notch. Water temperature during the measurements was 51 degrees Fahrenheit and there was no precipitation.

Both hydrophones were suspended from existing portions of Colman Dock and maintained a direct line of acoustic transmission to the monitored piles. S26-SG was the first pile driven and included the required soft start procedure. After the soft start the pile was driven, the hammer stopped, and then the pile was driven one additional foot. Early in the drive of S26-SE.5 there was a problem with impact hammer that required setting the hammer down for repairs. Upon completing the repairs the pile drive was completed. The locations of the hydrophones and piles are provided in Figure 7.5.

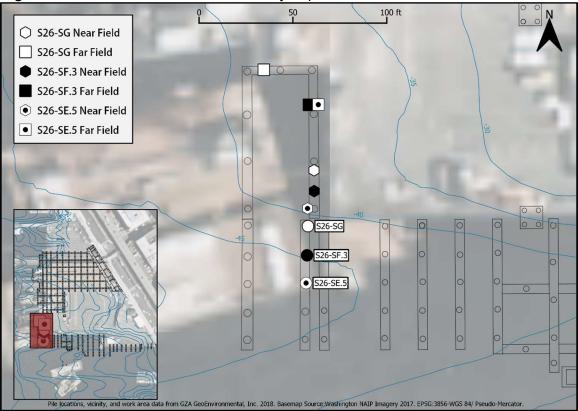



Figure 7.5 South Notch 36-Inch Pile and Hydrophone Locations

A summary of underwater sound levels produced by impact pile driving at the South Notch are shown in Table 7.11 to Table 7.13.

| Frequency       |     |          | Peak  |          |                 |          |          | RMS       | 0         |                 |          |          | SEL     |      |     | cSEL |
|-----------------|-----|----------|-------|----------|-----------------|----------|----------|-----------|-----------|-----------------|----------|----------|---------|------|-----|------|
| Range           | Min | Max      | SD    | Mean     | L <sub>50</sub> | Min      | Max      | SD        | Mean      | L <sub>50</sub> | Min      | Max      | SD      | Mean | L50 | CSEL |
|                 | Nea | ar-Field | Hydro | phone (r | neasur          | ed 31 fe | eet from | n pile, l | reported  | levels r        | normaliz | zed to 3 | 33 feet | )    |     |      |
| Unweighted      | 185 | 207      | 2.3   | 204      | 204             | 171      | 195      | 2.3       | 193       | 193             | 160      | 182      | 2.1     | 179  | 180 | 202  |
| 7 Hz - 20 kHz   | 185 | 207      | 2.3   | 204      | 204             | 172      | 195      | 2.2       | 193       | 193             | 160      | 182      | 2.1     | 179  | 180 | 202  |
| 150 Hz - 20 kHz | 185 | 207      | 2.3   | 204      | 204             | 173      | 195      | 2.2       | 193       | 193             | 159      | 181      | 2.2     | 179  | 179 | 202  |
| 200 Hz - 20 kHz | 185 | 207      | 2.3   | 204      | 204             | 173      | 195      | 2.2       | 192       | 193             | 159      | 181      | 2.2     | 179  | 179 | 201  |
| 75 Hz - 20 kHz  | 185 | 207      | 2.3   | 204      | 204             | 173      | 195      | 2.1       | 193       | 193             | 160      | 182      | 2.2     | 179  | 180 | 202  |
|                 |     |          |       | I        | Far-Fiel        | ld Hydr  | ophone   | (65 fe    | et from p | oile)           |          |          |         |      |     |      |
| Unweighted      | 178 | 194      | 1.3   | 194      | 194             | 164      | 187      | 2.2       | 185       | 185             | 151      | 174      | 2.3     | 172  | 172 | 194  |
| 7 Hz - 20 kHz   | 178 | 194      | 1.3   | 194      | 194             | 164      | 187      | 2.2       | 185       | 185             | 151      | 174      | 2.3     | 172  | 172 | 194  |
| 150 Hz - 20 kHz | 178 | 194      | 1.3   | 194      | 194             | 164      | 187      | 2.2       | 185       | 185             | 150      | 174      | 2.3     | 172  | 172 | 194  |
| 200 Hz - 20 kHz | 178 | 194      | 1.3   | 194      | 194             | 164      | 187      | 2.2       | 185       | 185             | 150      | 173      | 2.3     | 172  | 171 | 194  |
| 75 Hz - 20 kHz  | 178 | 194      | 1.3   | 194      | 194             | 164      | 187      | 2.2       | 185       | 185             | 151      | 174      | 2.3     | 172  | 172 | 194  |

Table 7.11 S26-SG Underwater Sound Levels, dB re: 1 µPa

| Frequency       |     |     | Peak |      |                      |          |         | RMS      | 0         |                 |     |     | SEL |      |                 | cSEL |
|-----------------|-----|-----|------|------|----------------------|----------|---------|----------|-----------|-----------------|-----|-----|-----|------|-----------------|------|
| Range           | Min | Max | SD   | Mean | L <sub>50</sub>      | Min      | Max     | SD       | Mean      | L <sub>50</sub> | Min | Max | SD  | Mean | L <sub>50</sub> | COEL |
|                 |     |     |      | ٨    | lear-Fie             | eld Hydi | rophone | e (32 fe | eet from  | pile)           |     |     |     |      |                 |      |
| Unweighted      | 192 | 202 | 1.2  | 199  | 199                  | 178      | 189     | 1.0      | 188       | 188             | 165 | 176 | 1.0 | 175  | 175             | 196  |
| 7 Hz - 20 kHz   | 192 | 202 | 1.2  | 199  | 199                  | 179      | 189     | 1.0      | 188       | 188             | 165 | 176 | 1.0 | 175  | 175             | 196  |
| 150 Hz - 20 kHz | 192 | 202 | 1.2  | 199  | 199                  | 178      | 189     | 1.0      | 187       | 187             | 165 | 176 | 1.0 | 174  | 174             | 195  |
| 200 Hz - 20 kHz | 192 | 202 | 1.2  | 199  | 199                  | 178      | 188     | 1.0      | 187       | 187             | 165 | 175 | 1.0 | 174  | 174             | 195  |
| 75 Hz - 20 kHz  | 192 | 202 | 1.2  | 199  | 199                  | 179      | 189     | 1.0      | 187       | 188             | 165 | 176 | 1.0 | 174  | 175             | 196  |
|                 |     |     |      | I    | <sup>-</sup> ar-Fiel | ld Hydro | ophone  | (80 fe   | et from p | oile)           |     |     |     |      |                 |      |
| Unweighted      | 189 | 194 | 0.5  | 194  | 194                  | 176      | 185     | 0.9      | 184       | 184             | 162 | 172 | 0.9 | 171  | 171             | 192  |
| 7 Hz - 20 kHz   | 189 | 194 | 0.5  | 194  | 194                  | 176      | 185     | 0.9      | 184       | 184             | 163 | 172 | 0.9 | 171  | 171             | 192  |
| 150 Hz - 20 kHz | 189 | 194 | 0.5  | 194  | 194                  | 175      | 185     | 0.9      | 183       | 183             | 162 | 172 | 0.9 | 171  | 171             | 192  |
| 200 Hz - 20 kHz | 189 | 194 | 0.5  | 194  | 194                  | 175      | 184     | 0.9      | 183       | 183             | 162 | 172 | 0.9 | 170  | 170             | 192  |
| 75 Hz - 20 kHz  | 189 | 194 | 0.5  | 194  | 194                  | 176      | 185     | 0.9      | 184       | 184             | 162 | 172 | 0.9 | 171  | 171             | 192  |

#### Table 7.12 S26-SF.3 Underwater Sound Levels, dB re: 1 $\mu$ Pa

# Table 7.13 S26-SE.5 Underwater Sound Levels, dB re: 1 $\mu$ Pa

| Frequency       |     |          | Peak  |          |                 |          |          | RMS       | 0        |                 |          |          | SEL      |      |                 | cSEL |
|-----------------|-----|----------|-------|----------|-----------------|----------|----------|-----------|----------|-----------------|----------|----------|----------|------|-----------------|------|
| Range           | Min | Мах      | SD    | Mean     | L <sub>50</sub> | Min      | Max      | SD        | Mean     | L <sub>50</sub> | Min      | Max      | SD       | Mean | L <sub>50</sub> | COEL |
|                 | Nea | ar-Field | Hydro | phone (r | neasur          | ed 36 fe | eet from | n pile, i | reported | levels r        | normaliz | zed to 3 | 33 feet, | )    |                 |      |
| Unweighted      | 189 | 206      | 2.4   | 204      | 204             | 177      | 194      | 2.3       | 192      | 192             | 164      | 179      | 1.9      | 177  | 177             | 199  |
| 7 Hz - 20 kHz   | 189 | 206      | 2.4   | 204      | 204             | 177      | 194      | 2.3       | 192      | 192             | 164      | 179      | 1.9      | 177  | 177             | 199  |
| 150 Hz - 20 kHz | 189 | 206      | 2.4   | 204      | 204             | 176      | 194      | 2.6       | 191      | 191             | 163      | 179      | 2.1      | 177  | 177             | 199  |
| 200 Hz - 20 kHz | 189 | 206      | 2.4   | 204      | 204             | 175      | 193      | 2.7       | 191      | 191             | 162      | 179      | 2.2      | 177  | 177             | 199  |
| 75 Hz - 20 kHz  | 189 | 206      | 2.4   | 204      | 204             | 177      | 194      | 2.4       | 192      | 192             | 164      | 179      | 2.0      | 177  | 177             | 199  |
|                 |     |          |       | F        | ar-Field        | d Hydro  | phone    | (115 fe   | eet from | pile)           |          |          |          |      |                 |      |
| Unweighted      | 181 | 195      | 1.7   | 193      | 193             | 170      | 184      | 1.6       | 181      | 182             | 157      | 171      | 1.7      | 169  | 169             | 191  |
| 7 Hz - 20 kHz   | 181 | 195      | 1.7   | 193      | 193             | 170      | 184      | 1.6       | 181      | 182             | 157      | 171      | 1.7      | 169  | 169             | 191  |
| 150 Hz - 20 kHz | 181 | 195      | 1.7   | 193      | 193             | 170      | 184      | 1.6       | 181      | 181             | 156      | 171      | 1.7      | 168  | 168             | 190  |
| 200 Hz - 20 kHz | 181 | 195      | 1.7   | 193      | 193             | 169      | 183      | 1.7       | 181      | 181             | 155      | 171      | 1.7      | 168  | 168             | 190  |
| 75 Hz - 20 kHz  | 181 | 195      | 1.7   | 193      | 193             | 170      | 184      | 1.6       | 181      | 181             | 157      | 171      | 1.7      | 169  | 169             | 191  |

Underwater sound levels measured over the duration of each pile drive, waveform of the pile strike which produced the absolute highest peak sound pressure level, and average underwater frequency spectrum from all pile strikes are provided in the Appendix.

#### 8.0 DISTANCE TO DISTURBANCE AND INJURY THRESHOLDS

Data collected during impact pile driving was used to estimate the distance required for underwater sound levels to reach the disturbance and injury thresholds for fish and marine mammals.

The distances were calculated using the "practical spreading model" currently used by NOAA. The practical spreading formula is provided below.

$$SPL_{D2} = SPL_{D1} + \beta * \log_{10}(D1/D2)$$

Where  $SPL_{D1}$  is the sound pressure measured at a distance,  $D_1$  and  $SPL_{D2}$  is the estimated sound pressure at a distance,  $D_2$ .  $\beta$  is the attenuation factor resulting from acoustic spreading over distance. The California Department of Transportation (Caltrans) reported in the "Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish" dated November, 2015, that  $\beta$  can range between 5 and 30 depending upon site specific conditions such as water depth, pile type, pile length and the substrate the pile is driven into. Currently NOAA uses the practical spreading model with  $\beta$  equaling 15, which results in a 4.5 dB reduction in underwater sound levels for each doubling of distance.

The distances required for underwater noise to reach the disturbance and injury thresholds for fish and marine mammals are estimated by solving the practical spreading formula for  $D_2$  resulting in the following:

$$D_2 = D_1 * 10 \left( \frac{SPL_{D1} - SP_{D2}}{15} \right)$$

To estimate the distances required for underwater noise to reach the disturbance and injury thresholds sound levels measured by the far-field hydrophone were normalized to their average measurement distance of 133 feet to allow for comparison of measured sound levels. After calculating the far-field sound levels at 133 feet, the highest mean peak, RMS<sub>90</sub> and SEL values were used to calculate the distances required for sound to reach the threshold distances. The far-field hydrophone provides a more accurate estimate of sound levels at greater distances, as described in the National Marine Fisheries Service Guidance Document titled "Data Collection Methods to Characterize Impact and Vibratory Pile Driving Source Levels Relevant to Marine Mammals", dated January 31, 2012.

# 8.1 Marine Mammal Threshold Distances

The National Marine Fisheries Service (NMFS) has defined underwater sound level thresholds for the disturbance and injury of marine mammals. These thresholds are provided in Table 8.1.

| Functional    | Frequency     | Underwater Sound T<br>Impact Pi    |                               |
|---------------|---------------|------------------------------------|-------------------------------|
| Hearing Group | Range         | Disturbance<br>Threshold (Level B) | Injury Threshold<br>(Level A) |
|               | 7 Hz-20 kHz   |                                    |                               |
| Cetaceans     | 150 Hz-20 kHz | 160                                | 180                           |
|               | 200 Hz-20 kHz |                                    |                               |
| Pinnipeds     | 75 Hz-20 kHz  | 160                                | 190                           |

Table 8.1 Marine Mammal Thresholds, dB re: 1 µPa (RMS)

Source: National Marine Fisheries Service

The distances necessary for underwater sound levels to dissipate to the marine mammal disturbance and injury thresholds were estimated using the practical spreading model and the highest average RMS sound levels measured by the far-field hydrophone. The resulting distances from impact pile driving of steel pipe piles are shown in Table 8.2 below.

| Table 8.2 | Distances  | to | Marine      | Mammal | Thresholds   |
|-----------|------------|----|-------------|--------|--------------|
|           | Diotaniooo |    | 1 Michini O | mannan | 111100110100 |

| Functional<br>Hearing Group | Frequency<br>Range | RMS <sub>90</sub> 1 | Marine Mammal Detection<br>Thresholds |                     | Distance to Threshold <sup>2</sup> |                     |
|-----------------------------|--------------------|---------------------|---------------------------------------|---------------------|------------------------------------|---------------------|
|                             |                    |                     | Disturbance<br>(Level B)              | Injury<br>(Level A) | Disturbance<br>(Level B)           | Injury<br>(Level A) |
| Cetaceans                   | 7 Hz-20 kHz        | 181                 | 181 160                               | 180                 | 3,341 feet                         | 155 feet            |
|                             | 150 Hz-20 kHz      |                     |                                       |                     |                                    |                     |
|                             | 200 Hz-20 kHz      |                     |                                       |                     |                                    |                     |
| Pinnipeds                   | 75 Hz-20 kHz       |                     | 160                                   | 190                 | 3,341 feet                         | 33 feet             |

1. The highest mean RMS<sub>90</sub> sound level was measured by the far-field hydrophone during impact pile driving of Pile S26-SG.

As shown in Table 8.2, the estimated distance required for sound generated by impact pile driving to reach the 160 dB marine mammal disturbance threshold is 3,341 feet from the pile. The estimated distances to the 180 dB and 190 dB injury threshold for cetaceans and pinnipeds are 155 feet and 33 feet respectively. Figure 8.1 illustrates the areas where underwater sound levels are expected to exceed the marine mammal disturbance and injury thresholds. Descriptions of observed marine mammal behavior can be found in the marine mammal monitoring report.



Figure 8.1 Marine Mammal Disturbance and Injury Zones

# 8.2 Fish Threshold Distances

In 2008. The Fisheries Hydroacoustic Working Group, the Federal Highway Administration and Federal Agencies, including the National Marine Fisheries Service (NMFS), agreed upon dual sound level threshold criteria for the onset of injury to fish. These thresholds include peak sound pressure levels and cSEL levels for fish weighing more than 2 grams and fish weighing less than 2 grams. These thresholds as well as the threshold for "effective quiet" are shown in Table 8.3.

| Effect          | Metric            | Fish Mass | Threshold |
|-----------------|-------------------|-----------|-----------|
|                 | Peak              | N/A       | 206       |
| Physical Injury | Daily cSEL        | < 2 grams | 183       |
|                 |                   | ≥ 2 grams | 187       |
| Effective Quiet | Single Strike SEL | N/A       | 150       |

| Table 8.3 | Threshold  | l evels | for Fish    | dB re <sup>.</sup> 1 u | Pa |
|-----------|------------|---------|-------------|------------------------|----|
|           | THI CONOIG | LCV013  | 101 1 1011, | αριο. ι μ              | ıч |

The distances for underwater sound levels to reach the threshold values listed in Table 8.3 were calculated using the practical spreading model and the highest mean peak and single strike SEL unweighted sound levels as well as the highest daily cSEL level measured by the far-field hydrophone. The resulting distances are provided in Table 8.4.

| Effect          | Metric               | Measured<br>Sound Level | Fish Mass | Threshold | Distance   |
|-----------------|----------------------|-------------------------|-----------|-----------|------------|
| Physical Injury | Peak                 | 192 <sup>1</sup>        | N/A       | 206       | 16 feet    |
|                 | Daily cSEL           | 194 <sup>2</sup>        | < 2 grams | 183       | 767 feet   |
|                 |                      |                         | ≥ 2 grams | 187       | 415 feet   |
| Effective Quiet | Single Strike<br>SEL | 168 <sup>1</sup>        | N/A       | 150       | 2,074 feet |

#### Table 8.4 Distances to Fish Thresholds

1. The highest mean peak and sing strike SEL sound levels were measured by the far-field hydrophone during impact pile driving of POF-D.

2. The highest daily cSEL sound level was measured by the far-field hydrophone on December 14, 2018.

3. The highest average single strike SEL was measured by the far-field hydrophone during impact pile driving of S26-SE.5.

Figure 8.2 illustrates the areas where underwater sound levels are expected to exceed the injury and effective quiet thresholds for fish.

# Figure 8.2 Fish Injury and Effective Quiet Zones



#### 9.0 **REFERENCES**

California Department of Transportation. "Hydroacoustic Effects of Pile Driving on Fish." November 2015.

Madsen, P.T., M. Johnson, P.J.O. Miller, N. Aguilar Soto, J. Lynch and P. Tyack. "Quantitative Measures of Air-Gun Pulses Recorded on Sperm Whales (Physeter macrocephalus) Using Acoustic Tags during Controlled Exposure Experiments." October 2006.

NMFS Northwest Region and Northwest Fisheries Science Center. "Guidance Document: Data Collection Methods to Characterize Impact and Vibratory Pile Driving Source Levels Relevant to Marine Mammals." January 31, 2012.

NOAA Fisheries National Marine Fisheries Service "Estimated Auditory Bandwidths for Marine Mammals and Fish."

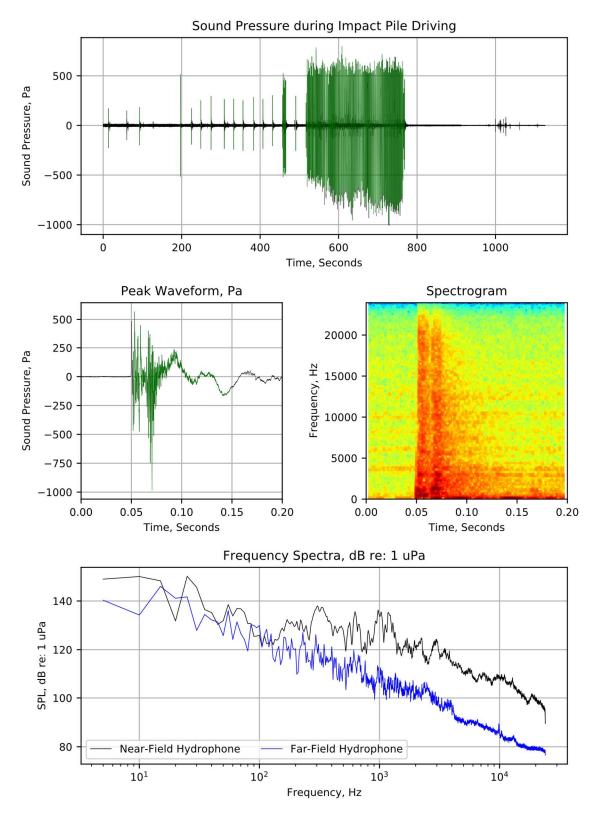
NOAA Fisheries National Marine Fisheries Service "Marine Mammal and Fish Injury and Disturbance Thresholds for Marine Construction Activity."

Seattle Multimodal Terminal at Colman Dock Project Drawings and Specifications. November 28, 2016

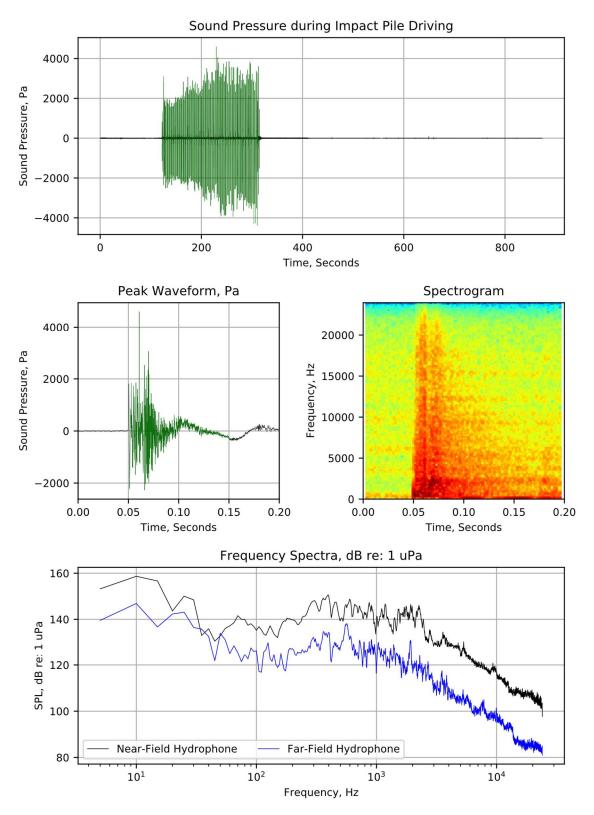
The Greenbusch Group, Inc. "Colman Dock Phase 2 Underwater Noise Monitoring Plan." October 25, 2018.

Washington State Department of Transportation. "Seattle Multimodal Terminal at Colman Dock-Phase 1 Underwater Noise Monitoring Plan." July 27, 2016

Washington State Department of Transportation. "Underwater Noise Monitoring Plan Template." August 2013.

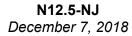

# APPENDIX

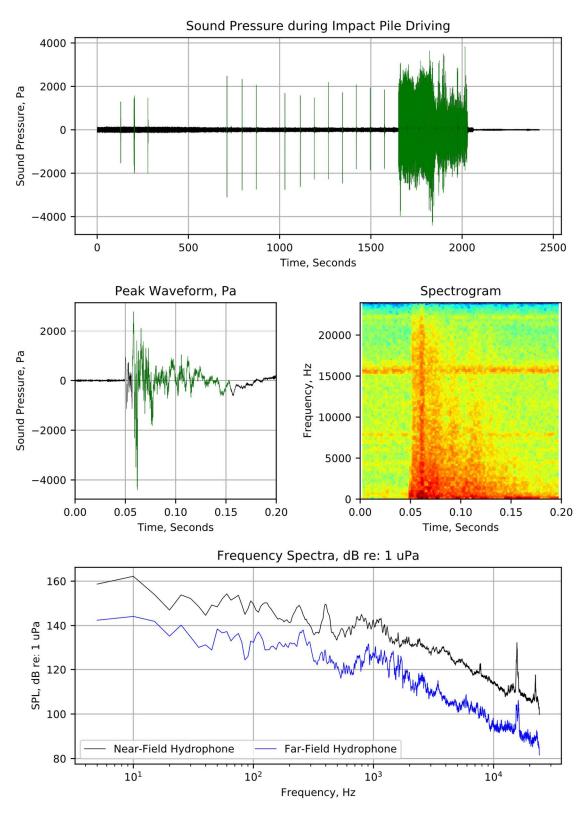
# **Table of Contents**

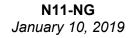

| 1.0 Temporary Work Trestle 24-Inch Steel Pipe Piles<br>Pile – 2 |    |
|-----------------------------------------------------------------|----|
| Pile – 3                                                        |    |
| 2.0 Nouth Trestle 36-Inch Steel Pipe Piles                      | 4  |
| N12.5-NJ                                                        | 5  |
| N11-NG                                                          | 6  |
| N11.5-NG                                                        |    |
| 3.0 Passenger Only Ferry Floats 36-Inch Steel Pipe Piles        | 8  |
| POF-E                                                           |    |
| POF-D                                                           | 10 |
| POF-F11                                                         |    |
| 4.0 South Notch 36-Inch Steel Pipe Piles                        |    |
| S26-SG                                                          | 13 |
| S26-SF.3                                                        |    |
| S26-SE.5                                                        | 15 |
| 5.0 Pile Driver Information                                     | 16 |
| Delmag D100-52 Single Acting Diesel Impact Hammer               |    |
| ICE I-100V2 Diesel Impact Hammer                                |    |
| 6.0 Bubble Curtain Information                                  | 19 |

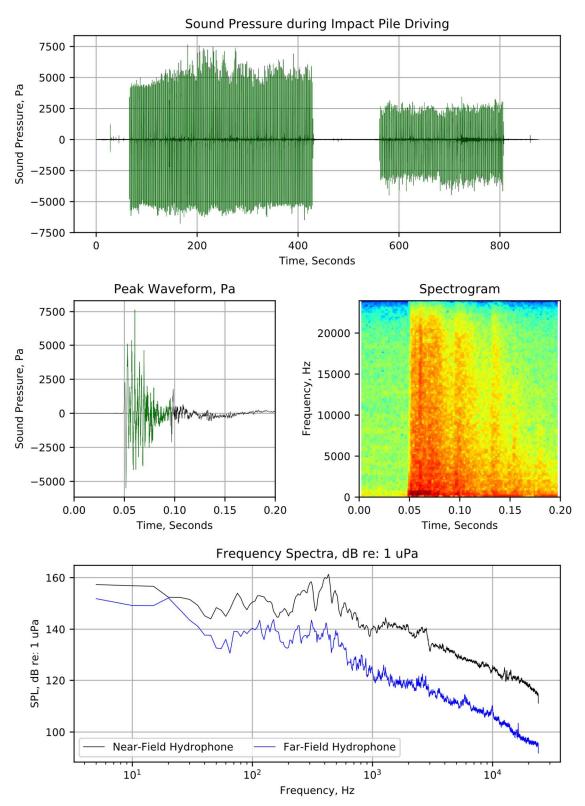
# 1.0 TEMPORARY WORK TRESTLE 24-INCH STEEL PIPE PILES

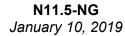
**PILE – 2** October 21, 2018

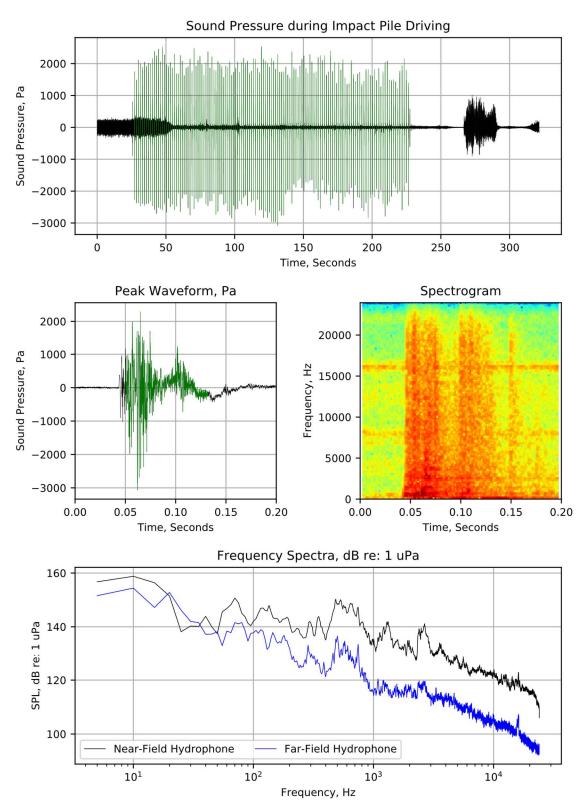




**PILE – 3** October 21, 2018



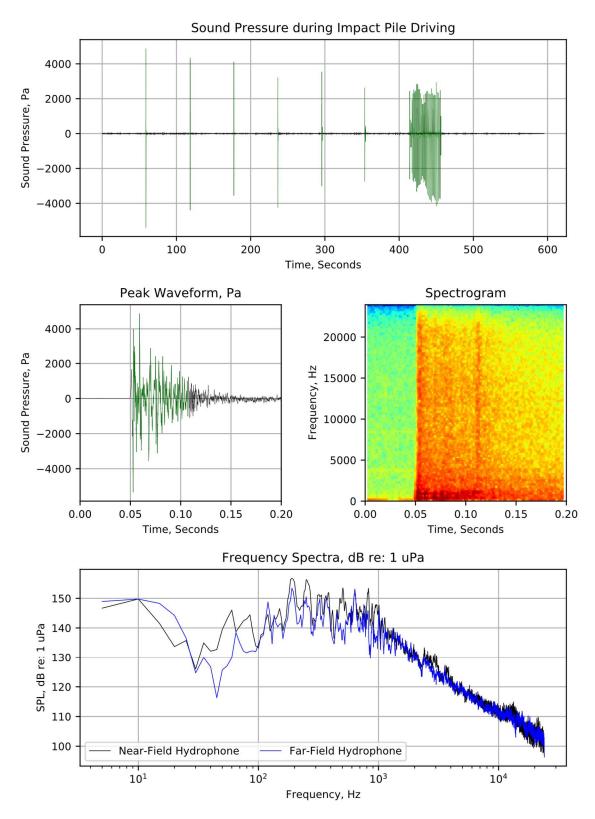


May 14, 2019 Page 4 of 47 Colman Dock Season 2 Hydroacoustic Monitoring Report - Appendix


# 2.0 NOUTH TRESTLE 36-INCH STEEL PIPE PILES

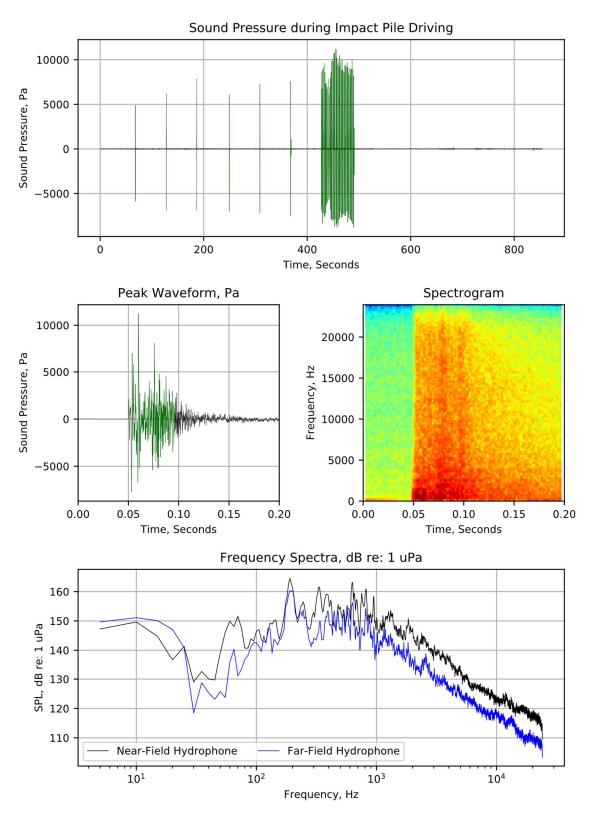




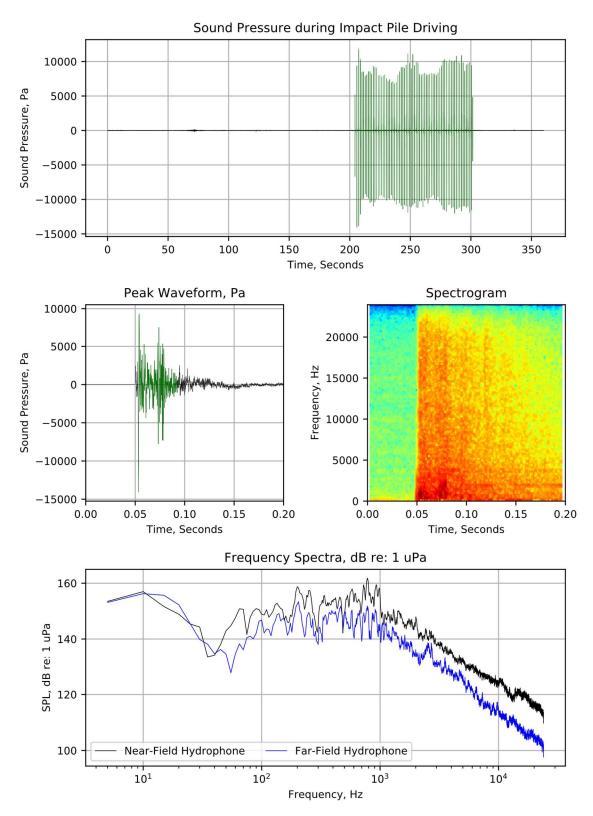




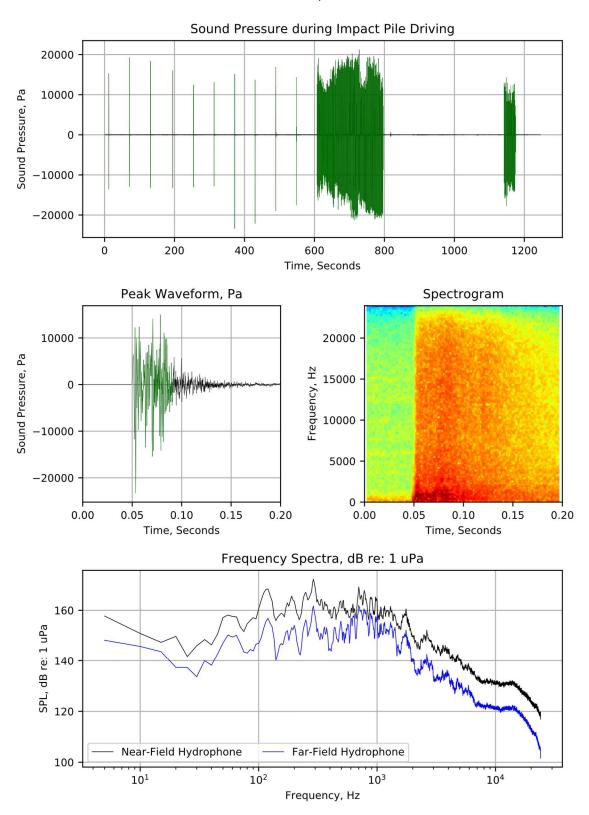

# 3.0 PASSENGER ONLY FERRY FLOATS 36-INCH STEEL PIPE PILES


**POF-E** December 11, 2018

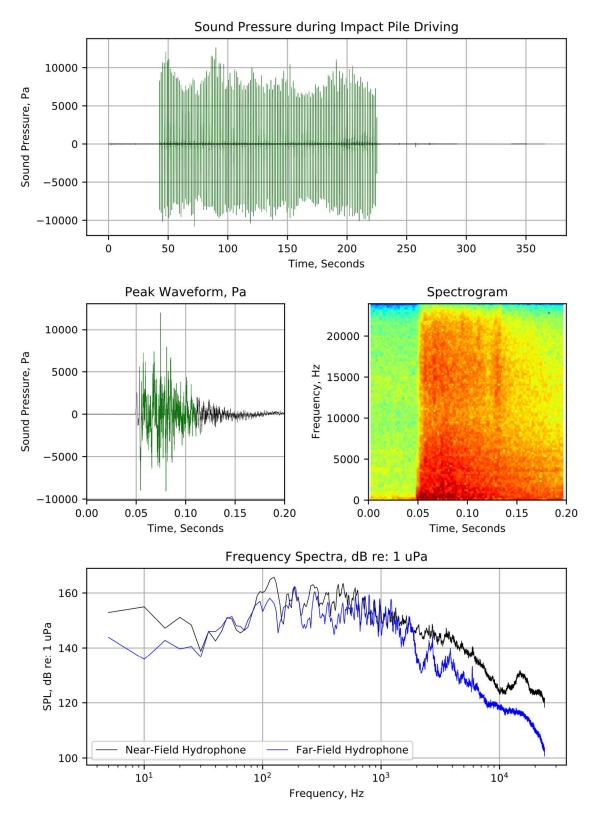


**POF-D** December 11, 2018

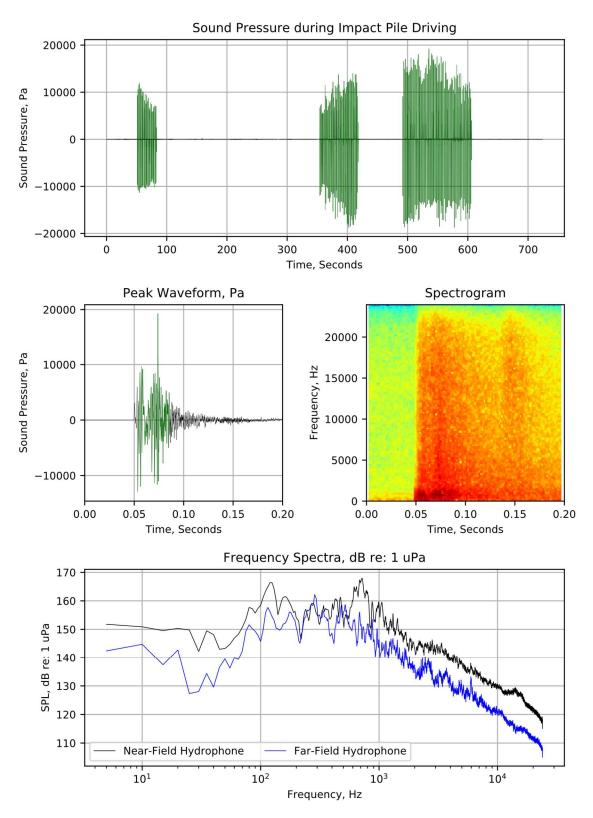



**POF-F** December 11, 2018



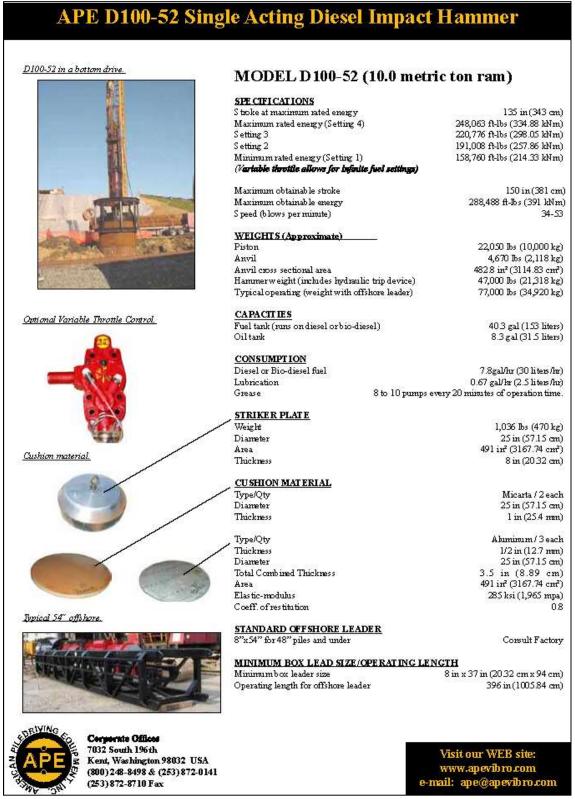

May 14, 2019 Page 12 of 47 Colman Dock Season 2 Hydroacoustic Monitoring Report - Appendix

### 4.0 SOUTH NOTCH 36-INCH STEEL PIPE PILES


**S26-SG** December 14, 2018



**S26-SF.3** December 14, 2018



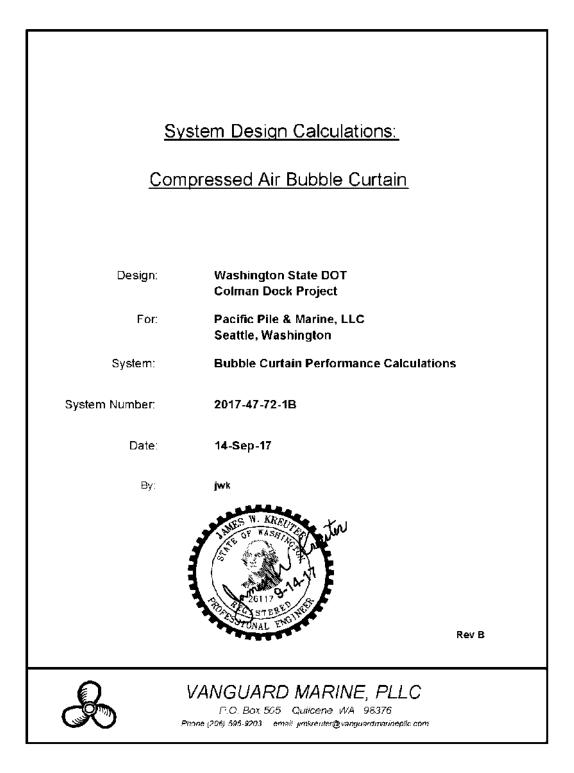

**S26-SE.5** December 14, 2018



#### 5.0 PILE DRIVER INFORMATION

### DELMAG D100-52 SINGLE ACTING DIESEL IMPACT HAMMER

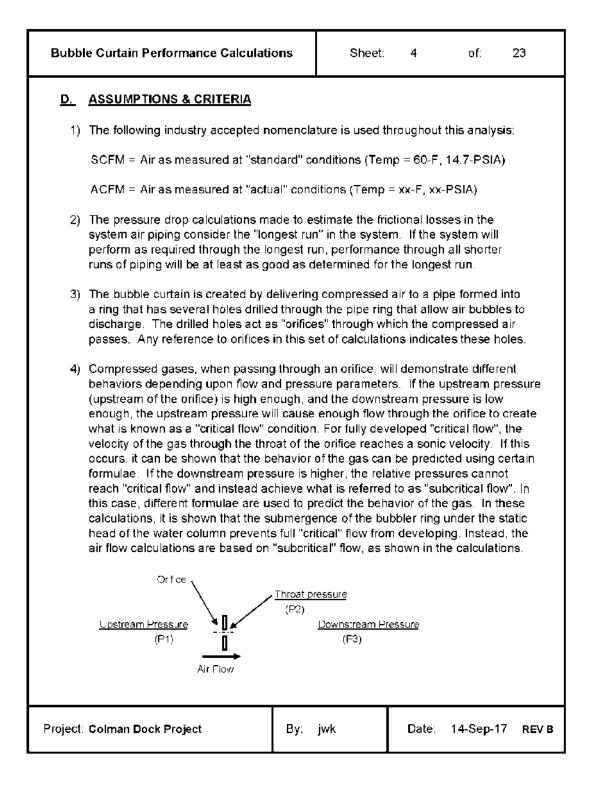



### ICE I-100V2 DIESEL IMPACT HAMMER

| Ram weight                              |                    |
|-----------------------------------------|--------------------|
| 22050 lbs                               |                    |
| Rated energy (fuel se<br>260385 ft-lbs  | etting 4)          |
| Stroke at rated energ<br>11.81 feet     | y (fuel setting 4) |
| Energy at fuel setting<br>231450 ft-lbs | 3                  |
| Energy at fuel setting 209755 ft-lbs    | 2                  |
| Energy at fuel setting<br>188050 ft-lbs | 1                  |
| Energy at maximum s<br>330760 ft-lbs    | stroke             |
| Maximum geometric :<br>15 feet          | stroke             |
| Blows per minute<br>35-45 .             |                    |
| Veights                                 |                    |
| 3are hammer with trip<br>13025 lbs      |                    |
| Hammer with box lead<br>15325 lbs       | 1 guides           |
| Drive cap base<br>DCB-3HD .             |                    |
| Drive cap base weight<br>2340 lbs       | t                  |
| Striker plate<br>I410 lbs               |                    |
| Cushion material<br>192 lbs             |                    |
| Pile insert<br>DCC-24 .                 |                    |
| Pile insert weight                      |                    |

| Fuel tank<br>34 gal           |  |
|-------------------------------|--|
| Lube oil tank                 |  |
| 11.4 gal                      |  |
| Dimensions                    |  |
|                               |  |
| Hammer length (L)             |  |
| 22 feet                       |  |
| Length with trip guides (GL)  |  |
| 25 feet                       |  |
| Length at max. stroke (OL)    |  |
| 30.6 feet                     |  |
| Overall width (W)             |  |
| 42 in                         |  |
| Standard box leads width (LW) |  |
| 36 in                         |  |
| Overall depth                 |  |
| 46 in                         |  |
| Centerline to rear (CR)       |  |
| 26 in                         |  |
| Centerline to front (CF)      |  |
| 19.5 in                       |  |

May 14, 2019 Page 19 of 47 Colman Dock Season 2 Hydroacoustic Monitoring Report - Appendix


# 6.0 BUBBLE CURTAIN INFORMATION



| Bubble Curtain         | Performant   | ce Calculations                                                                                                                                                                                                                                                                                                           | \$                         | Sheet:    | 1                      | of:                                      | 23       |
|------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|------------------------|------------------------------------------|----------|
| <u>A.</u> <u>REVIS</u> | IONS         |                                                                                                                                                                                                                                                                                                                           |                            |           |                        |                                          |          |
|                        |              |                                                                                                                                                                                                                                                                                                                           | <b>–</b> • •               |           |                        |                                          |          |
| <u>Date</u>            | <u>ltem</u>  |                                                                                                                                                                                                                                                                                                                           | <u>Descriptic</u>          | <u>n</u>  |                        |                                          |          |
| <u>9-14-2017</u>       | 1)           | Corrected quantity of air bubbler rings used for "confined<br>bubbler ring" needed when driving batter piles. The<br>original quantity used WAS (7), and now IS (1).<br>HDPE Ring only needs to protrude a minimum<br>distance of 0.50-FT (6-IN) above water level in<br>order to function as required. See sheets 19-22. |                            |           |                        |                                          |          |
| <u>REV B</u>           |              |                                                                                                                                                                                                                                                                                                                           |                            |           |                        |                                          |          |
| <u>Date</u>            | <u>Item</u>  |                                                                                                                                                                                                                                                                                                                           | <u>Descriptic</u>          | <u>m</u>  |                        |                                          |          |
| <u>9-14-2017</u>       | 1)           | available                                                                                                                                                                                                                                                                                                                 | nence of it<br>air flow ra | in system | performa<br>I sheet 12 | e air mani<br>Ince (inclu<br>2. Modified | ding     |
| Project: Colma         | n Dock Proje | ect                                                                                                                                                                                                                                                                                                                       | By:                        | jwk       | Date:                  | 14-Sep-                                  | 17 REV B |

| Bubble      | Curtain Performance Calculations |            | Sheet:    | 2     | of:      | 23       |  |  |  |
|-------------|----------------------------------|------------|-----------|-------|----------|----------|--|--|--|
| <u>B.</u>   | B. TABLE OF CONTENTS             |            |           |       |          |          |  |  |  |
| <u>ltem</u> | Item Description                 |            |           |       |          |          |  |  |  |
|             | Cover Sheet                      |            |           |       |          | -        |  |  |  |
| Α.          | Revisions                        |            |           |       |          | 1        |  |  |  |
| В.          | Table of Contents                |            |           |       |          | 2        |  |  |  |
| C.          | Discussion                       |            |           |       |          | 3        |  |  |  |
| D.          | Assumptions & Criteria           |            |           |       |          | 4        |  |  |  |
| E.          | Conclusion                       |            |           |       | 7        |          |  |  |  |
| F.          | Air Flowrate Required for Bu     | ıbble Cur  | tain      |       | 9        |          |  |  |  |
| G.          | Air Pressure Drop Calculatio     | ons        |           |       | ,        | 10       |  |  |  |
| H.          | Air Receiver Storage vs. Sys     | stem Air I | Requireme | ents  |          | 12       |  |  |  |
| I.          | Unconfined Ring Flowrate C       | alculatio  | ns        |       |          | 13       |  |  |  |
| J.          | Confined Ring Flowrate Calo      | culations  |           |       | 2        | 20       |  |  |  |
|             |                                  |            |           |       |          |          |  |  |  |
|             |                                  |            |           |       |          |          |  |  |  |
|             |                                  |            |           |       |          |          |  |  |  |
|             |                                  |            |           |       |          |          |  |  |  |
|             |                                  |            |           |       |          |          |  |  |  |
| Project     | : Colman Dock Project            | By: j      | wk        | Date: | 14-Sep-1 | 17 REV B |  |  |  |

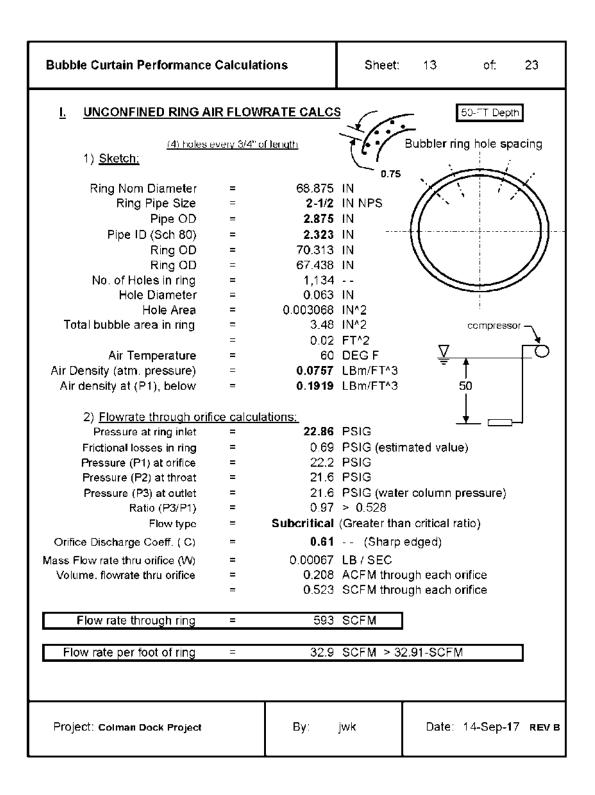
| Bubble    | Curtain Performance Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | Sheet:                    | 3          | of:          | 23    |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|------------|--------------|-------|--|--|--|
| <u>c.</u> | DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                           |            |              |       |  |  |  |
|           | The following calculations are provided to demonstrate the performance of a<br>Bubble Curtain Assembly design that will be used to generate a noise attenuating<br>curtain of bubbles during pile driving associated with work being conducted as<br>part of the rebuilding of the Washington State DOT Colman Dock in Seattle, WA.<br>A previously constructed bubble curtain system will be used (and modified) to<br>satisfy the contractual requirements associated with the noise attentuation portion<br>of the project specification. The bubble curtain system is to engulf in bubbles over<br>the full depth of the water column at all times that the impact pile driver is in use.<br>The bubble curtain equipment will take two general forms: 1) Unconfined bubble<br>curtain arrangement, and 2) Confined bubble curtain arrangement. The unconfined<br>arrangement will be used to provide noise attenuation for vertical piles that are<br>being driven into the mud. The confined arrangement will be used while driving<br>batter piling. |                      |                           |            |              |       |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                           |            |              |       |  |  |  |
|           | The unconfined bubble curtain assembly equipment consists of air compress<br>that will deliver supply air to a fabricated air system manifold. The manifold s<br>the supply air into (up to) fourteen supply hoses that provide supply air to (up<br>seven air bubbler rings that are positioned around the pile being driven. The<br>air bubbler rings are positioned at regular 7-FT intervals beginning at the<br>mud line and spaced vertically up to the water surface. The confined bubble<br>curtain system includes ONLY one ring at the mud line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                           |            |              |       |  |  |  |
|           | This set of calculations will establish th<br>(including rated output) to satisfy the V<br>of 32.91-CFM per foot of bubbler ring.<br>bubbler rings used in water depths of u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VSDOT s<br>This inst | specified a<br>allation w | air bubble | e flux densi |       |  |  |  |
|           | It is assumed that the existing equipment has been fabricated in accordance<br>the the intent of the project specificaions and that the equipment performs as<br>described in the specifications. The purpose of this set of caclulations is to<br>serve as a check on equipment performance and to establish, using the<br>characteristics of compressible gas (ie. Compressed air) the flowrate and<br>pressure of air delivered to the equipment to achieve the specified bubble flux<br>for the water depths required and the as-built bubbler rings (with the established<br>air orifice size and count).                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                           |            |              |       |  |  |  |
|           | Assumptions made to support this set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of calcul            | ations are                | : shown a  | on next she  | et.   |  |  |  |
| Projec    | t: Colman Dock Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | By: j <sup>,</sup>   | wk                        | Date:      | 14-Sep-1     | 7 REV |  |  |  |

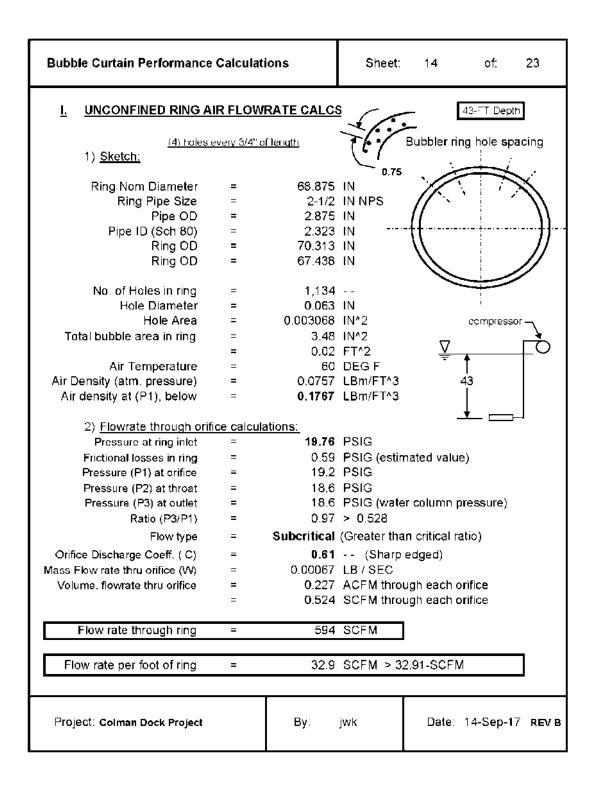


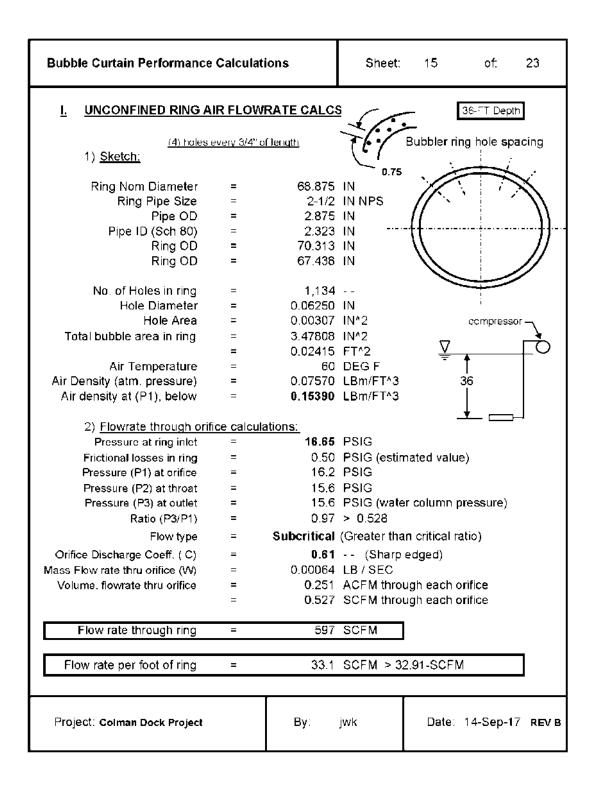
| Bubbl     | e Curtain Performance Calculati                                                                                                                                                                                                                                                                                                                                                                                      | ons                  | Sheet:                          | 5                           | of:                      | 23              |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|-----------------------------|--------------------------|-----------------|--|--|--|
| <u>D.</u> | ASSUMPTIONS & CRITERIA                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                 |                             |                          |                 |  |  |  |
| 5)        | An orifice is a round sharp edged hole in a thin plate. The holes in the fish ring<br>pipe are assumed to behave as do orifices - rather than like any form of nozzle.<br>Critical ratios for compressed (perfect) gases apply accurately to rounded<br>entrance nozzles. Their application to sharp edge orifices is rather approximate.<br>In practice, the critical ratio is applied to either nozzle or orifice. |                      |                                 |                             |                          |                 |  |  |  |
|           | For air between 0-DEG F and 250                                                                                                                                                                                                                                                                                                                                                                                      | -DEG F               | the critical ra                 | atio for air i              | s: r <sub>c</sub> = 0.52 | 28.             |  |  |  |
| 6)        | The air system schematic and det<br>of Transportation guidance drawin<br>dated with "Submittal Date" of 2-2<br>for the Multimodal Terminal at Col                                                                                                                                                                                                                                                                    | g set, D<br>8-2017 i | rawing Numb<br>n all cases. T   | ers "S03.7                  | 0" thru "\$0             | 3.75"           |  |  |  |
| 7)        | The Bubble Curtain performance s<br>of Transportation - Ferries Divisior<br>Terminal at Colman Dock. See pa                                                                                                                                                                                                                                                                                                          | n project            | specification                   | for the Se                  | attle Multin             |                 |  |  |  |
| 8)        | The assumed hose size between t<br>manifold assembly is 3"-Nom and<br>The hose is rubber-lined and assu                                                                                                                                                                                                                                                                                                              | the hase             | e length is as                  | sumed to b                  | e 100-FT I               |                 |  |  |  |
| 9)        | The assumed hose size between f<br>(furthest) air bubbler ring is assum<br>to be 200-FT long, Rubber-lined h                                                                                                                                                                                                                                                                                                         | ed to be             | 1"-Nom and                      | the hose l                  | ength is as              | sumed           |  |  |  |
| 10)       | The compressor air will be filtered<br>The sizing and selection of the fillt                                                                                                                                                                                                                                                                                                                                         |                      |                                 |                             |                          |                 |  |  |  |
| 11)       | For the unconfined bubble curtain<br>spaced at 7-FT intervals (first ring<br>up to 50-FT deep (water depth). T<br>fabricated from a combination of s                                                                                                                                                                                                                                                                 | being p<br>he confi  | ositioned on r<br>ned bubble cu | nud) suitat<br>urtain arrar | ble for dept             | hs of<br>ill be |  |  |  |
| 12)       | The seawater temperature (avg.) i                                                                                                                                                                                                                                                                                                                                                                                    | s assum              | ed to be:                       | 50                          | F                        |                 |  |  |  |
| 13)       | The specific gravity of seawater as                                                                                                                                                                                                                                                                                                                                                                                  | ssumed               | is:                             | 1.03                        |                          |                 |  |  |  |
| 14)       | The assumed atmospheric pressure is: <b>14.696</b> PSI                                                                                                                                                                                                                                                                                                                                                               |                      |                                 |                             |                          |                 |  |  |  |
| Project:  | Colman Dock Project                                                                                                                                                                                                                                                                                                                                                                                                  | By:                  | jwk                             | Date:                       | 14-Sep-1                 | 7 REVB          |  |  |  |

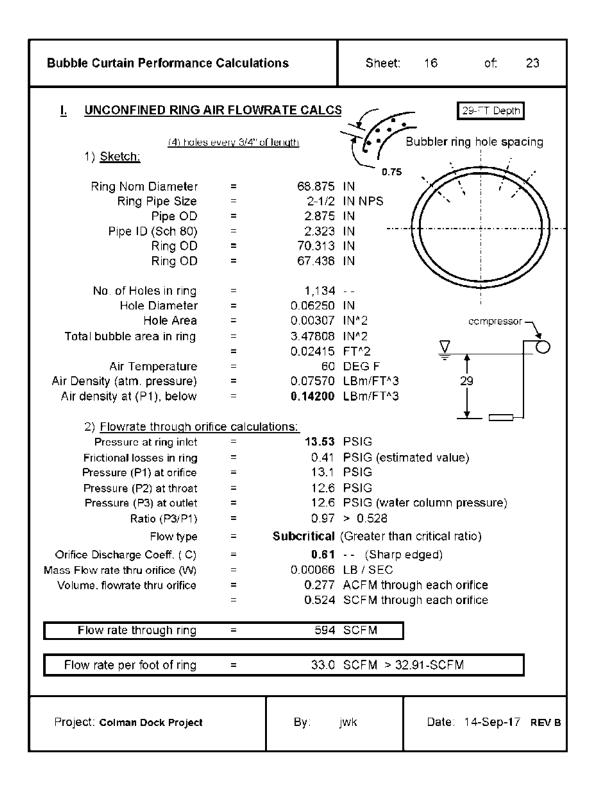
| Bubbl     | e Curtain Performance Calculati                                                                                                                                                                                                                                                            | ons                                                                      | Sheet:                                                                                             | 6                                                                                  | of:                                                                                  | 23                  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------|--|
| <u>D.</u> | ASSUMPTIONS & CRITERIA                                                                                                                                                                                                                                                                     |                                                                          |                                                                                                    |                                                                                    |                                                                                      |                     |  |
| 15)       | The assumed air temperature of the                                                                                                                                                                                                                                                         | ne comp                                                                  | ressed air:                                                                                        | 60                                                                                 | F                                                                                    |                     |  |
| 16)       | Criteria for the unconfined ring as<br>The bubbler ring diameter is assur<br>The number of holes in each ring<br>(assumes 1"-deducted from                                                                                                                                                 | med to b<br>(per WS                                                      | DOT dwg):                                                                                          |                                                                                    | IN<br>holes                                                                          |                     |  |
| 17)       | Criteria for the confined ring as fol<br>The bubbler ring diameter is assur<br>The number of holes in each ring<br>(assumes 1"-deducted from                                                                                                                                               | med to b<br>(per WS                                                      | DOT dwg):                                                                                          |                                                                                    | IN<br>holes                                                                          |                     |  |
| 18)       | Bubbler ring hole (orifice) diamete                                                                                                                                                                                                                                                        | -                                                                        | n each nan, ea                                                                                     | 0.0625                                                                             | IN                                                                                   |                     |  |
| 19)       | Air flux density required per foot o                                                                                                                                                                                                                                                       | f ring:                                                                  |                                                                                                    | 32.91                                                                              | SCFM per F                                                                           | т                   |  |
| 20)       | Max. water depth of rings:                                                                                                                                                                                                                                                                 |                                                                          |                                                                                                    | 50                                                                                 | FΤ                                                                                   |                     |  |
| 21)       | While the calculations provided in calculation methods. It must be not temperatures, variations in baronic system components used (final c will be variations in the system per should be fairly small and while th variables, the purpose of these cal performance will, from a practical | eted that<br>etric pre-<br>limensio<br>formance<br>e actual<br>loulation | due to variati<br>ssure and var<br>ns and equip<br>ce. On the oth<br>performance<br>s is maintaine | ions in air<br>riations of<br>ment arra<br>ier hand, f<br>will chang<br>ed and the | and water<br>piping and<br>ngement), th<br>these variatio<br>ge based on<br>e system | ere<br>ons<br>these |  |
| 22)       | It is assumed that the air flow mete<br>supply line (located at the manifoli<br>Standard Cubic Feet per Minute (<br>meter information provided by WS<br>operators will adjust air flow throttl<br>each air bubble ring as calculated                                                       | d) will pr<br>SCFM) ti<br>DOT. As<br>ing valve                           | ovide air flow<br>o the system<br>s a result, it is<br>es to achieve                               | rate infor<br>operators<br>further as<br>the targes                                | mation in<br>. This is per t<br>ssumed that                                          | ílow<br>the         |  |
| 23)       | It is assumed that all compressed system pressures up to 300-PSIG                                                                                                                                                                                                                          |                                                                          | g has been s                                                                                       | elected ar                                                                         | nd fabricated                                                                        | for                 |  |
| 24)       | 24) Other assumptions as noted in the body of this set of calculations.                                                                                                                                                                                                                    |                                                                          |                                                                                                    |                                                                                    |                                                                                      |                     |  |
| Project:  | Colman Dock Project                                                                                                                                                                                                                                                                        | By:                                                                      | jwk                                                                                                | Date:                                                                              | 14-Sep-17                                                                            | REV B               |  |

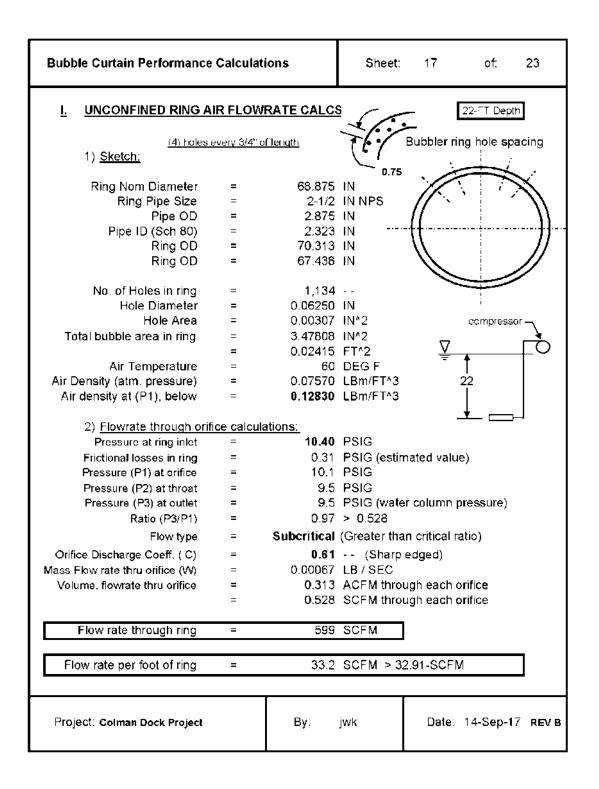
| Bubb      | Bubble Curtain Performance Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Sheet;        | 7          | of:        | 23      |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|------------|------------|---------|--|--|--|
| <u>E.</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |               |            |            |         |  |  |  |
|           | The performance of the Washington State Colman Dock Bubble Curtain equipment when used as described by this set of calculations should provide the specified air bubble flux required to attenuate pile driving noise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |            |            |         |  |  |  |
|           | One air compressor described in the body of the calculations will provide the specified, required flowrate of air required to satisfy the contract specification for water depths to 30-FT deep. Two compressors (operated in parallel with one manifold) will provide the required air for depths to 50-FT deep.                                                                                                                                                                                                                                                                                                                                                                                                     |           |               |            |            |         |  |  |  |
|           | The following detailed calculations indicate that a total air flow rate of 4,186-SCFM is required to supply a depth of 50-FT. The air compressors, set to operate at a discharge pressure of 200-PSIG, will deliver approximately 4,643-SCFM to the bubbler rings.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |               |            |            |         |  |  |  |
|           | When used as described here, the expected air bubble flux will be approximately 33-CFM per foot of bubbler ring. The required flux is 33-CFM per foot of ring. ASSUMPTION No. (21) explains some of the unknowns and variables that will affect system performance. It should also be noted that the required air flow rates necessary to achieve this air flux density exceed the compressor ratings by approximately 1%. However, given the variables described, it is nearly impossible to expect the system to perform exactly as described by this set of calculations. It is still expected that the system described in this report will satisfy the intent of the Washington State performance specification. |           |               |            |            |         |  |  |  |
|           | The final performance of the syste<br>throttling valves provided as part o<br>throttling valves to supply 600-SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the sy | stem. Operate | ors should | adjust the | and     |  |  |  |
|           | Using the approach described abo<br>total pressure required in the syste<br>are rated to deliver a maximum ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | em is ap  | proximately 1 | 00-PSIG.   |            |         |  |  |  |
|           | This flux density and the associated calculations are valid for both the unconfined bubble curtain assembly AND the confined bubble curtain assembly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |               |            |            |         |  |  |  |
| Project   | : Colman Dock Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | By:       | jwk           | Date:      | 14-Sep-11  | 7 REV B |  |  |  |

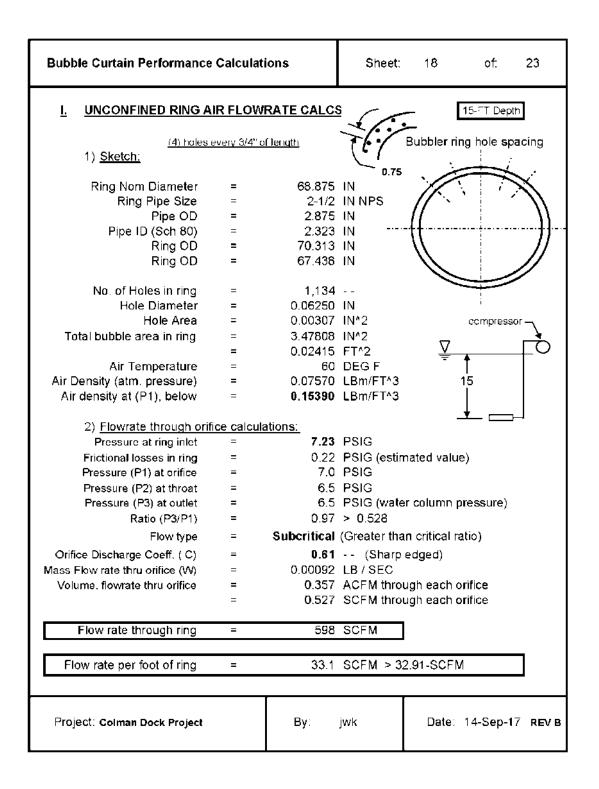

| Bubb      | le Curtain Performance Calculatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ons | Sheet; | 8     | of:       | 23    |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|-------|-----------|-------|--|--|
| <u>E.</u> | Calculations show that, for the confined bubble curtain arrangement, the 72-IN Dia.<br>HDPE tube must protrude at least 6-IN above the surface of the water so that there<br>will be enough head in the column of water to prevent water from being pumped out<br>of the top of the HDPE tube. This assumes one bubbler ring being used at depth.<br>Specific attention should be paid to the pipe branch sizes identified in this set of<br>calculations, the hose sizes and the hose lengths. While there is SOME margin in<br>the system (ie. Capacity of equipment vs. system design requirements), longer<br>hoses and smaller piping could quickly result in elimination of this margin. |     |        |       |           |       |  |  |
|           | hoses and smaller piping could quickly result in elimination of this margin.<br>The sizes shown for hose, valves, pipe and fittings in this set of calculations must<br>be adhered to in order to meet the WSDOT system performance requirements.<br>It is assumed that the Contractor who will be using this equipment will satisfy the<br>requirements of the specification and any and all safety regulatory requirements<br>for the maintenance and use of this type of equipment.                                                                                                                                                                                                         |     |        |       |           |       |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |       |           |       |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |        |       |           |       |  |  |
| Project   | : Colman Dock Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | By: | jwk    | Date: | 14-Sep-17 | REV B |  |  |

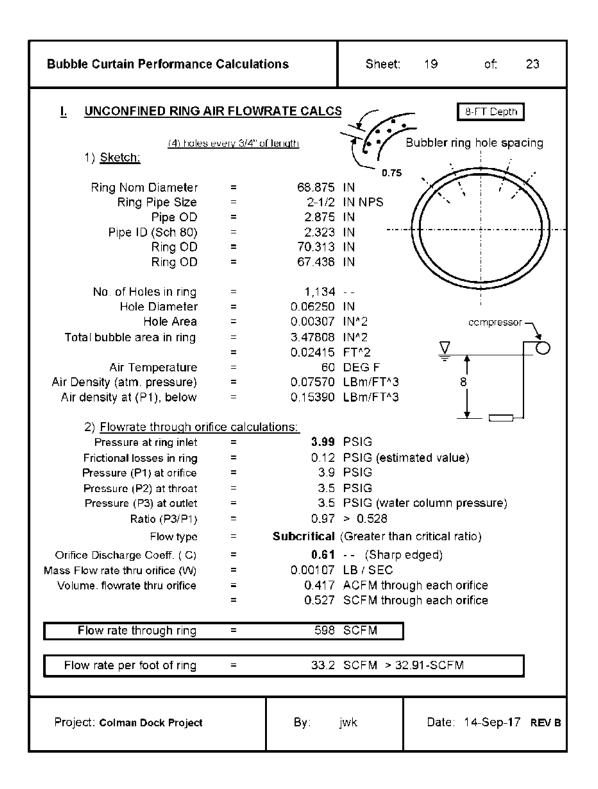

| Bubb      | ele Curtain Performance Calcula                                                                                                           | ations                                           | Sheet:                                        | 9                                              | of:        | 23      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------|---------|
| <u>F.</u> | AIR FLOWRATE REQUIRED F                                                                                                                   | OR BUBBLE (                                      | CURTAIN                                       |                                                |            |         |
|           | 1) <u>Criteria</u>                                                                                                                        |                                                  |                                               |                                                |            |         |
|           | Required flux density p<br>Total number of bubble o<br>Each ring has a nomin<br>Length of each b                                          | urtain rings is:<br>al diameter of:              | <b>7</b><br>68.875                            | SCFM per<br><br>IN<br>FT                       | FOOT       |         |
|           | Using Boyles Law and the de                                                                                                               | epth at each ring                                | g, the total fr                               | ee air requi                                   | red is:    |         |
|           | <u>Ring No. Rin</u><br>Depl<br>(F                                                                                                         | <u>th</u>                                        | <u>Free Air</u><br><u>Req'd</u><br>(SCFM)     | <u>Actual Air</u><br><u>at depth</u><br>(ACFM) |            |         |
|           | 1       50.0         2       43.0         3       36.0         4       29.0         5       22.0         6       15.0         7       8.0 | 0<br>0<br>0<br>0<br>0                            | 593<br>593<br>593<br>593<br>593<br>593<br>593 | 236<br>257<br>284<br>316<br>356<br>408<br>478  |            |         |
|           |                                                                                                                                           |                                                  | <u>4,154</u>                                  | <u>2,334</u>                                   |            |         |
|           | 2) <u>Compressor selection -</u>                                                                                                          |                                                  |                                               |                                                |            |         |
|           | Manufacturer =<br>Model =<br>F.A.D. =<br>Rated Operating Pressure =<br>BHP output =<br>Quantity required =                                | = XHP1170W0<br>= 1,170<br>= 200<br>= <b>5</b> 40 |                                               | sure relief∨                                   | alve set t | o this) |
| Proj      | ect: Colman Dock Project                                                                                                                  | Ву:                                              | jwk                                           | Date:                                          | 14-Sep-17  | 7 REV B |

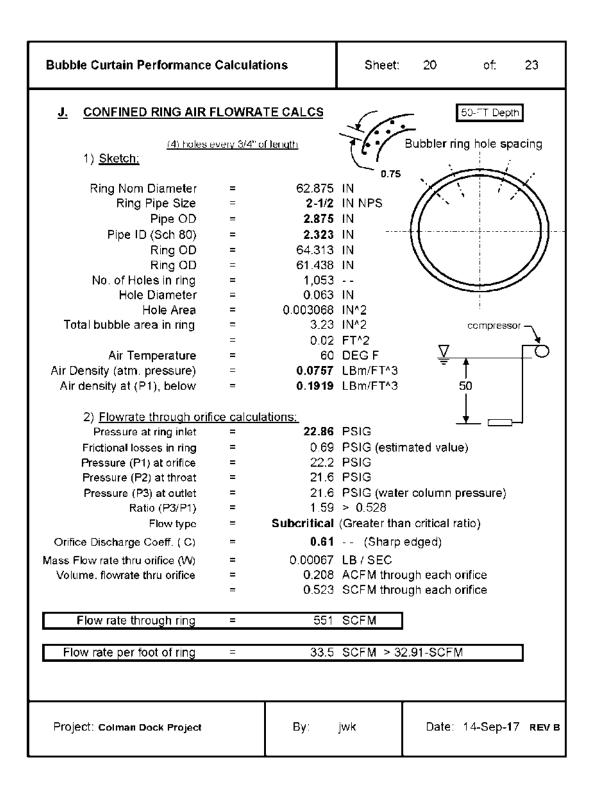


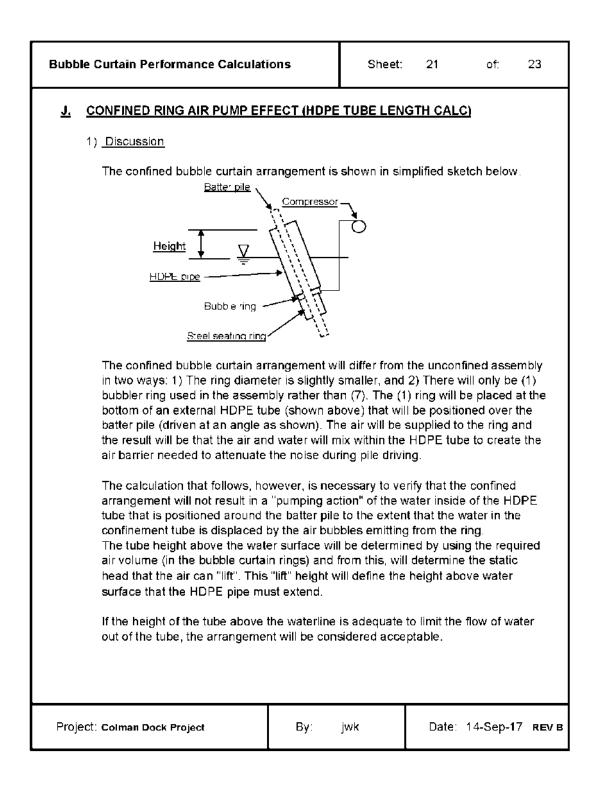


| Bubb      | Bubble Curtain Performance Calculations |             |                                                    |                                                       |                          | 1 <b>1</b>             | of:                      | 23               |
|-----------|-----------------------------------------|-------------|----------------------------------------------------|-------------------------------------------------------|--------------------------|------------------------|--------------------------|------------------|
| <u>G.</u> | AIR PRESS                               |             | OP CALCUL                                          | ATIONS                                                |                          |                        |                          |                  |
|           | 3) <u>Pressure</u>                      | Drop Cal    | culation Sum                                       | <u>nmary -</u>                                        |                          |                        |                          |                  |
|           | Flowrate ou<br>Rated pre                |             | compressor<br>compressor                           | =<br>=                                                |                          | SCFM<br>PSI            |                          |                  |
|           | <u>Branch</u>                           | <u>Size</u> | <u>Inlet</u><br><u>Air</u>                         | <u>Pipe &amp; Ftg</u><br><u>Pressure</u>              | <u>Other</u><br>Pressure |                        | <u>Total</u><br>Pressure |                  |
|           |                                         | (IN)        | <u>Pressure</u><br>(PSI)                           | <u>Loss</u><br>(PSI)                                  | <u>Loss</u><br>(PSI)     |                        | <u>Loss</u><br>(PSI)     |                  |
|           | a-c<br>b-c<br>c-d                       | 3<br>3<br>3 | 200. <b>00</b><br>200. <b>00</b><br>1 <b>99.62</b> | 0.377<br>0.377<br>0.116                               |                          |                        | 0.377<br>0.377<br>0.116  |                  |
|           | d-e                                     | 12          | 199.51                                             | 0.000                                                 | 0.700                    | (fiter)                | 0.700                    |                  |
|           | e - f                                   | 2-1/2       | 198. <b>81</b>                                     | 1.628                                                 | 5.000<br>26.000          | (flowmeter)<br>(valve) | 32.628                   |                  |
|           | f - g<br>Ring                           | 1<br>2-1/2  | 166. <b>18</b><br>152. <b>08</b>                   | 14.097<br><b>0.700</b>                                | (estimated)              |                        | 14.097<br>0.700          |                  |
|           | Delta Z =                               |             |                                                    | 50                                                    | FT =                     |                        | 21.65                    | PSIG             |
|           | <u>NOTE:</u>                            | This will p | rovide a "ring                                     | t manifold unti<br>inlet pressure<br>bler ring with t | " at the ring i          | nlet as show           | wn next sheet            | <u>PSIG</u><br>t |
|           |                                         | The total p | oressure requ                                      | ired in the sys                                       | tem is:                  |                        | 93.5                     | PSIG             |
|           | The compressor output pressure is:      |             |                                                    |                                                       |                          |                        | 200.0                    | PSIG             |
|           |                                         |             |                                                    |                                                       |                          |                        |                          |                  |
| Proj      | ect: Colman Do                          | ock Projec  | t                                                  | By:                                                   | jwk                      | Date:                  | 14-Sep- <b>1</b> 7       | REV B            |


| Bubble Curtain Performance Calculati                                                                                                                                                                                                                                                                                                                                                                                                               | ions                                                                                                                                                                                                                                                                                                                                                            | Sheet:       | 12              | of:       | 23    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|-------|--|--|--|--|
| H. AIR RECEIVER STORAGE vs. S                                                                                                                                                                                                                                                                                                                                                                                                                      | YSTEM AIR                                                                                                                                                                                                                                                                                                                                                       | REQUIREM     | <u>ENTS</u>     |           |       |  |  |  |  |
| 1) <u>Discussion -</u>                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                 |              |                 |           |       |  |  |  |  |
| The manifold shown on the previous sheet acts as an air receiver and, while it<br>doesn't provide a meaningful amount of air storage, it does serve an important<br>function in the system. If it is assumed that the compressor keeps the receiver<br>full as it is operating, this reservoir of pressurized air provides the needed air<br>supply to the hoses that supply pressurized air to the bubbler rings at the required<br>water depths. |                                                                                                                                                                                                                                                                                                                                                                 |              |                 |           |       |  |  |  |  |
| air flow rate of 1,170-SCFM fro<br>required in the system (supply                                                                                                                                                                                                                                                                                                                                                                                  | The air supply in the receiver is stored at 150-PSIG and is supplied by a constant<br>air flow rate of 1,170-SCFM from the air compressor. The air pressure that is<br>required in the system (supply to the bubbler rings) is required at a lower supply<br>pressure and, as a result, the actual available air in the system is calculated as<br>shown below. |              |                 |           |       |  |  |  |  |
| Air supply rate to Receiver                                                                                                                                                                                                                                                                                                                                                                                                                        | =                                                                                                                                                                                                                                                                                                                                                               | 1,170        | CFM             |           |       |  |  |  |  |
| Air pressure delivered to receiver                                                                                                                                                                                                                                                                                                                                                                                                                 | =                                                                                                                                                                                                                                                                                                                                                               | 200          | PSIG            |           |       |  |  |  |  |
| Air supply rate required per ring<br>Max Air pressure required to ring                                                                                                                                                                                                                                                                                                                                                                             | =<br>=                                                                                                                                                                                                                                                                                                                                                          |              | CFM<br>PSIG (at | 50-FT dep | th)   |  |  |  |  |
| Available flow rate at required pressure<br>(using Boyle's Law)                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                               | 2,322        | CFM per         | compresso | ١٢    |  |  |  |  |
| Available air flowrate (2) compressors                                                                                                                                                                                                                                                                                                                                                                                                             | =                                                                                                                                                                                                                                                                                                                                                               | <u>4,643</u> | CFM             |           |       |  |  |  |  |
| Total required air flow rate required for seven rings (down to 50-F⊤)                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                               | <u>4,154</u> | CFM             |           |       |  |  |  |  |
| <u>Therefore, ONE compressor pa</u><br>air necessary to supply the air<br>to depths of thirty feet of water                                                                                                                                                                                                                                                                                                                                        | bubbler rings                                                                                                                                                                                                                                                                                                                                                   |              |                 |           |       |  |  |  |  |
| Therefore, TWO compressors,<br>air necessary to supply the air<br>to depths of fifty feet of water.                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |              |                 |           |       |  |  |  |  |
| Project: Colman Dock Project                                                                                                                                                                                                                                                                                                                                                                                                                       | Ву:                                                                                                                                                                                                                                                                                                                                                             | jwk          | Date:           | 14-Sep-17 | ′REVB |  |  |  |  |



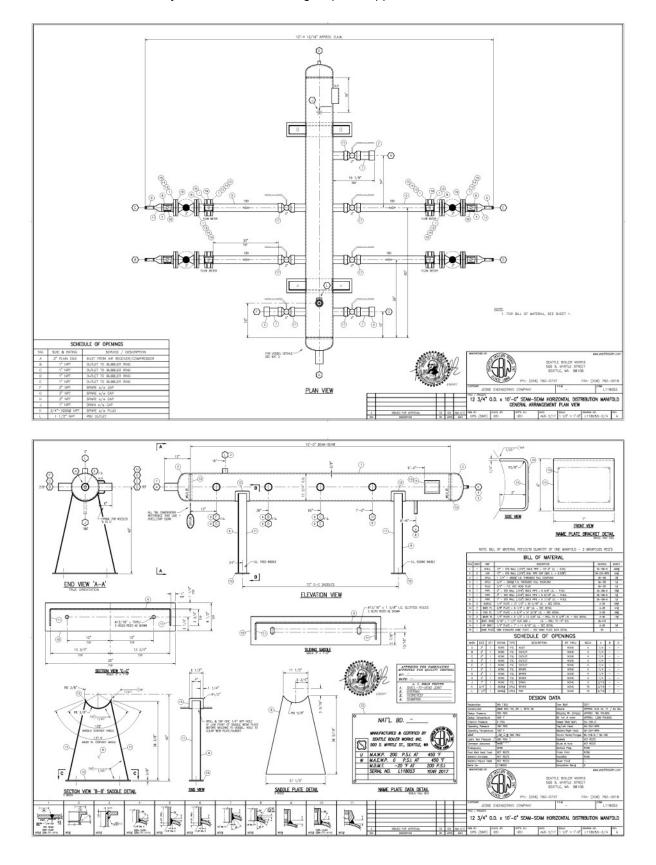



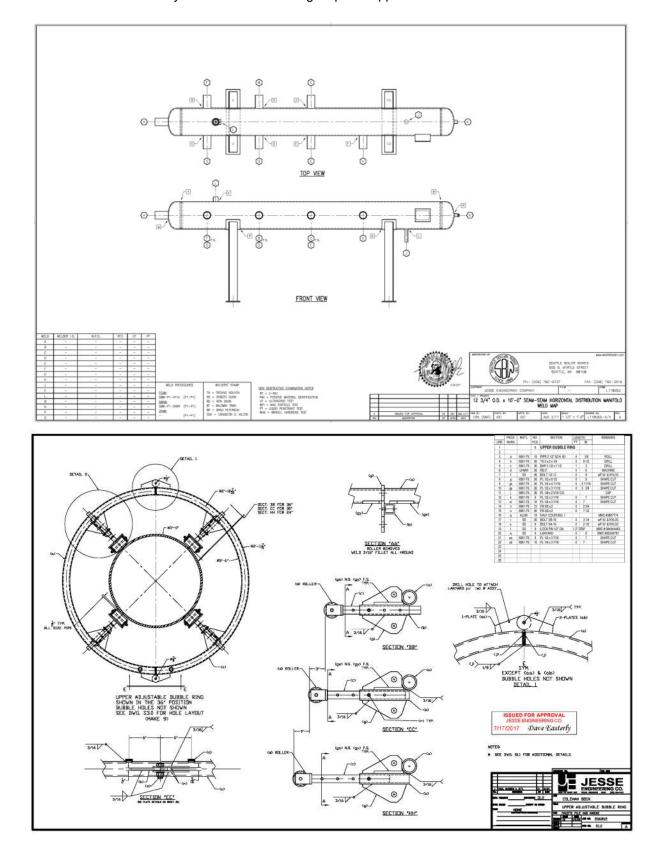



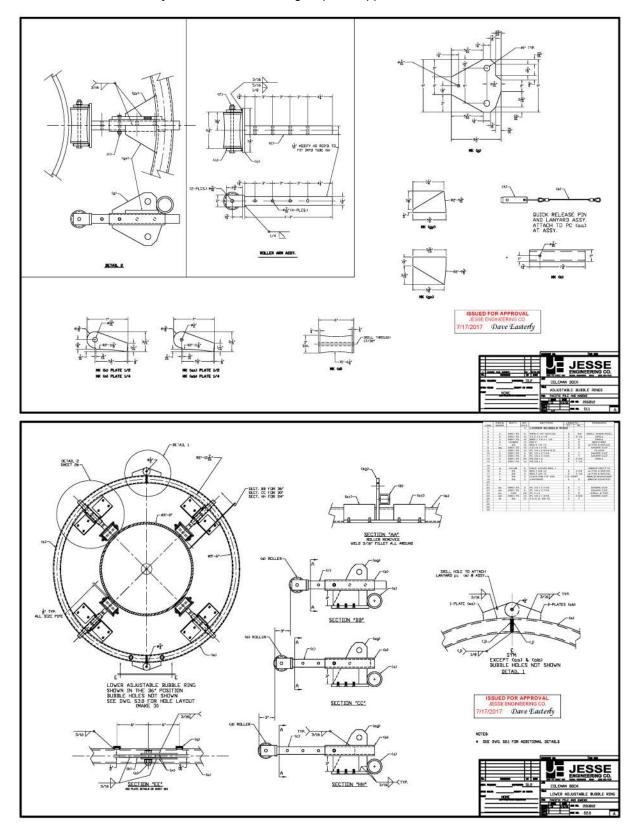


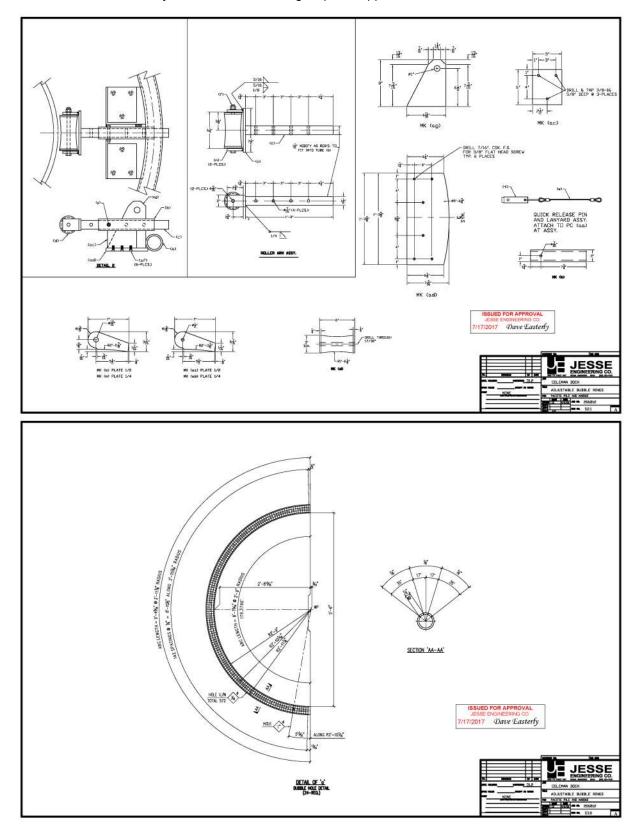






| Bubble Curtain Performance Calculati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ons         | Sheet:                      | 22           | of:         | 23      |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|--------------|-------------|---------|--|--|--|--|--|--|
| J. CONFINED RING AIR PUMP EFFECT (HDPE TUBE LENGTH CALC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                             |              |             |         |  |  |  |  |  |  |
| 2) Behavior of air & water in confinement tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                             |              |             |         |  |  |  |  |  |  |
| <ul> <li>a) Assume, in the worst case, that the water depth for the batter being<br/>driven is 50-FT of water. This means that the amount of air in the HDPE<br/>confinement tube will be at a maximum due to the requirement at this<br/>depth for the (1) bubbler ring that delivering the required amount of air.</li> </ul>                                                                                                                                                                                                                    |             |                             |              |             |         |  |  |  |  |  |  |
| <ul> <li>b) Also assume that this set of calculations is based on air having a density at the midpoint depth (ie. 25-FT deep). This means that the air between 25-FT and 50-FT will be more compressed due to the water column (ie. air more dense) and that the air between 25-FT and the surface will have a lower density (due to less static head acting on the air. The two should average out to be close to the actual conditions over the entire water column height of 50-FT. Assumed air density is: 0.1326 LB/FT<sup>3</sup></li> </ul> |             |                             |              |             |         |  |  |  |  |  |  |
| c) The assumed density of the seawater over the range of the 50-FT depth<br>is assumed to be 64.2-LB/FT <sup>3</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                             |              |             |         |  |  |  |  |  |  |
| d) Steady state volume of air in tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                             |              |             |         |  |  |  |  |  |  |
| Air out of each orifice at 25-FT depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =           |                             | ACFM<br>SCFM | (use this v | alue)   |  |  |  |  |  |  |
| Orifice count per ring<br>Total ring count<br>Total air flow into confined pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =<br>=<br>= | 1,053<br>1<br>551           |              |             |         |  |  |  |  |  |  |
| Assumed OD of HDPE tube<br>HDPE wall thickness<br>Assumed HDPE tube ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =<br>=<br>= | 72<br>1.375<br>69.25        | IN           |             |         |  |  |  |  |  |  |
| Assumed length of HDPE tube<br>Total volume of HDPE tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =<br>=      | <b>55</b><br>1, <b>4</b> 39 |              |             |         |  |  |  |  |  |  |
| Project: Colman Dock Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | By∶         | jwk                         | Date:        | 14-Sep-17   | ' REV B |  |  |  |  |  |  |


| Bubble Curtain Performance Calculations |                                                                                                                                                                                                                                                                                                                                       |                          | Sheet:                                      | 23                                     | of:       | 23    |  |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------|----------------------------------------|-----------|-------|--|--|--|--|--|--|
| <u>J.</u>                               | J. CONFINED RING AIR PUMP EFFECT (HDPE TUBE LENGTH CALC)                                                                                                                                                                                                                                                                              |                          |                                             |                                        |           |       |  |  |  |  |  |  |
|                                         | 3) Behavior of air & water in conf                                                                                                                                                                                                                                                                                                    | l                        | 72"-DIA.                                    |                                        |           |       |  |  |  |  |  |  |
|                                         | Pumping rate<br>Pipe diameter<br>Submergence<br>Lift                                                                                                                                                                                                                                                                                  | r =<br>; =               | 0.01<br>72.00<br>50.0<br>0.5                | GAL/DAY<br>IN<br>FT<br>FT              |           |       |  |  |  |  |  |  |
|                                         | cross-sectional area of pipe                                                                                                                                                                                                                                                                                                          | =                        | 28.274                                      | FT <sup>?</sup>                        |           |       |  |  |  |  |  |  |
|                                         | Pipe volume<br>Pipe volume                                                                                                                                                                                                                                                                                                            |                          | 1,427.85<br>7,48                            | FT <sup>3</sup><br>GAL/FT <sup>3</sup> |           |       |  |  |  |  |  |  |
|                                         | VI (Flow rate)<br>A (Pipe area)<br>L (Lift)<br>D (Pipe diameter)<br>Lf (density of fluid)<br>S (submergence)<br>Lg (Gas density)                                                                                                                                                                                                      | ) =<br>) =<br>  =<br>) = | 28.274<br>0.5<br>72<br><b>64.2</b><br>50.00 | FT<br>IN<br>LBm/FT <sup>3</sup>        |           |       |  |  |  |  |  |  |
|                                         | Vg (Gas flow)<br>Actual flowrate out of (1) ring<br>Pressure                                                                                                                                                                                                                                                                          | =                        |                                             | CFM<br>CFM<br>PSI                      |           |       |  |  |  |  |  |  |
|                                         | <ul> <li><u>NOTE:</u> This calculation shows that at a flowrate of 709-CFM and a tube length extending 0.5-FT (6-IN) MINIMUM above the surface, water will begin pumping out of the top of the HDPE tube.</li> <li>For the required air flowrate of 551-CFM (calculated in earlier calc.) the water will stay in the tube.</li> </ul> |                          |                                             |                                        |           |       |  |  |  |  |  |  |
| Proj                                    | ect: Colman Dock Project                                                                                                                                                                                                                                                                                                              | By:                      | jwk                                         | Date:                                  | 14-Sep-17 | REV B |  |  |  |  |  |  |

May 14, 2019 Page 44 of 47 Colman Dock Season 2 Hydroacoustic Monitoring Report - Appendix







