Attachment 3

Forms for Previously Identified Properties
<table>
<thead>
<tr>
<th>Property ID #</th>
<th>National Register of Historical Places Inventory Nomination Form:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Denny-Fuhrman School</td>
</tr>
<tr>
<td>14, 16, 17, 18, 226</td>
<td>Seattle Apartment Buildings 1900—1957</td>
</tr>
<tr>
<td>16</td>
<td>L’Amourita Apt Bldg (Landmarks Preservation Board Report on Designation)</td>
</tr>
<tr>
<td>38</td>
<td>William Parsons House</td>
</tr>
<tr>
<td>37</td>
<td>Roanoke Park Historic District</td>
</tr>
<tr>
<td>126</td>
<td>Montlake Community Center (Landmarks Preservation Board Report on Designation)</td>
</tr>
<tr>
<td>55</td>
<td>Seattle Yacht Club—Main Station</td>
</tr>
<tr>
<td>53</td>
<td>Chittenden (Hiram M.) Locks and Related Features of the Lake Washington Ship Canal. This covers the Montlake Cut.</td>
</tr>
<tr>
<td>54, 201</td>
<td>Historic Bridges and Tunnels in Washington State. This includes:</td>
</tr>
<tr>
<td></td>
<td>Montlake Bridge</td>
</tr>
<tr>
<td></td>
<td>Arboretum Aqueduct</td>
</tr>
<tr>
<td>203</td>
<td>Naval Military Hangar—University Shell House (Canoe House/Shell House)</td>
</tr>
<tr>
<td>207</td>
<td>Rainier Vista (HPI form)</td>
</tr>
<tr>
<td>216</td>
<td>Nuclear Reactor Building (More Hall Annex)</td>
</tr>
<tr>
<td>200</td>
<td>Seattle Japanese Garden (Landmarks Preservation Board Report on Designation)</td>
</tr>
<tr>
<td>202</td>
<td>Governor Albert D. Rossellini Bridge (HPI form)</td>
</tr>
<tr>
<td>234</td>
<td>James Arntson House (HPI form and additional photo page)</td>
</tr>
<tr>
<td>231</td>
<td>Helen Pierce House (HPI form and additional photo page)</td>
</tr>
<tr>
<td>600</td>
<td>Lake Washington Ship Canal Bridge</td>
</tr>
<tr>
<td>601</td>
<td>Bridges, Trestles, and Aqueducts: University Bridge, Fremont Bridge, Ballard Bridge</td>
</tr>
<tr>
<td>702</td>
<td>Fire Station #15</td>
</tr>
<tr>
<td>703, 704, 705, 706</td>
<td>Concrete Technology Corporation Plant</td>
</tr>
<tr>
<td>801</td>
<td>Port of Olympia Rail Line</td>
</tr>
<tr>
<td>802</td>
<td>Port of Olympia Office</td>
</tr>
</tbody>
</table>
National Register of Historic Places
Inventory Nomination Form: Denny-Fuhrman School
NATIONAL REGISTER OF HISTORIC PLACES
INVENTORY – NOMINATION FORM

(Type all entries - complete applicable sections)

1. NAME:
 COMMON:
 Seward School lunchroom and gymnasium
 AND/OR HISTORIC:
 Denny-Fuhrman School

2. LOCATION:
 STREET AND NUMBER:
 Seward School, north side E. Louisa, between Franklin E. and Boylston E.
 CITY OR TOWN:
 Seattle 98102
 STATE:
 Washington
 CODE:
 53
 COUNTY:
 King
 CODE:
 033

3. CLASSIFICATION:
 CATEGORY (Check One):
 District - ☒ Building
 Site
 Structure
 Object
 OWNERSHIP:
 Public
 Private
 Both
 Public Acquisition:
 In Process
 Being Considered
 Status:
 Occupied
 Unoccupied
 Preservation work in progress
 ACCESSIBLE TO THE PUBLIC:
 Yes:
 ☐ Restricted
 ☒ Unrestricted
 ☐ No

PRESENT USE (Check One or More as Appropriate):
 ☐ Agricultural
 ☐ Government
 ☐ Park
 ☐ Transportation
 ☐ Comments
 ☒ Commercial
 ☐ Industrial
 ☐ Private Residence
 ☐ Other (Specify)
 ☐ Educational
 ☐ Military
 ☐ Religious
 school sports
 ☐ Entertainment
 ☐ Museum
 ☐ Scientific

4. OWNER OF PROPERTY:
 OWNER'S NAME:
 Seattle Public Schools
 STREET AND NUMBER:
 Seattle Public Schools, 815 - Fourth North
 CITY OR TOWN:
 Seattle 98109
 STATE:
 Washington
 CODE:
 53

5. LOCATION OF LEGAL DESCRIPTION:
 COURTHOUSE, REGISTRY OF DEEDS, ETC.:
 King County Auditor's Office
 STREET AND NUMBER:
 King County Courthouse
 CITY OR TOWN:
 Seattle 98104
 STATE:
 Washington
 CODE:
 53

6. REPRESENTATION IN EXISTING SURVEYS:
 TITLE OF SURVEY:
 None
 DATE OF SURVEY:
 ☐ Federal
 ☐ State
 ☐ County
 ☐ Local
 DEPOSITORY FOR SURVEY RECORDS:
 STREET AND NUMBER:
 CITY OR TOWN:
 STATE:
 CODE
The Denny-Fuhrman School building, now the Seward School lunchroom and gymnasium, was originally built facing east generally in the center of the block on the side facing Boylston Avenue. In 1917 it was moved to its present site on the side street of the school block. The building is 60' x 80', one story, with entrances north and south, windows east and west expressing the former classrooms. The exterior is mainly 1' x 6' lap siding, with simple trim of 1' x 4' and 1' x 6' with cornices over the doors. Windows are very large and double hung. Doors are double and lead to small porches which have great arched openings in the side of the building, 20' wide and 14' high. The roof is made of three separate hipped roofs and a flat area: hipped roofs over gym and lunchroom and north side, flat over the center and south but sloping slightly for drainage. The roof is composition shingle.

The exterior of the building appears as it was originally built. As was true in the original location, one entrance is gained by a flight of stairs. Originally there were toilets and lavatories in the basement but after relocation, the building was placed on brick piers with no basement. The interior has seen changes in the divisions between classrooms, but one can discern the major divisions in the half of the building used for the lunchroom, even to the cloakroom area out in the central hall.

The structure is in good repair, some original woodwork remaining on the interior, and was painted within the last five years on the exterior. Windows on the east face have wire to protect them from the balls of the playground outside. Windows on the west have wire on the inside for protection from activities in the gym.

The building has a comfortable square look, with 3' wide eaves and arched porches lending a sense of shelter. The generous hall, up to 20' wide where there are no closets; high ceilings, tall doors, and windows almost filling the two sides, give the small structure a pleasant open feeling from within. A hint of original stove heating is found in evidence of four chimneys, with two still protruding through the roof.
#8 - Significance
Seward School lunchroom and gymnasium

The building well represents a link with the past history of Seattle Public Schools, as well as architecturally exemplifying American Primitive construction and design.
Period
- [] Pre-Columbian
- [] 16th Century
- [] 18th Century
- [] 19th Century
- [x] 20th Century

Specific Dates
- 1893 to date

Areas of Significance

<table>
<thead>
<tr>
<th>Aboriginal</th>
<th>Education</th>
<th>Political</th>
<th>Urban Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehistoric</td>
<td>Engineering</td>
<td>Religion/Philosophy</td>
<td>Other (Specify)</td>
</tr>
<tr>
<td>Historic</td>
<td>Industry</td>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>Invention</td>
<td>Sculpture</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>Landscape</td>
<td>Social/Humanitarian</td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>Architecture</td>
<td>Theater</td>
<td></td>
</tr>
<tr>
<td>Commerce</td>
<td>Literature</td>
<td>Music</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>Military</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statement of Significance

The Denny-Fuhrman School building is the oldest frame school building in a generally unaltered state in the city of Seattle. It is also the only remaining example of a "one-room schoolhouse".

The Denny-Fuhrman School building, now the Seward School lunchroom and gymnasium, was built in 1893 on land said to cost $8,730. Although it has been moved on the school grounds, it appears as originally built: a one-story frame structure. Originally it was only partially divided inside, with all eight grades in one room. But by 1897 enrollment had risen to 70 and three classrooms were established.

The Denny-Fuhrman Addition to the City of Seattle was in 1893, far from the center of town. Descriptions of the area by early students noted that the school was in a setting of thick forest, with pastures to the South. Only footpaths lead to the lakes to the east and west...Portage Bay, and Lake Union. Streets running north and south, to the main town of Seattle, were only, "cowpaths". The easiest means of transportation was by boat to the south end of Lake Union, and thence by street to the main part of town.

However, with the building of Broadway High School in 1902, more population moved east and north of the center of town. This increased the population of the North Broadway district, and by 1904 the enrollment of Denny-Fuhrman was 206. Overcrowding brought pressure on the school board to build an addition to the school, and in 1905 a new frame structure was constructed to the west of the little building. These two frame buildings were then renamed Seward School for Sec. of State William Henry Seward.

By 1917 overcrowding again forced building of an addition. This was a brick structure placed on the site of the original building, with the latter moved around to the south side of the school grounds. The original frame building continues to be used in that location for lunchroom and gymnasium.

The Seward lunchroom is probably the best known of the three structures comprising Seward School since it is the site of most of the school social and educational gatherings and is also the location of community group meetings after school hours. It remains significant and contributory to the community and educational development of that area of the city, as well as reminiscent of the more intimate and humble days of public education.
9. MAJOR BIBLIOGRAPHICAL REFERENCES

Seattle Public Schools, Histories of the Seattle Public Schools.
Seward School, Seattle. Typewritten notes kept at school office.

10. GEOGRAPHICAL DATA

LATITUDE AND LONGITUDE COORDINATES DEFINING A RECTANGLE LOCATING THE PROPERTY

<table>
<thead>
<tr>
<th>CORNER</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LATITUDE AND LONGITUDE COORDINATES DEFINING THE CENTER POINT OF A PROPERTY OF LESS THAN TEN ACRES

<table>
<thead>
<tr>
<th>LATITUDE</th>
<th>LONGITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N47 38 36</td>
<td>W122 19 13</td>
</tr>
</tbody>
</table>

APPROXIMATE ACREAGE OF NOMINATED PROPERTY: less than one

11. FORM PREPARED BY

NAME AND TITLE:
Margaret A. Corley, King County Liaison

ORGANIZATION:
Seattle Historical Society

DATE:
October, 1973

12. STATE/LIAISON OFFICER CERTIFICATION

NATIONAL REGISTER VERIFICATION

As the designated State Liaison Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service. The recommended level of significance of this nomination is:
National ☐ State ☑ Local ☐

Name
Charles H. Odegaard

Title
Director - Washington State Parks and Recreation Comm.

Date

I hereby certify that this property is included in the National Register.

Director, Office of Archeology and Historic Preservation

Date

ATTEST:
Keeper of The National Register

Date
United States Department of the Interior
National Park Service

National Register of Historic Places
Multiple Property Documentation Form
This form is used for documenting multiple property groups relating to one or several historic contexts. See instructions in How to Complete the Multiple Property Documentation Form (National Register Bulletin 168). Complete each item by entering the requested information. For additional space, use continuation sheets (Form 10-900-a). Use a typewriter, word processor, or computer to complete all items.

X New Submission ____ Amended Submission

A. Name of Multiple Property Listing

Seattle Apartment Buildings, 1900 - 1957

B. Associated Historic Contexts

(Name each associated historic context, identifying theme, geographical area, and chronological period for each.)

Purpose-built Apartment Buildings in Seattle, constructed between 1900 and 1957

C. Form Prepared by

name/title Mimi Sheridan AICP

city/town Seattle state WA zip code 98199

D. Certification

As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this documentation form meets the National Register documentation standards and sets forth requirements for the listing of related properties consistent with the National Register criteria. This submission meets the procedural and professional requirements set forth in 36 CFR Part 60 and the Secretary of the Interior's Standards and Guidelines for Archeology and Historic Preservation. (See continuation sheet for additional comments.)

Signature and title of certifying official

Date

WASHINGTON STATE HISTORIC PRESERVATION OFFICE

State or Federal Agency or Tribal government

I hereby certify that this multiple property documentation form has been approved by the National Register as a basis for evaluating related properties for listing in the National Register.

Signature of the Keeper Date of Action
Table of Contents for Written Narrative

Provide the following information on continuation sheets. Cite the letter and the title before each section of the narrative. Assign page numbers according to the instructions for continuation sheets in *How to Complete the Multiple Property Documentation Form* (National Register Bulletin 16B). Fill in page numbers for each section in the space below.

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Statement of Historic Contexts</td>
<td>1</td>
</tr>
<tr>
<td>(If more than one historic context is documented, present them in sequential order.)</td>
<td></td>
</tr>
<tr>
<td>F. Associated Property Types</td>
<td>68</td>
</tr>
<tr>
<td>(Provide description, significance, and registration requirements.)</td>
<td></td>
</tr>
<tr>
<td>G. Geographical Data</td>
<td>87</td>
</tr>
<tr>
<td>H. Summary of Identification and Evaluation Methods</td>
<td>87</td>
</tr>
<tr>
<td>(Discuss the methods used in developing the multiple property listing.)</td>
<td></td>
</tr>
<tr>
<td>I. Major Bibliographical References</td>
<td>88</td>
</tr>
<tr>
<td>(List major written works and primary location of additional documentation: State Historic Preservation Office, other State agency, Federal agency, local government, university, or other, specifying repository.)</td>
<td></td>
</tr>
<tr>
<td>Appendix: Partial List of Apartments</td>
<td></td>
</tr>
</tbody>
</table>

Primary Location of Additional Data:

X State Historic Preservation Office

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.). A federal agency may not conduct or sponsor, and a person is not required to respond to a collection of information unless it displays a valid OMB control number.

Estimated Burden Statement: Public reporting burden for this form is estimated to average 120 hours per response including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the National Register of Historic Places, National Park Service, 1849 C St., NW, Washington, DC 20240.
E. STATEMENT OF HISTORIC CONTEXTS

INTRODUCTION
This context statement considers the development of multifamily housing in Seattle since 1900, the approximate time when apartment buildings as we define them today were first constructed in the city. The focus is on purpose-built apartment buildings and apartment hotels of more than four units. Other types of multifamily housing, including transient and workers' hotels, are discussed below in order to better understand the historical context, but are not included in this MPD. The ending date of 1957 was selected because a new zoning ordinance passed in that year significantly changed the form, size and location of subsequent apartment buildings.

The MPD and context statement are based on extensive review of the literature relating to the development of apartment buildings generally and in Seattle specifically. The other vital source was a field survey of approximately 400 apartment buildings and a more detailed inventory of 100 apartment buildings throughout the city. The survey identified four significant sub-types of Seattle apartment buildings:

- Low-Rise Apartment Block (less than 4 stories);
- Mid-Rise Apartment Block (5 to 8 stories);
- High-Rise Apartment Block (more than 8 stories); and,
- Courtyard/Townhouse Apartments.

Definitions of these sub-types are found in Section F: Associated Property Types.
A partial list of apartment buildings that could be considered under this multiple property listing is attached as an Appendix. Mention of a specific apartment building does not necessarily mean that the building is significant enough to merit individual listing in the National Register of Historic Places, or that it meets local criteria for landmark designation. Also, omission of a specific building does not indicate that it does not merit listing or designation. Note that buildings are referred to as “apartment buildings” even if they are now in condominium or cooperative ownership. These reflect the legal circumstances of ownership, not the building form. Many older apartment buildings that were rentals for decades are now condominiums, without any significant physical alteration.

The MPD begins with consideration of the historic contexts of Seattle apartment development, reviewing influences from Europe, the eastern United States, and California. It then discusses three sub-themes of apartment development that were seen in the city in the 1900-1957 study period:

- Early Purpose-Built Apartments
- Apartments as Middle-Class Housing
- Apartments as Home
HISTORIC CONTEXTS

Throughout Seattle's history, multifamily housing has been perhaps the city's most diverse building type, ranging from modest duplexes to concrete high-rises. They have provided housing for people in a wide range of age groups, economic levels and family circumstances. As the city grew, the building type matured to meet these varying needs with specific building characteristics, features and amenities. Apartment buildings provide opportunities for lower cost living quarters, low maintenance, proximity to work and shopping and other amenities that may be unaffordable in a single-family home. They have traditionally been considered temporary housing while in college or while saving to purchase a house, but are increasingly becoming permanent accommodations for people who prefer the simpler lifestyle or more central locations, or who cannot afford to buy a home.

At the turn of the 20th century the middle class in the United States firmly held the belief that the single-family home was the most desirable and appropriate living arrangement, and an important goal to strive toward. Architectural Record called apartment houses "a dangerous enemy of American domesticity....done out of necessity rather than by choice." The middle class associated apartment living with the city tenements where working people lived. This was true despite the fact that in 1900 more than three-quarters of urban Americans lived in rented apartments. Apartments were considered acceptable for those without children, but families sought outdoor space for children to

play. However, by the early twentieth century the rising cost of land made ownership of single-family homes difficult for much of the population. Strong housing demand led to intensive apartment development in cities throughout the country, especially during the prosperous 1920s. Unmarried and widowed people without families found apartments particularly suitable for their needs. The larger buildings also provided amenities such as refrigeration, radios, elegant surroundings and convenient locations that would be more expensive in single-family residences.

European Influences

Consideration of influences from Europe and other U. S. cities provides insight into the development and forms of apartment buildings in Seattle. The population density in European cities meant that apartment living was common at least as early as first-century Rome. Most continental cities were originally constrained by expanding rings of defensive walls, resulting in high population densities in the city centers. Paris developed in this manner, with the vast majority of the population living in multifamily quarters. Late nineteenth century improvements swept away older buildings, replacing them with landscaped parks and broad tree-lined boulevards. The boulevards were soon lined with fashionable apartment houses for upper and middle-class families eager to enjoy the improved quality of life the city afforded. The invention of the elevator allowed people to occupy the upper floors and enjoy views and light without the inconvenience of stairs. Accordingly, architecture and ornament became more elaborate.

to attract fashionable tenants, and apartment amenities and configurations developed to meet residents' needs. "Flats," containing several reception rooms on one floor, were particularly popular because of their suitability for entertaining. The elegance of these buildings profoundly influenced the development of New York City through the 1920s.\(^3\) The popularity of these apartments with the upper- and middle classes spread to major U. S. cities, with the buildings taking on varying forms.

London developed differently than continental cities, and influenced North American housing and growth patterns more significantly. Although it was one of the world's most populous cities, it did not have the high densities seen on the continent. Numerous single-family homes, both row houses and freestanding, were built within a short distance of the city center. The English placed a high value on privacy, feeling that proper family life was possible only in a single-family home, not in a flat where one's private life could be exposed to others in stairs and hallways.

However, rising property values and increased urban density during the Industrial Revolution made townhouses unaffordable for many families. First-class apartment buildings or "mansion flats" began to appear in the 1850s, providing the amenities of a townhouse for those who could not afford one. Most apartments for the middle- and upper-classes emphasized privacy, eliminating open passages and stairways; they often had two stories to separate the bedrooms from the entertaining rooms. As in Paris,

residents learned that entertaining could be considerably easier in a spacious flat than in the traditional London townhouse with two rooms per floor. Flats also made it much easier to have such modern amenities as running water, gas lighting and central heating. However, the tradition of single-family housing and privacy remained strong, and the individual house or rowhouse is still the basic residential structure in much of London, just as the single-family home is in the United States.4

East Coast Influences

Despite strong initial resistance, upper- and middle-class apartment living became popular in New York City during the late nineteenth and early twentieth centuries, directly reflecting European influences. Large multifamily dwellings were first built to house workers moving to cities to work in the factories of the Industrial Revolution. At that time, any "house or part of a house occupied or arranged to be occupied by three or more families living independently of each other and doing their own cooking on the premises" was defined as a tenement.5 They were designed for worker housing and, accordingly, were shunned by the middle and upper classes.

Later in the century, two factors changed the situation: increases in central city land values as populations grew, and advances in technology. In the 1870s, New York developers responded to rising land prices by building "French flats," luxury apartments

based on the Parisian model. The Stuyvesant Apartments, designed in 1869 by the Paris-educated architect Richard Morris Hunt, is called the first U.S. "apartment building." It rented quickly to young couples, widows and "artistic people" (including influential writers). Soon numerous apartment buildings appeared, boasting amenities such as luxurious lobbies, elevators, service staffs, central heating and gas lighting. Steel-frame construction, fire proofing and elevators allowed greater building heights, away from the noise and dirt of the street. In larger units, the areas for entertaining, sleeping and service were kept separate, just as in a single-family home. As in Paris, elegant architecture and decor, as well as convenience, were used to attract tenants.

By the 1880s New Yorkers saw the construction of numerous 10- to 12-story apartment buildings, especially around Central Park. Many housed middle-class families in four- to five-room units, as compared to the six-to-ten rooms of more upscale units.

Developers also offered elegant "bachelor apartments" with two or three rooms but no kitchen; meals were eaten in a central dining room or in a restaurant. A similar option was the apartment hotel, often with no private kitchens but with a restaurant on the first floor. These were considered ideal for newcomers getting established in the city and busy professionals or entertainers who did not have the time for a household or the need for a long lease. However, high labor costs led to decreasing service and the lines

7 Goode, Best Addresses p. 538.
between the two types blurred; most buildings eventually added individual kitchens and the restaurants opened to public diners.

As land values rose during the postwar building boom of the 1920s, 77 percent of all residential construction in New York City was apartment houses. Despite this, apartment houses were viewed somewhat negatively. In 1929, R.W. Sexton said of apartment houses, hotels and apartment hotels that "...none of these buildings should be rightfully classed as a home....they all lack the very fundamentals on which the home is founded...the most important is perhaps privacy. Another is individuality." He goes on to admit that multi-dwelling houses offer a new type of home, characterized chiefly by convenience. Regardless of these beliefs, people in many parts of the country were turning increasingly toward apartment living, usually either for economy or for convenience.

The driving forces behind the design of individual apartment buildings were the economic use of space and the provision of adequate light and air. This was not only due to regulations, but because apartments with light and airy interiors were easier to rent and attracted higher prices. Other important design considerations in quality apartments were fireproof construction, attractive lobbies (often quite small) and adequate exits. To increase privacy and the feeling of a private home, many of the best buildings avoided corridors, with individual entries leading to one to four units.

Apartments with two-to-five rooms were most popular. In larger units, an effort was made to separate the kitchen and service areas from the living areas. Another major selling point for apartments was their provision of conveniences that were too costly for the average home at the time, such as telephones, refrigeration, built-in radios and even electric dumb waiters and pneumatic mail delivery.

In the 1920s apartment houses for the upper class had reached new heights of luxury, featuring servants' quarters, fireplaces, terraces and elaborate detailing.\(^\text{10}\) Although apartments were still designed primarily for childless couples and single people, some buildings accommodated children with playrooms and outdoor play areas. At the same time, more units with two to four rooms were built for middle class and working people.\(^\text{11}\) Much of the loss of space was made up in increasingly sumptuous appointments and conveniences. Efficient space use was stressed, leading to the foldaway bed and table. Smaller apartments also increased the developer's income, since they rented for higher rates per square foot; this, in turn, led to more apartment construction.

These trends directly influenced apartment development in Seattle, since much of the capital used to finance local construction came from Eastern sources. The city saw the development of both luxury buildings and efficiency units, and of apartment hotels that changed to regular apartments as labor costs increased. At least two early apartment

\(^{10}\) Goode, *Best Addresses*, p. 538

projects had direct New York connections. Developer John F. Douglas acquired New
York financing for both the Manhattan Flats (1905), an early full-block complex, and the
large Waldorf Hotel (1906).12 The Rivoli (1909) was designed by Howells & Stokes, a
New York firm with extensive apartment experience that had been hired to prepare a
plan for the University of Washington’s downtown property.

West Coast Influences

The building boom in San Francisco after the Great Fire of 1906 created a large market
for the so-called efficiency apartment.13 Instead of a separate bedroom, these units
typically had a "dressing room," a space larger than a closet but smaller than a bedroom.
San Francisco was particularly notable for the early use of the Murphy bed, which
folded into the wall and allowed the main room to be used as a living room during the
day. These efficiency units, often with Murphy beds, soon became a major feature of
Seattle housing development as well.

The influence of Southern California is also clearly seen in Seattle apartment housing of
the 1920s. The Los Angeles area quadrupled in population between 1910 and 1930,
bringing an urgent need for new housing forms for long-term visitors, single people,
childless couples and lower paid workers.14 To meet this demand, architects and

12 Neal Hines, Denny’s Knoll: A History of the Metropolitan Tract of the University of Washington,
13 Paul Groth, Living Downtown: The History of Residential Hotels in the United States, (Berkeley:
14 Wright, Building the Dream, p. 150.
developers designed the garden courtyard apartment—a unique form to accommodate increased density while providing privacy, light, air and a connection with the prized California landscape. Earlier examples, starting about 1916, were bungalow courts, groups of small inexpensive cottages arranged around defined spaces. In later examples, the cottages were merged into larger structures around courtyards. The courtyard apartment lent itself to both plain and elegant treatments, but in most cases each residence had its own entrance and direct access to a landscaped court, often filled with fountains and semitropical foliage. Because these buildings could be sited on the basic single-family parcel (50 by 150 feet) found throughout Los Angeles, they fit easily into neighborhoods and escaped much of the stigma attached to traditional apartment blocks.15 The wealthy and well-known lived in the more elegant apartments, while less elaborate buildings met the needs of working men and women. A romanticized version of Spanish Colonial Revival was the most common style.

During the 1920s courtyard apartments became one of the most popular multifamily housing types in Seattle. Although some were in the Mediterranean Revival styles, most were in variations of Tudor or French Norman, considered by some architects to be more appropriate to our climate.

SUB-THEMES

Early Seattle Multifamily Accommodations: Frontier Seattle: 1852-1889

It is believed that apartment houses as they are defined today were first built in Seattle in approximately 1901. Prior to that time, Seattlites lived in a variety of living situations that are now rare due to both changing preferences and increased regulation. Seattle's early years, and the associated multifamily accommodations and building types, are discussed here as precursors to the apartment house that developed later.

Seattle was settled almost simultaneously by two disparate groups. In September 1852, the Collins and Maple families made their claims in the Duwamish Valley, south of Elliott Bay, and established farms in the fertile alluvial soil. Two months later, the Denny party landed at windswept Alki Point, at the west end of Elliott Bay. This group had grander ambitions and, after a few winter months, moved eastward to a more sheltered area with deeper water, the site that became the heart of downtown Seattle. There they established a port town that thrived on trade and the export of coal and the raw lumber that covered the hillsides. The first industry came in 1853, when Henry Yesler opened his sawmill. The all-purpose cookhouse next door had bunks upstairs,
serving as Seattle's first multifamily housing. Soon, the village was shipping lumber to
the gold rush boomtowns of California.16

The new port grew slowly, with only 302 people in 1860. However, the city of Seattle
was incorporated on December 2, 1869, and soon boasted of three newspapers, a bank, a
public school and a Territorial University. Transportation remained a challenge, as it
was not until 1875 that scheduled steamship service to San Francisco began. Early
photos and maps show that most early Seattle families lived in simple wood frame
houses. One of the largest 1850s buildings was Felker House, which accommodated
visitors and families awaiting their own quarters.17

As with most frontier towns, much of the city's population was transient. In 1870 two-
thirds of the population were males, many of whom lived part of the year in logging,
mining or fishing camps elsewhere or arrived as seamen on ships that frequented the
wharves. When logging or fishing was slack, men flocked to the city for supplies and
entertainment. The permanent population generally lived north of Yesler's Wharf
(Yesler Way), while "south of the pier stretched rooming houses, stores, ships, and
saloons," all catering to these transients.18 An 1878 birds'-eye view of the town shows a

16 Mildred Tanner Andrews (ed.). \textit{Pioneer Square: Seattle's Oldest Neighborhood}. Seattle:
17 Andrews, \textit{Pioneer Square}, p. 16.
18 Quintard Taylor, \textit{The Forging of a Black Community: Seattle's Central District from 1870 through
waterfront filled with square-riggers and sternwheelers, and buildings stretching to Denny Hill on the north and ten blocks east to the forested hillsides.¹⁹

During the 1880s the frontier village became a thriving boomtown. The population increased more than tenfold from 3,533 people in 1880 to nearly 43,000 in 1890. Trade in lumber and coal flourished, with California, British Columbia and Alaska as major trading partners. Seattle had also become the center for Puget Sound trade, with ports connected by a fleet of sternwheelers. More substantial buildings like the Mansard-roofed Frye’s Opera House, the Victorian Yesler-Leary Building and the brick Second Empire-style Occidental Hotel gave downtown an urban air. The wealthiest citizens built ornate Queen Anne-style mansions. There were two schools, one at 6th and Madison streets, and another well north of downtown at 6th and Wall streets.²⁰

Land uses were mixed, with commercial buildings, hotels, duplexes and single-family homes located close to one another within a few blocks of the waterfront. Buildings often had storefronts on the first floor and a combination of offices and living quarters above, with uses changing as demand developed. Those without families often lived in boarding houses and residential hotels in the downtown area. Single-family homes began to spread out to First Hill and beyond, as cable cars began operation in 1887 and streetcars in 1889. This pattern changed suddenly on June 6, 1889, when the entire

¹⁹ Andrews, Pioneer Square, p. 37.
business district—more than thirty blocks of wooden buildings—went up in a conflagration. Although the residential areas were little damaged, many transient hotels in the commercial district were lost.

During this early period, four types of multifamily accommodations developed: attached houses, rooming and boarding houses, workers' hotels and apartment or family hotels.

- **Attached Houses:** Seattle families who could not afford a single-family home could rent attached housing such as duplexes, tripexes or fourplexes, typically with an individual entrance for each unit or pair of units. Since they were mostly in denser areas that have been redeveloped, few of these survive today, although they are now a popular option for new construction. The rowhouse configuration, a common feature of denser East Coast cities, did not become very popular in Seattle, although records show that some examples were built in the pre-World War I period. Another common configuration was the four-unit block, which often looked much like a large single-family home. The Classic Box house that became popular in the first decade of the century could be adapted to either a two- or four-unit configuration, and examples of these remain. With the popularity of Revival styles in the 1920s, four-unit blocks were also built in Colonial and Georgian styles.

21 Ochsner and Andersen, *Distant Corner*, p. 57.
22 Ochsner and Andersen, *Distant Corner*, pp. 242-243.
- **Rooming/Boarding Houses:** Two common residential options were often found within the single-family house form: rooming houses, where one rented a room and ate meals elsewhere; and boarding houses, where meals were served to residents. Little specific information is known about these facilities, but directory listings indicate that they were found in many of the city’s denser neighborhoods, close to workplaces and transportation.

- **Workers’ Hotels:** A step up from the rooming house was the workers’ hotel, later known as the SRO or single room occupancy hotel. These catered largely to single men who rented by the week or month. These buildings were the most important source of housing for single working men in Seattle until World War II. The main characteristic that differentiated these buildings from apartments is that the individual rooms did not include a kitchen or a bathroom (although rooms often had a washbasin). Residents shared a toilet room and bathtub on each floor, and ate in nearby restaurants. Accordingly, these hotels were located primarily downtown or in other areas close to streetcar lines, restaurants, taverns, services and entertainment, with convenient access to the waterfront or industrial areas where the men worked.

These hotels were typically small brick-clad wood-frame or masonry buildings of two-to-four stories, with commercial uses on the ground floor. Many of them remain today as major elements of the urban fabric of Belltown and the Pioneer
Square and Chinatown-International District historic districts. Many of these facilities were closed in the 1970s because owners did not want to upgrade them to conform to stricter building fire codes passed after the fatal Ozark Hotel fire.\footnote{Andrews, p. 138.}

After sitting vacant for many years, most that survive have been converted to studio apartments for low-income residents, with individual bathing and cooking facilities.

- \textbf{Apartment/Family Hotels:} Another sub-type was the apartment hotel or family hotel. Those that remain extant evolved long ago into either apartments or hotels, and they have a similar building form to that of the apartment block, described below. Most of their distinctive features, such as formal dining rooms, ballrooms and other public spaces, have been lost, replaced by living units or, in some cases, public restaurants.

Apartment hotels and family hotels catered to middle- and upper-class people who were in transition or did not want more permanent housing. Most hotels accepted weekly and monthly residents as well as more transient travelers, providing the easiest way for a person to get acceptable and convenient living accommodations without renting a house. Some people, especially bachelors, lived in such quarters for months or years.\footnote{Private clubs, including the Rainier Club, the Washington Athletic Club and the Women's University Club also provided transitional and permanent rooms and dining rooms. The YMCA, YWCA and similar organizations offered less expensive living quarters.} Travelers also needed long-term accommodations, as people who came a long distance would often stay a
considerable length of time, bringing their families with them. Hotels catering to this need provided a wider range of amenities than the simpler hotels. The best documented example of this building type is the Chelsea Hotel, which opened in 1907 in time to accommodate visitors to the 1909 Alaska-Yukon-Pacific Exposition. It was located in a quiet neighborhood with easy streetcar access to downtown, and offered maid service, a dining room, a rooftop garden for relaxation, and rooms for private entertaining. Both short- and long-term guests were welcomed, and some of the city’s most prominent families lived there for a time. The advent of the automobile reduced the need for such accommodations and, by 1917 the Chelsea had been converted to apartments. Most remaining examples, like the Chelsea, have had kitchens added and are now rented as apartments. Two buildings, the New Washington (now the Josephinum) and the Exeter are now senior housing, with central dining rooms. The Sorrento Hotel remains a hotel today.

Apartments as Middle-Class Housing: Booming Seattle: 1889-1923

It is not surprising that the development of denser housing options began during the period of intensive growth following the fire. Rebuilding began immediately after the fire. Building codes were quickly revised and within a month 88 fire-resistant brick buildings were under construction. The newer structures were on a larger scale and their red brick Romanesque facades gave the city a modern appearance. The city

undertook significant infrastructure improvements to prepare for further growth, including new streets and wharves and a new water supply to protect from future fires.

The major event of the post-fire era was undoubtedly the arrival in January 1893 of the Great Northern Railway, giving Seattle its first direct connection with the rest of the United States. The post-fire boom halted, however, with the Panic of 1893, which began with the stock market collapse of May 1893. Within a year, the local economy declined, with eleven banks out of business. The East Coast capital fueling Seattle’s development was withdrawn, leading to a four-year recession.

In Seattle, however, the recession ended abruptly following the June 17, 1897 arrival of the steamship Portland with "a ton of gold" from the Klondike. The regional economy "was revitalized seemingly overnight as it house, outfitted, entertained and transported thousands of fortune seekers...at once the last frontier fantasy of the 19th century and the birth of modern Seattle."\(^{26}\) The prolonged period of growth and construction lasted (with a brief slowdown due to World War I) until the Great Depression began.

By 1900 Seattle’s population had exceeded 80,000, with 25,000 arriving in the previous three years alone.\(^{27}\) It tripled to 237,000 by 1910 and to 315,312 in 1920. With the gold rush boom, the business district moved northward rapidly. Several skyscrapers, and a

\(^{27}\) Walt Crowley and The HistoryLink Staff, *Seattle & King County Timeline* (Seattle: History Ink and University of Washington Press, 2001), p. 36.
new post office and library were built well to the north in the first decade of the new century. In 1907 the University of Washington began development of its downtown property on Fourth Avenue, and, in 1918, a major department store, Frederick & Nelson, opened at Sixth and Pine streets. City Engineer R. H. Thomson wanted to encourage further development to the north and by 1911 the western portion of Denny Hill had been sluiced into Elliott Bay. Much of the ensuing growth in Belltown and lower Queen Anne took the form of apartment buildings.

In 1891 the city doubled in area with the annexation of the Wallingford, Magnolia Green Lake and University neighborhoods. It doubled again in 1907, when Seattle annexed the adjoining towns of West Seattle, Ballard, Southeast Seattle, Columbia, Ravenna and South Park. Georgetown and Laurelhurst followed in 1910. Each one had its own business district, industry and residential neighborhoods. The city’s first high school, Broadway High School, opened on Capitol Hill in 1902 and by 1923 six more high schools and dozens of elementary schools had been added.

By 1902 a dozen or so streetcar lines served the city. In that year they were consolidated into a single monopoly controlled by the Seattle Electric Company. As competition from automobiles began, service became erratic and, in April 1918, the city acquired the entire system. Between 1900 and 1910, land uses became more separated, with people of all income levels moving out of downtown to developing close in neighborhoods such

as Queen Anne and Wallingford. Apartment houses typically appeared near neighborhood commercial areas and street car lines, with the greatest number in Queen Anne, Wallingford, First Hill, Capitol Hill and the University District. Many of these apartment houses and nearby commercial areas remain today, forming the core of these neighborhoods.

The major event of the first decade of the century was the Alaska-Yukon-Pacific Exposition, held on the University of Washington campus in 1909. The city invited the world to commemorate the 1897 gold rush and see its accomplishments—more than 3 million visitors attended. The exposition grounds were designed by the Olmsted Brothers, landscape architects, who also planned the city’s parks and boulevards. The park and boulevard plan, first completed in 1903 and expanded in 1909, was substantially (although not entirely) implemented by the end of the 1920s.

Industrial and waterfront activity continued to grow, as the city’s role as an international and regional trade center flourished. The Port of Seattle was formed in 1911, bringing public ownership to much of the central waterfront. In 1916 completion of the Hiram Chittenden Locks connected industrial areas of Lake Union and Salmon Bay with Puget Sound. World War I brought large shipbuilding contracts. Nearly 40,000 workers were employed at local shipyards, many crowding into downtown

workers’ hotels and lodging houses. Economic recovery after the war was slow, and it was not until the mid-1920s that construction resumed.

The extremely rapid growth of the first quarter of the century brought an acute need for housing of all types—for travelers, short-term residents, permanent residents and families. The city’s builders and developers responded with a variety of housing types. Many commercial buildings had lodging rooms on upper floors, or even included hotels within their office buildings. Hotels and office buildings had similar room arrangements, with a wash basin in each room and toilet facilities at the end of the hall. The Terry-Denny Building on First Avenue South contained the Northern Hotel, and the nearby Holyoke Building had furnished rooms on the upper floors. The Butler Block, originally an office building, was converted to the more profitable hotel use in 1894, only a few years after its construction. The Austin A. Bell Building was initially described as having 65 apartments, even though its directory listing (1900) was under “Furnished Rooms” and its plan was much the same as that of the Pioneer Building, an office block.

Family or apartment hotels then served much the same role as apartments did in later years by providing either short-term or permanent accommodations for middle- and upper-class people. The terms hotel, rooming house, and lodging house were ambiguous. The difference between a residential hotel or rooming house and an

30 Andrews, Pioneer Square, p. 113.
31 Ochsner and Andersen, Distant Corner, pp. 242-243.
apartment house was primarily a matter of name, rather than of design. Many residential buildings were typically identified as hotels, even if they primarily served permanent residents.32 Terminology was so fluid that the same building could be listed in the city directory as a hotel one year and a boarding house the next. The term "apartment house" was little used, possibly because of the association with the workers' tenements of the East Coast. City directories had "apartment" listings, but these buildings appear to have been boarding houses, townhouses or apartment hotels rather than self-contained units with kitchens and baths.

Permanent hotel living was common in cities, and was highly stratified economically.33 By the early 20th century Seattle had hotels designed and located specifically to serve the wealthy, the middle class and workers and transient laborers. The latter were by far the most common, occupying dozens of small two- four-story buildings in the downtown area. Those for the wealthy and upper middle class were fewer in number, but larger and much better appointed. The best-known accommodations, the large hotels, were rebuilt immediately after the 1889 fire, in larger and more opulent fashion. The Occidental Hotel, one of the best, replaced its 3-story structure with five stories and 150 rooms. The new Butler Hotel boasted of a 12,000 square foot dining room with separate sections for men and women and an orchestra for evening entertainment.34

32 Ochsner and Andersen, \textit{Distant Corner}, pp. 73-75.
33 Groth, \textit{Living Downtown}, p. 188.
Although they were used by travelers visiting for a few days, the major clientele of the family hotels was people renting by the week or month. Two of the best family hotels were in the elegant residential neighborhood of First Hill: the Perry (1906-07) and the Sorrento (1907-08). The Perry, built by a New York company, was apart from downtown bustle but close to First Hill mansions. Seattleites and their visitors evidently considered it too pretentious, and it was converted to apartments and later to a hospital (later demolished). The nearby Sorrento Hotel was not successful at first, but today is one of the few turn-of-the-century hotels that survive as a hotel. The famed Washington Hotel (1903) was razed in the regrading of Denny Hill, and was replaced by the New Washington Hotel, which still exists as the Josephinum, a low-income residence.

Seattle developed as a streetcar city, rather than a walking city, which encouraged developers to promote single-family residences, with small lots to make them more affordable. The 1890s saw limited development of rowhouses similar to those seen in Eastern cities. One of the most elegant was Scurry Terrace, a series of four three-story Victorian terrace houses, built in 1889 by architect Elmer Fisher at Third and James streets. Architects Towle and Wilcox built two groups of five Queen Anne-style wood townhouses on Sixth Street and on Yesler Avenue, and J. A. DeProsse designed another group at Eighth Avenue and Columbia Street. A similar design was the building now known as the Victorian Row Apartments, built in 1891. Although it had the general appearance of a townhouse, its three entries accessed twelve apartments, each with two

35 Broderick, The HB Story, pp. 125.
36 Ochsner and Andersen, Distant Corner, pp. 47, 242-243.
or three bedrooms. Its typical Queen Anne townhouse features include two-story rectangular bays, scalloped skirting and gabled entrance porches with spindle work and turned posts.

In 1892 noted architect John Parkinson designed and developed a row of stone townhouses at Marion Street and Twelfth Avenue (now Minor) on First Hill. This project had seven townhouses, each measuring 20 by 70 feet and having twelve rooms. It was envisioned that First Hill could develop as a dense area of townhouses, but the panic of 1893 ended such expensive development and this was the city's only known example of masonry townhouses until its demolition in the 1970s.

The apartment block as it is known today, with a single primary entrance and individual living quarters with kitchens and bathrooms, appears to have first been constructed in Seattle around the turn of the century. The first such building may have been the St. Paul Flats, constructed in 1901 at Seneca Street and Summit Avenue by Edwin C. Burke, a wealthy real estate entrepreneur who had recently moved to Seattle from St. Paul, Minnesota. In 1909 he formed a partnership with developer Bert Farrar, who had built

37 The building has been restored and is now configured with 14 units of varying sizes.
39 Ochsner and Andersen, Distant Corner, pp. 242-243.
40 Seattle Times, April 24, 1938.
the San Marco Apartments nearby at Minor Avenue and Spring Street in 1904. The St. Paul, designed by Spalding and Russell of Tacoma, is a three-story block building, with a center entrance flanked by three-sided two-story bays. It was originally an elite building, with eighteen apartments of six to eight rooms each. It has been altered with new cladding and windows. The San Marco, generally similar in design and size, remains much as it was originally.

A particularly well documented example of early and unique apartment development was the Manhattan Flats project, designed in 1905 by architect William P. White. The four buildings, bordering Boren, Minor and Howell avenues north of downtown, enclosed a grassy inner courtyard suitable for children’s play. Suites were from two to five rooms, and children were allowed, with strict rules of conduct. Convenience and amenities were the marketing features, with stores on the first floor, phone service and an in-house kindergarten. The project’s name and the developer—the Manhattan Company—reflected its financing and influences, as it was based on New York models. It was called “the best and most complete flat plant on the Pacific Coast.” Its three-story buildings and large courtyard had ample light and fresh air, contrasting with:

"...an ordinary flat building with its cold exterior with unkempt yards and a general air of shiftlessness....perhaps the greatest eyesore in the universe. Until

41 Burke and Parrar are best known as the primary developers of Kirkland, WA. Burke died in 1915, at the age of 47, from injuries received in an auto accident (Seattle Post-Intelligencer, 5/9/1915).
42 Seattle Times (Conover, 12/13/47).
recently a great majority of our people lived in their own homes. Since 1901, however, there has been a very marked increase in the number of renters....The Eastern cheap tenement house with its attendant evils has found not root here....The men who designed and built our first apartment buildings are entitled to considerable credit because of the first-class structures they then erected. These now set the pace and hereafter only good flat buildings will be built, for no other could find tenants....The man of moderate income need no longer go without the conveniences that formerly were only within the reach of wealth, for a flat home with all conveniences is within the reach of any man.”

Apartment development during the first decade of the century concentrated primarily in the downtown area and the nearby neighborhoods of First Hill and Capitol Hill. Apartment buildings were heavily promoted as investments. One architect’s catalog featured several sample plans, both elaborate ones and a simple four-square plan, which could be altered to suit various sites and pocketbooks. No regulations controlled the location of apartment buildings, but economics dictated that they were typically built on higher-value land close to downtown and near streetcar lines. As the catalog noted “Any fairly close-in lot in a good location, with good car service, is suitable, and the building, when completed and rented, will prove a source of satisfactory and permanent income.” Some apartments, however, were built in other neighborhoods, primarily

44 “Western Flat Dwellers,” Seattle Mail & Herald, 9/30/1905.
near the commercial districts along streetcar lines. Some smaller buildings were also built in single-family areas.

Social conditions as well as economics and growth encouraged apartment development during the early 20th century. The increasing role of women in Seattle life and in the work force was a potent factor. Single women working in shops, offices and factories needed respectable and affordable housing, something that could not be obtained at the workers' hotels downtown.

The Alaska-Yukon-Pacific Exposition, held in 1909, influenced housing in two ways. One was that developers were eager to profit by accommodating visitors. The larger impact, however, was that this event was seen as a sign of the region's long-term growth potential, a place that was worthwhile investing in. Two of the best-known buildings of this period, both listed in the National Register, appear to have been directly connected with the exposition. The De la Mar apartment building was constructed by developer George Kinnear to house his friends who were visiting the fair. The Chelsea Apartments nearby were built to accommodate families visiting the fair.

World War I and a subsequent recession slowed new development, despite a critical need for housing. One of the first major post-war apartment projects was The Victoria on Queen Anne. The architect, John Graham, Sr., announced it with great fanfare in May 1921, saying that construction of the "mammoth community apartment house" indicated a "fast reviving building situation in Seattle...the first important answer to the
campaign waged by the Chamber of Commerce to get the public to build now." Graham went on to predict "there will be a great influx of people to Seattle seeking homes this fall. We are following what we have been teaching: build now. It is especially needed." However, the building was not completed until 1923. It set a high standard among Seattle apartments, as its units averaged more than 1200 square feet, and many had fireplaces, large foyers, libraries. A children's play area and servants' rooms were in the basement. A number of other buildings with similar amenities were built over the next decade.

Minority groups played a particularly important role in hotel and apartment development during this period. Both Asians and African-Americans were constrained from owning property and living where they wished, so they often lived in apartments or apartment hotels. Residential hotels were a particularly important part of the social and economic life of Japanese and Chinese residents. In 1930 there were 136 Japanese-owned hotels and a separate Japanese Hotel Owners Association. Hotels were the major employer of Japanese residents.47

The city had relatively few African-Americans before World War II (3,789 in 1940), but they owned or managed several hotels and apartment buildings. William Grose, one of the city's first African-Americans, owned the Our House Hotel near First Avenue and Yesler Way, and in 1882 purchased land off of East Madison Street. This became a

46 Seattle Times, May 15, 1921.
center for the black community and in the 1920s there were thirty black-owned
buildings in the general vicinity of East Madison Street and 23rd Avenue, including the
Chandler Apartments and Annex, the Dunbar Hotel, the Adelphi Apartments and the
Douglass Apartments.48 African-Americans were also an important part of the staffs of
the larger downtown hotels and apartment hotels that catered to the wealthy and
middle classes.

\textbf{Apartments as Home: Controlled Intensive Development: 1924 - 1957}

By the early 1920s, apartments were well established as a viable and acceptable housing
option for the middle class, typically for single people or for those saving to buy a
single-family home. The market continued to evolve over the next three decades, with
strong growth except during the Depression. Beginning in 1923, the city took various
actions to control development that significantly influenced the form and location of
apartments.

With the economic prosperity of the 1920s, apartments competed in offering amenities
and luxuries that made them worthwhile alternatives to a single-family house. While
this had been true to some extent in the preceding years, it became more common in the
1920s. The trend continued during the 1930s and into the 1950s, for very different
reasons. The Depression halted apartment development, but also forced many
homeowners into apartments. This occurred at all economic levels, as even some

wealthy people (particularly widows) downsized by moving from their large houses into luxurious apartments. The critical housing shortage during World War II and in the post-war era further increased the importance of apartments as a housing option. In 1923 the City of Seattle became one of the first U.S. cities to adopt a comprehensive zoning ordinance to regulate land uses. This ordinance determined, for the first time, the location and form of new apartment buildings. The complex ordinance divided residential areas into First Residential (where only single-family residences were allowed) and Second Residential, where apartment buildings were allowed. The location of each zone was determined primarily by the existing uses and character of each area. Thus, the Second Residential zone was located in a ring around downtown that already had many apartments (Belltown, First Hill, and western Capitol Hill) and adjoining commercial uses along the neighborhood arterials. Overlaid on the use zones were four Area Districts that regulated setbacks, lot coverage and building bulk. In addition, there were five overlaid Height Districts that determined allowable heights. Further apartment development was prohibited in single family areas, but it was allowed in commercial zones, where larger buildings were possible.

This zoning change was enacted just as the city was beginning a significant development phase. Population growth slowed from previous decades, increasing by only 16 percent, from 315,312 in 1920 to 365,583 in 1930. However, the strong economy and pent-up demand for housing and commercial and institutional buildings meant that downtown was transformed with large office buildings and hotels, neighborhoods gained new

49 City of Seattle, Multifamily Land Use Policies, p. 20
commercial districts and large residential areas, and apartment buildings were
constructed throughout the city. The value of building permits issued between 1921 and
1930 equaled 48 percent of the value of all construction between 1921 and 1940.50 The
increased popularity of the automobile made people less dependent on streetcars, and
development spread out accordingly. The city limits extended to approximately N. 85th
Street (NE 65th Street in the northeast), and by the end of the 1920s much of the city’s
land area was developed with residential suburbs.

The Journal of Commerce reported record amounts of construction in 1925, including
"thousands of houses and scores of apartment houses.” The strong economy and
construction activities led to higher wages and a growing demand for housing. Both
construction and population growth came to a standstill in the 1930s.51 Multifamily
development peaked in 1925 and continued strongly until 1929-30.52 The majority of the
city’s pre-World War II apartments were built during this period. Apartment blocks
appeared along arterials in nearly every neighborhood. Many courtyard apartments
were also constructed, with landscaped courtyards for residents to enjoy. While most
buildings had predominantly one-bedroom or efficiency units, some buildings had
larger apartments with amenities such as fireplaces.

51 Berner, Seattle 1921-1940, pp. 181-183.
52 Schmid, Social Trends in Seattle, p. 34.
Seattle was hit as hard as any city by the Depression of the 1930s. After decades of growth, the population increase virtually stopped. The 1940 population of 368,302 was only one percent greater than the 365,583 people in the city in 1930. Residential construction dropped precipitously, from 2,583 units in 1930 to 361 units in 1932, with an even greater drop in multifamily development, which continued to be erratic through the rest of the Depression.

Despite the intensive apartment development of the 1920s, Seattle was known as a haven for homeowners. In 1941 the Works Progress Administration guide to Washington noted: "Among cities of the Nation with a population of 300,000 or more, Seattle ranks third in the percentage of home ownership....Scattered throughout the city are many districts of middle income...five- to seven-room dwellings cover an unusual proportion of the city's space....Moderately priced apartment houses and hotels loom here and there among the low roofs of the cottages....immediately south of the business district...rooming houses and cheap hotels provide lodging for large numbers of itinerant and seasonal laborers."

Few major commercial or government projects occurred during the Depression, other than those sponsored by the federal government. Major projects completed in the 1930s include a new federal office building, a courthouse, an armory and the Sand Point Naval Air Station. The Works Progress Administration and other New Deal projects also

53 Berner, Seattle 1921-1940, p. 181.
completed improvements to parks, streets, sidewalks and sewer systems. One highlight was in the University District, where the business community joined together in 1932 to construct the Edmond Meany Hotel, a facility that served both travelers and permanent residents.

Major transportation improvements had significant and long-lasting implications for the area’s development and housing. The completion of the Aurora Bridge in 1932 made it considerably easier for automobiles to enter downtown Seattle, encouraging more single-family development north of the city limits at 85th Street. The growing influence of automobiles was made clear in 1940 when the city halted the trolleys, which had been losing money since even before the city’s acquisition of the system in 1918, and replaced them with a bus system. The same year, the opening of the Lacey V. Murrow Floating Bridge enabled people, for the first time, to commute easily from the large undeveloped areas east of Lake Washington to downtown Seattle. Earlier commuters had to rely on ferry service.

In 1939 Britain placed a large order for Boeing B-17's, and Seattle began its wartime transformation, the most important in its history. The city was well situated to play a critical role, with its shipyards, Boeing plants and related industries that were crucial to arming the Allies. Its large protected port and proximity to Alaska and Japan meant that it served as a major point for shipping supplies and for training and embarkation of troops. At Boeing alone, employment increased from 4,000 in September 1939 to 30,000 by December 1941. It was said that no state was more affected economically by the
expansion of war industries than was Washington. They were one among the top three in the country in terms of military contracts per capita, and its population exploded from 368,302 in 1940 to 480,000 in 1943.

The tremendous growth of the war years stressed Seattle in every way, particularly through the need to house more than 50,000 defense workers and their families who came to the city. Defense needs limited the availability of building materials, so relatively little private permanent new construction occurred. Advertising campaigns, sometimes going door-to-door, encouraged people to welcome lodgers into their homes. Federal home loans enabled homeowners to convert portions of their homes for renters, and the city relaxed building regulations to encourage the addition of rental units in homes and the conversion of vacant commercial buildings to housing. It is estimated that 3,000 temporary units were produced. Units were also obtained through the rehabilitation of hotels and apartment buildings, especially downtown and in Pioneer Square that had become dilapidated during the Depression. Not surprisingly, rents (especially for small units and rooming houses) increased significantly and the federal government made efforts to control rents. However, the controls were loosened after local protests, which found that three-quarters of local apartments were owned by individual owners rather than large corporations.

57 Berner, *Seattle Transformed*, pp. 91-94.
Another wartime response to the housing shortage was the construction of 6,000 housing units by the federal government in partnership with the Seattle Housing Authority. Most projects were located near Boeing or the shipyards and steel plants of the Duwamish area, or the military bases at Sand Point, Fort Lawton and Pier 91. The great majority were temporary projects, including dormitories and trailer parks, long forgotten today. However, the five permanent garden apartment communities had a lasting impact on the city. Each of these had numerous small buildings, most housing two to four families, sited along landscaped curvilinear roadways. The first of these projects, Yesler Terrace, was initiated as a New Deal urban renewal project, but was converted to defense housing by the time of its completion. It and the three communities of High Point, Holly Park and Rainier Vista became low-income housing after the war. A fifth project, adjacent to the Sand Point Naval Air Station, was sold to the University of Washington in 1956 for graduate student housing. Local architects teamed up to design these projects, as there was little work available.60 (All of these projects except Yesler Terrace have been demolished in recent years.)

The acute demand for housing continued with the end of the war. Many of those who had seen the Pacific Northwest while on military service wanted to return, and families that had been separated by the war wanted to establish homes. However, a shortage of building materials and of skilled labor, combined with continued federal control and a post-war recession, slowed development initially. Low-interest loans insured by the

60 Mimi Sheridan, Seattle Landmark Nomination Form, Rainier Vista Homes, 2000.
Federal Housing Administration spurred development of both suburban single-family houses and large multifamily projects in the city. It was estimated that 70 percent of apartment development in 1949 was covered by FHA mortgage insurance, which transferred the development risk from the private builder to the federal agency. These apartments were primarily in large complexes of 100 units or more, a distinct departure from earlier trends. Projects were typically built to the minimum standards established by FHA, as there was little reason to build larger or better appointed units than required.61 Apartment construction, like single-family construction, dispersed away from the downtown. With the availability of the automobile, people no longer depended on buses. The completion of the Lake Washington Bridge in 1940 allowed builders to build farther out to the east where land was cheaper. This occurred even within Seattle, with more multifamily development in the north end and West Seattle, which were made more easily accessible by the completion of the Alaskan Way Viaduct in the early 1950s.

Federal mortgage insurance also encouraged the development of privately-owned apartment complexes, which often consisted of a grouping of multi-unit, multi-story buildings arranged in a landscaped setting. These extended the bungalow court's concept of a setting apart from the street, but they were larger in scale, with higher densities and larger buildings, usually without individual entries for each unit. The earliest known local example is Edgewater Park (now the Edgewater Apartments). The eighteen buildings (with a total of 305 units) are arranged around large courtyards on

the 12.5-acre lakefront site in the Madison Park neighborhood. It was built by local businessmen organized as the Madison Park Corporation in 1938-40, about the same time as the Yesler Terrace public housing project. The project was financed by a $1,250,000 mortgage loan insured by the Federal Housing Administration. Edgewater Park's architect, John Graham, Jr., had recently returned from working in New York City, where this form of garden apartment had become highly developed and very popular.

At least three similar projects were built in the late 1940s-early 1950s, probably to house the influx of university students brought by the G. I. bill:

- Laurelon Terrace (originally called Laurelon Gardens), off Sand Point Way near the University of Washington, has 136 units in 19 two-story buildings, arranged on a 5.5 acre site.
- Northgate Plaza, across from Northgate Mall, was designed by John Graham, Jr. (architect for the mall) and includes 207 units in 34 buildings.
- Wedgewood Estates (originally called Oneida Gardens) was built in a new neighborhood north of the University of Washington in 1947-48, with 110 units in eleven buildings; in the 1970s three buildings were added, reducing the open space.63

Apartment buildings constructed in the decade after World War II typically continued the same building forms as those used in the 1920s, with the apartment block being the most popular. Courtyard or townhouse developments from the period are uncommon,

63 Department of Planning and Development building records.
although they do exist. By the mid-1950s, garages became a more predominant design element, with garage doors or open car ports on the primary façade. Also at this time a new form became popular, multistory buildings with apartment units opening off of exterior corridors. Building circulation was often clearly identified, with a stair tower as the primary feature of a façade. Fenestration was often concentrated on certain elevations, leaving blank facades that served as a background for fanciful over-sized signs announcing the apartment building’s name. 64

Most post-war buildings were Modernistic in style, with flat roofs (often with deep eaves), little or no ornamentation and larger expanses of glass than seen in earlier buildings. They used modern materials such as Roman brick and aluminum framed windows. Wide horizontal wood siding, stone (or manufactured stone) and various types of stucco and Marblecrete were also commonly seen on. Concrete block (CMU) was used not only as a structural element, but in decorative patterns and as screening.

Postscript: Development after 1957

In 1957 the City of Seattle completed a comprehensive review of its zoning ordinance, leading to significant changes in the location and form of apartment buildings. The city had changed significantly since the 1923 ordinance had been enacted. It had grown by nearly 70 percent, from 325,000 in 1923 to 550,000 in 1957. Its land area had increased

from approximately 70 to 92 square miles, due to the annexation in 1954 of all the land up to North 145th Street. However, the average household size in the city was decreasing. One reason for this was the growing popularity of apartment living. At the beginning of the century more than five people (5.64) had lived in each household. This fell steadily over the next decades: 3.94 in 1920 before the apartment construction boom; 2.91 in 1940, just before the wartime housing shortage; and then to 2.79 in 1950, reflecting, in part, the early movement of families to larger suburban houses.65

The new zoning ordinance was based on the philosophy of encouraging a standardized land use pattern for each neighborhood, with single-family residences ringed by arterials, with commercial and multifamily uses concentrated near the arterials. The new zones placed greater restrictions on land uses to avoid potential conflicts. Only two zones allowed apartment buildings: a low-density zone for 2-to-3-story walk-ups and garden court buildings (RM800); and another zone for taller elevator buildings (RMH350). Each zone had additional regulations for building bulk, lot coverage, minimum lot sizes and square footage required per unit. A new provision allowed larger projects to develop as “Planned Unit Developments,” without adhering to individual lot sizes. Higher densities (and heights up to 60 feet) were still allowed in commercial zones, intensifying the earlier tendency to place apartment buildings in commercial districts.66

65 City of Seattle Multifamily Policies, p. 20.
66 City of Seattle Multifamily Policies, p. 22.
The ordinance's most significant change for apartment buildings was a new parking requirement. The ratio of cars in the city had risen to 1.438 per household. Although some apartments had provided automobile facilities since the early 1920s, it had not been required, and the number of parking spaces was generally less than one per unit. The new regulations required three parking spaces for each four units in smaller buildings (RM 800 zone). In the higher-density zone, one space was required for each two units up to the first fifty units, and an additional space for each unit above fifty. This requirement meant that a developer had to provide additional space for cars, usually on ground level along the front of the building. The streets came to be lined with garages, open parking and curb cuts.67

DEVELOPERS AND ARCHITECTS

The Developers

The character of early apartment buildings, as well as their size, location and the timing of their construction, was determined primarily by developers and their financial backers. Many Seattle apartment buildings in the study period appear to have been developed by individuals or partnerships to be maintained as rental properties. Others were constructed for sale to investors shortly after completion. Larger projects were financed by investment firms. Most individuals, partnerships or corporate entities appear to have been involved in only a small number of buildings, although the identities of the specific persons involved in a particular building is sometimes difficult

67 City of Seattle Multifamily Policies, p. 22.
to determine. However, several individuals have been identified as having played a significant role in shaping the Seattle apartment landscape of the period.

Frederick Anhalt (1896-1996) was Seattle’s best-known apartment developer, bringing a distinctive sense of style and promoting high-quality apartments as an alternative to single-family homes. Today, his buildings are seen as setting the standard for pre-war apartment buildings and have become almost synonymous with the type. Anhalt was only involved with apartment development for approximately five years (1925-1930), and worked through at least three different business entities in that time. His approach was to combine the development, design, construction, landscaping, marketing and management functions in one firm. Anhalt moved to Seattle about 1924 after working in various trades in the Midwest, and in 1925 formed the Western Building & Leasing Company with partner Jerome B. Hardcastle, Jr.68 The company quickly began to centralize both design and construction within the firm, and built bungalow courts, apartment courts and small commercial buildings on Capitol Hill, Queen Anne, West Seattle, Beacon Hill and Ballard. In 1928 Anhalt bought Hardcastle’s interest, and designed and constructed apartment buildings for The Borchert Company (owned by Anhalt’s brother-in-law). The following year the firm (then known as the Anhalt Company) decided to increase profits by focusing on the higher end market with elaborate Tudor and Norman French courtyard apartments. In 1929-1930 he built his best known projects, five luxury apartment buildings on Capitol Hill, based on Medieval

68 Hardcastle also developed apartment buildings on his own, both during and after his partnership with Anhalt.
English and Norman French prototypes. Although the apartment business failed during the Depression, Anhalt was involved in single-family construction until 1942, when he turned his focus to a plant nursery business.

Anhalt's later buildings are particularly notable because of his goal of creating "apartment homes," refuges that were distinguished by their charm, fanciful detailing (exterior and interior) and quality landscaping. Although he used architects to complete his designs, Anhalt himself was very influential in freely combining elements such as steeply-pitched roofs, turrets, gables, dormers with highly decorative elements such as clinker brick, leaded and stained glass to produce the buildings that have come to be considered the epitome of the 1920s apartment building in Seattle.69

Gardner J. Gwinn may have been Seattle's most prolific apartment developer of the pre-World War II period. His firm, Gardner Gwinn, Inc., was widely advertised as "Builder of apartments, homes, bungalow courts and commercial buildings—designed, built and financed."70 Gwinn began doing construction work with his father in his native Nova Scotia, moving to Seattle in 1909. He soon established his own construction business, building more than 700 homes ranging in value from $5,000 to $25,000. They were noted for their livability and strong construction. In 1925 he turned primarily to apartment construction, building more than fifty apartment houses during the 1925-30

69 Lawrence Kreisman, Apartments by Anhalt (Seattle: City of Seattle Office of Urban Conservation, 1982), p. 6
70 Seattle Post-Intelligencer, January 3, 1926.
development boom. He typically sold buildings to investors shortly after completion, using the funds for new projects. His largest project was the 14-story Benjamin Franklin Hotel, the second largest in Seattle (demolished for construction of the present Westin Hotel). His brother Wells Gwinn headed several housing contracting and finance companies.

Gwinn's buildings represent the "bread and butter" of Seattle apartments. They feature quality construction, but are basically wood frame blocks of 3-4 stories, clad with brick veneer with applied terra cotta ornament. They are ubiquitous on Capitol Hill and lower Queen Anne and found in several other neighborhoods as well. Gwinn himself is listed as the architect on some building plans, and it is probable that many of the buildings were adapted from a master design by in-house draftsmen, differentiated simply by changes in the applied terra cotta ornament.

John S. Hudson (b. 1879) developed apartments primarily on Capitol Hill and First Hill between 1923 and 1928. He came to Seattle in 1903 from his native Minnesota. He began studying architecture in 1910 and obtained his architecture license in 1921, but he worked primarily as a developer. He is known to have been involved in at least a dozen buildings. The names of many of his buildings generally refer to American history—the John Alden, Paul Revere, John Winthrop, Hudson Arms, Lexington-Concord, Faneuil Hall, Lowell and Emerson. Others are the Hudson Arms, Chasselton,

Northcliffe, Miramar, Loleta, Rhododendron and Ruth Court. His brother Harry Hudson designed many of these buildings.

Samuel Anderson (1884-1959) was primarily a builder of single-family homes who entered the apartment field in the late 1920s. Anderson came to Seattle from Wisconsin in 1906 and became very active in the home building industry as an organizer and official of the Seattle Master Builders Association and related national organizations. In 1928-29 he developed at least eight Seattle apartment buildings, notable for their vivid interpretations of a wide variety of styles. Seven of the buildings that have been identified are in the 1100 block of 17th Avenue. An additional one (La Flor) is several blocks away on Capitol Hill. They are all basic three-story rectangular forms with central entrances, with 14 to 16 units ranging from 660 to 900 square feet in size. The applied ornament and architectural detailing on the facades is very striking and expressive, drawing from the Art Deco, Colonial, Mediterranean Revival, French Provincial and Tudor Revival styles. Each building has its own individualized landscaping. The scale is very domestic, giving the street the feel of a neighborhood of larger than average single-family houses.

Edward L. Merritt was another single-family developer who turned to apartment development in the 1920s. Unlike other developers, he was an architect, having graduated from the University of Minnesota architectural school in 1900. He joined his

72 Seattle Times, Samuel Anderson obituary, April 4, 1959.
73 Two additional buildings in this group were designed by Schack & Young for different owners. The relationship, if any, between them and Anderson is not known.
father's Seattle contracting business before forming the Merritt-Hall Investment Company. In 1917 he purchased the Craftsman Bungalow Company and built showcase houses throughout the city. In the mid-twenties he opened the Merritt Realty Company and developed several apartment buildings. 74

Angus P. Malloy was a major force in the development of the University District. He came to Seattle from Florida for the Alaska-Pacific-Yukon Exposition in 1909 and became a prominent local businessman. Malloy purchased the Adelaide Apartments in 1925 and, the following year, bought Washington Manor Apartments, renaming it Malloy Manor. In 1928 he built the Malloy Apartments, designed by Earl Roberts, adjacent to campus.

The Architects

Apartment design in the first half of the 20th century attracted some of the city's best architects, who were responsible for many major buildings as well as apartments. Many projects, however, were designed by architects who specialized in apartment design. Apartment plans were also available in catalogs, although it is not known how many of those that were actually constructed began as catalog designs.

William Bain, Sr. and Lionel Pries each had a long distinguished career, but they worked together on apartment buildings during their brief partnership (1928-1932).

Bain (1896-1985) was one of the city's best-known and most prolific architects for much of the 20th century. He came to Seattle in 1915, apprenticing with W. R. B. Willcox and Arthur Loveless before serving in the U. S. Army in World War I. In 1921 he received a degree in architecture from the University of Pennsylvania, receiving further training in the Beaux-Arts tradition. He opened his own practice in 1924, specializing in houses in the French and English Revival styles. From 1928 until 1932 he was in partnership with Lionel Pries, and designed a number of apartments and sorority houses that exhibit both Revival and Modern influences. One of his first apartment buildings, the Shoremont (1926) showed French Provincial influences. Three later apartment designs with Pries show Georgian Revival influences: the Viceroy (1930), the Consulate (1930) and the Envoy (1930). The partners also designed an addition to the Shoremont (1930-31). Their most notable apartment design is the Bel-Roy (1930-31), which departed from the typical block form to express its Moderne style in a zigzag floor plan.

Following the partnership's dissolution, Bain continued with residential and apartment commissions and added commercial and institutional work. Toward the end of the Depression, Bain joined other local architects in working on the Yesler Terrace public housing project. During World War II he served as state camouflage director, gaining some fame as the person responsible for disguising the Boeing plant. In 1943 he formed a partnership with three other architects, with whom he remained until his death. This firm, now known as NBBJ, has grown into one of the largest architectural firms in the
world. He also continued with residential designs with another partner, Harrison Overturf, combining traditional and modern idioms.\(^{75}\)

Lionel Pries was at the University of Pennsylvania at the same time as Bain, receiving a master's of architecture in 1921. He had previously studied at the University of California. Following graduation, he studied in Europe and later opened a private practice in San Francisco. He came to Seattle in 1928 and formed a partnership with Bain, as described above. Following the partnership with Bain, Pries taught full-time at the University of Washington School of Architecture, rising to full professor in 1948. He remained there until 1958, and is known for his brilliant teaching and lasting influence on his students.\(^{76}\)

Everett J. Beardsley is best known for his elegant Mediterranean Revival apartment designs. Little is known of his life, although he arrived in Seattle in 1909. He worked with a number of developers, and designed the Hacienda Court (1925), the Morris Apartments (1926), El Monterey (1928), Villa Costella (1928) and El Cerrito (1930).\(^{77}\)

Henry Bittman (1882-1953) studied engineering at Cooper Union in New York and worked briefly as a bridge engineer in Chicago before arriving in Seattle in 1906. He practiced for a year with architect William Kingsley, and then opened his own practice

\(^{76}\) Ochsner, *Shaping Seattle Architecture*, pp. 228-233.

\(^{77}\) Ochsner, *Shaping Seattle Architecture* p. 338.
National Register of Historic Places

Continuation Sheet - SEATTLE APARTMENT BUILDINGS, 1900-1957
KING COUNTY, WASHINGTON

Section number E Page 49 of 67

designing structural steel skeletons for the large buildings that were beginning to appear. He became a licensed architect in 1923, beginning with several apartment commissions, including the Davenport (1924), the Devonshire (1925), the Windham (1925) and the Stockbridge (1925). However, he primarily designed larger buildings such as the Terminal Sales Building (1923) and the United Shopping Tower (now the Olympic Tower, 1928-31). He is best known for his sumptuous use of terra cotta ornament, as seen in the Eagles Temple (now ACT Theater, 1925), the Music Box Theater (1928, demolished), and the Embassy Theater/Mann Building (1926). Toward the end of his long career he turned to the Streamlined Moderne and International styles, evidenced by the Seattle Post-Intelligencer Building (now Group Health, 1947).76

John Creutzer (d. 1929) first practiced architecture in Minneapolis before moving on to Spokane and then to Seattle in 1906. He worked as a designer and construction supervisor for Alexander Pearson, a contractor and for Henderson Ryan, a prominent architect. His major projects include the Swedish Tabernacle (1906) and the Medical-Dental Building (1927, with A. H. Albertson). His apartment designs include Carolina Court (1915), the Lenawee (1918), the Charber (1925), Park Vista (1928) and the Julie (now the El Rio, 1929).79

Edwin E. Dofsen (1902-1976) began his career as a self-taught draftsman who apprenticed with various Seattle architectural offices. In 1927 he joined the Anhalt Company. He did plans for fourteen of Anhalt’s apartment buildings, including the

76 Ochsner, Shaping Seattle Architecture, pp. 192-196.
79 Ochsner, Shaping Seattle Architecture p. 341.
best-known ones that best express the highly-detailed Norman style favored by Anhalt. His works include Oak Manor (1929), Twin Gables (1929), 417 Harvard East (1929), Belmont Court (1929), 1014 E. Roy (1930) and 1005 E. Roy (1930). Dofsen later formed his own company with engineer Charles A. Tiffany and designed more than forty residences in the Seattle area, mostly colonial or contemporary in style.80

Robert L. Durham (1912-1998) is best known for his church designs, but also had a substantial apartment practice early in his career. A Seattle native, he was educated at the College of Puget Sound and graduated from the University of Washington School of Architecture in 1936. Durham first worked as a draftsman for B. Dudley Stuart, a noted apartment architect, and then with the Federal Housing Administration. He rejoined Stuart in the firm of Stuart and Durham from 1941 to 1951. During this period the firm completed several apartment designs, including the notable Queen Vista (1949) and Aloha Terrace (1947) on Queen Anne and the Laurelton Terrace complex in Laurelhurst. Following Stuart’s retirement and a brief period of independent practice, he formed the firm of Durham Anderson and Freed. They designed many churches, including the Fauntleroy Congregational Church, which received a national AIA Honor Award in 1952. Although they were not known specifically for apartment work, they did do at least two high-rise buildings, the award-winning Skyline House on Queen Anne (1956) and Horizon House (1971) on First Hill. The firm was also heavily involved in civic and institutional projects and commercial buildings such as Fire Station No. 5 (1963), the Southwest Branch Seattle Library (1961), the University of Washington Atmospheric

80 Kreisman, Apartments by Anhalt, pp. 11-12.
Sciences Building (1970) and the Evergreen State College library and master plan (1971). Durham was very involved in the architectural community, serving as the president of the Seattle AIA chapter, the Washington State chapter (1954) and as national AIA board member and then President (1967-68). He was inducted into the College of Fellows in 1959 and received the AIA Seattle Medal for lifetime achievement in 1985.81

John Graham, Sr. (1873-1955) is one of Seattle’s best known architects. He apprenticed as an architect in his native England and moved to Seattle in 1901. His long career, extending until the 1940s, embraced a wide variety of styles and building types, including many of the city’s most important buildings. Several of these were apartments and hotels. His early partnership with David Myers was responsible for the Algonquin Apartments (now the Helen V, 1907). He opened his own practice in 1910 and designed the Rector Hotel (now the St. Charles, 1911), the NP Hotel (1914) and the McKay Apartment Hotel (1914, demolished). His outstanding apartment design is the large Victoria Apartments (1921), prominently sited on Queen Anne. In 1929 he turned to the Art Deco style for the Roosevelt Hotel. Other noted works were the Frederick & Nelson Building (now Nordstrom, 1916-19), the Dexter-Horton Building (1921-24), the Exchange Building (1929-31), the Bon Marché (1928-29), and the U. S. Marine Hospital (1931-34).82

81 DoCoMoMoWeWa.org; http://siaseattle.org/archive_honors_medal85_durham.htm
82 Ochsner, \textit{Shaping Seattle Architecture} pp. 90-93.
John Graham, Jr. (1908-1991), the son of John Graham, Sr., is best known today for shopping center and commercial designs, but he designed several apartment complexes early in his career. He was born in Seattle and attended the University of Washington before transferring to Yale University, from which he received a degree in fine arts in 1931. He remained on the East Coast working in merchandising until 1937, when he opened a New York office of his father’s firm. The office specialized in department store work, but also designed a number of large federally-financed housing projects. In 1938-40, Graham applied this experience locally, designing Edgewater Park, an 18-building, 305 unit complex on the shores of Lake Washington in Madison Park.

Following World War II, Graham capitalized on his large-scale retail design and planning experience by teaming up with the president of the local Bon Marché department store to develop Northgate Shopping Center (1946-50), the first of its kind in the country. Across the street, Graham designed the Northgate Plaza apartments, a complex of 34 buildings containing 207 apartments. Northgate’s success lead to the design of nearly 70 regional shopping centers, including Ala Moana in Honolulu (1960) and Lloyd Center (1960) and Clackamas Town Center (1981) in the Portland area. The firm also designed (and sometimes developed) many large commercial buildings and hospitals including, in Seattle alone, the Bank of California building (1971-74), the Westin Hotel (1979-82), the Sheraton Hotel (1978-82) and 1600 Bell Plaza (1976).
However, Graham's best known work is the Space Needle (1961), designed in collaboration with Victor Steinbreuck.83

J. Lister Holmes (1891-1986) had an eclectic practice with numerous large single family homes as well as housing projects and institutional buildings. He received his degree in architecture from the University of Pennsylvania in 1913 and returned to Seattle to work for several firms before establishing his own practice in 1922. Holmes designed residences and fraternity houses in a range of architectural idioms, including English Tudor, Spanish Colonial, Norman Provincial and 18th century French. One of his early projects, in 1924, was the William Tell Hotel (now apartments), a small highly detailed Mediterranean Revival building. Soon afterwards he designed the mid-rise Sovereign (1925). During the Depression he began designing houses in the newly-developed International Style and served as the chief architect for the Seattle Housing Authority's first public housing project, Yesler Terrace. He later worked on temporary housing projects at Gatewood Heights and Seward Park. After the war, he resumed his residential practice, as well as doing institutional buildings such as the Seattle Public Schools Administrative Building and Catherine Blaine Elementary School.84

Harry E. Hudson primarily did designs for his brother, John Hudson, one of the major apartment developers in the Capitol Hill/First Hill area. The HUDSONS came to Seattle from Minnesota and most of their buildings were named for the heroes of American history and literature. Hudson's major works are the adjacent high-rise buildings on

83 Ochsner, \textit{Shaping Seattle Architecture} pp. 258-262.
84 Ochsner, \textit{Shaping Seattle Architecture}, pp. 204-209.
First Hill, the Lowell and the Emerson (1928). Nearby are the Paul Revere (1924), the John Alden (1924), the John Winthrop (1925), and Faneuil Hall (1928). In Belltown is the twin Lexington-Concord building. He also designed a house for James A. Gibbs, his brother’s development partner in the firm Gibbs and Hudson. The terra cotta-clad house, a Seattle historic landmark located on Queen Anne hill, was reportedly modeled after the Albert Rhodes mansion on Capitol Hill, designed by A. W. Gould.

Daniel Huntington (1871-1962), one of Seattle's most prominent architects, is best known for his city institutions, but he also designed several apartment and hotel buildings. He was originally from New Jersey, but began his architectural career in Denver in 1889. After work in New York and again in Denver, he arrived in Seattle about 1904 and in 1907 formed a partnership with James Schack. Huntington later worked with Carl Gould and Arthur Loveless, designing numerous residences and commercial buildings with each firm. His most important role was as City of Seattle architect from 1912 until 1921, during which period he designed the Lake Union Steam Plant and at least ten fire stations and libraries, many of which are listed in the National Register or are designated local landmarks. He later became known for apartments, schools and institutional buildings. Early in his career he designed the Arctic Club (now the Morrison Hotel) and the De la Mar apartments (1908). Following his city career, he designed the Northcliffe Apartments (1924) and, with Archibald Torbitt, the Piedmont Apartment Hotel (now part of the Tuscany, 1928).

55 Building records, Seattle Department of Planning & Development.
George W. Lawton (1863-1928), born in Wisconsin, came to Seattle about the time of the Great Fire in 1889. He worked as a draftsman for the prominent firm of Saunders & Houghton before entering into partnership with Charles Saunders in 1898. The firm designed a wide range of projects, including the Lincoln Apartment Hotel, one of the city's first apartment blocks, the San Marco (1905) and the Summit (1910). They adeptly used a wide range of revival styles, including Romanesque, Classical, Tudor and Colonial. One of their most noted works was the Forestry Building (1908-09) at the Alaska-Yukon-Pacific Exposition, a classical design executed in raw logs. Few of these early buildings remain, other than Horace Mann and Beacon Hill (now El Centro de la Raza) elementary schools. The partnership dissolved in 1915. As an independent practitioner, Lawton worked with A. W. Gould on the Arctic Building (1913-17), famed for its terra cotta walrus heads. In 1922 Lawton formed a partnership with Herman A. Moldenhour (1864-1975). Moldenhour, also from Wisconsin, had been an office boy for the Saunders & Lawton firm. This partnership specialized in large office and apartment buildings, including the Franklin (1918), the Castle (1918), Olive Crest (1924) and Hawthorne Square (1924), a notable townhouse project. Moldenhour continued with an independent practice after Lawton's death in 1928.87

Blaine McCool (1923-2006) was one of Seattle's most prolific apartment designers of the 1950s-60s. McCool was born in Idaho in 1923 and served as a pilot in the Army Air Force during World War II. Following the war he initially studied architecture at the

87 Ochsner, *Shaping Seattle Architecture* p. 347.
University of Washington but later received his certificate in architectural drafting from Edison Technical School in 1950. He worked at Eckert-Tiffany & Associates in Seattle and then formed a partnership with Charles Morgan in 1958. 88 He later practiced on his own, including extensive work in Alaska. He designed numerous Modernist apartment buildings in the Capitol Hill, Queen Anne and University neighborhoods. McCool died in 2006.

Earl W. Morrison (d. 1955) practiced in Spokane before moving to Seattle in 1926. He specialized in high-rise buildings, especially apartments. His major works include the Olive Tower Apartments (1928), 1223 Spring Street Apartments (1929), the Gainsborough (1930), the Marlborough (1926) and the Nettleton (now 1000 8th Avenue Apartments, 1949). 89

Earl Roberts practiced architecture in Seattle in the 1920s-30s, and is known primarily for his apartment buildings. He is most noted for his numerous works in the University District, mostly high-rises. These include the Commodore (1925), the Duchess (1925), the Stanford (1924), Washington Manor (now University Manor, 1926) and the Malloy (1928). 90

Henderson Ryan (b. 1878) arrived in Seattle in 1898 after attending the University of Kentucky. He first worked as a contractor-builder, but opened his own architectural

88 Architecture License file, Blaine McCool, Washington Department of Licensing.
89 Ochsner, Shaping Seattle Architecture p. 349.
90 Building records, Seattle Department of Planning & Development
practice in 1900. His first notable work was Ballard’s Carnegie library (1903-04). He then embarked on a series of apartment house designs, including the Waldorf Hotel (1905-06, demolished), the Roycroft (1907), and the Fredonia (1908). His most significant apartment design is the Maryland (1910-11), a designated Seattle historic landmark. Numerous other apartments and other structures have been attributed to Ryan, most of which do not survive: the 11-story Raleigh Hotel, the Antonia Apartments, the Taylor, the Keene Apartments, the Broadway Building and the Moore Building. He also had a large residential practice. His career turned to theater design with the Liberty Theater (1912, demolished) and the Neptune Theater (1921-22). For the Liberty he originated and patented a new ramp design that provided easy balcony access while maximizing auditorium space. This innovation evidently led to commissions for theaters in Butte and Helena, Montana, and elsewhere throughout the country. He moved to California in 1923, perhaps to continue his work in theater design.\footnote{Mimi Sheridan, “The Waldorf Hotel: History and Photo Documentation,” Washington State Trade and Convention Center, 2000.}

\textbf{James H. Schack} (1871-1933), a German native, arrived in Seattle in 1901 after receiving architectural training at various Chicago firms. One of his early local works was the Savoy Hotel (1906). He was a partner of Daniel Huntington from 1907-09, primarily designing apartments, commercial buildings and residences as well as the First United Methodist Church (1907-10) in downtown Seattle. He is best known, however, for his later partnership with David Meyers and Arrigo Young, which began in 1920. The firm designed the Seattle Civic Auditorium complex (1925-26), the town of Longview and
numerous residences and commercial buildings. After Myers left the firm in 1929, Schack and Young specialized in apartment design, producing some of the city’s most notable Art Deco apartment buildings. These include the Margola (1928), the Martha Anne (1928), the Baroness Apartment Hotel (1931), and the Ward (1931).

B. Dudley Stuart (1885-1977) was born in London and practiced in Edmonton and Vancouver before arriving in Seattle in 1918. His partnership with Arthur Wheatley (1925-30) specialized in larger apartment buildings, including the Biltmore (1924), the Highland (1924), the Exeter Hotel (now Exeter House, 1927), the Bergonian (now the Mayflower Park Hotel, 1927) and the smaller Marianne apartments (1930) on Queen Anne. During World War II he practiced with two pioneering Modernist architects, Paul Hayden Kirk and Robert Durham. After the war, he continued developing apartment designs with Durham, until 1977. These projects, showing the influence of Modernism and new materials on post-war apartment design, include Aloha Terrace (1947) and Queen Vista (1949) and two large complexes, Shorewood Apartments on Mercer Island and Laurelton Terrace near Laurelhurst.

Harlan Thomas (1870-1953) had American roots but is particularly known for his European-influenced designs. He grew up in Iowa and Colorado, and opened an architectural practice in Denver in 1895, after receiving a degree in mathematics and mechanics from Colorado State College. He then spent nearly three years traveling and

92 Ochsner, *Shaping Seattle Architecture* pp. 156-158.
studying throughout the world, before moving to Seattle in 1906. He immediately embarked on two major projects, the Chelsea Family Hotel (1907) and the Sorrento Hotel (1908) on First Hill. Both designs show the influence of his European travels. He later partnered with Thomas Grainger, producing such well known works as the Queen Anne, Columbia and Douglass-Truth libraries (1912-15), the Corner Market Building at Pike Place Market (1911-12), the 7th Church of Christ, Scientist (1923-25), Harborview Hospital (1929-31) and several fraternity and sorority houses. His son, Donald Thomas, later joined the partnership. Thomas taught architecture at the University of Washington from 1926 until 1940 and retired from practice in 1949.\(^\text{94}\)

Victor Voorhees was one of Seattle's most prolific architects, working here from 1904 until at least 1957. He is credited with designing more than 100 local buildings, ranging from cottages and large residences to apartment and office buildings, auto dealerships, industrial buildings, fraternal halls and commercial structures such as Washington Hall and the Vance Building. His apartment/hotel work includes the renovation of an engineering school into the Vance Apartments (now the Marqueen Hotel, 1926), the Adams Apartments (1915), the Washington Arms (1919), the Vance Hotel (now the Hotel Max, 1926) and the Earl Hotel (now the Seattle Hotel, 1928). However, he has become best known for a popular book of house plans, *Western Home Builder*, first published in 1907.\(^\text{95}\)

\(^{95}\) Ochsner, *Shaping Seattle Architecture*, p. 353.
William P. White practiced architecture in Seattle from 1902 until 1922, specializing in apartment and hotel buildings. He designed a major early apartment complex, the Manhattan Flats (1905). Other examples of his work include the Kinnear Apartments (1908), the Calhoun Hotel (1909), the Imperial Apartments (now the Paramount Apartments, c. 1910), the Olympian (1913) and the Sagamore (now the Queen View, 1917). Several of his works have been demolished, including the Astoria Family Hotel (1909), the Knickerbocker Apartments, and the Jefferson Apartments. He also designed the well-known Sylvia Hotel (originally the Sylvia Court Apartments, 1912) in Vancouver, B.C., which was designated a heritage building in 1975.

William Whiteley (1892-1974) is best known for his courtyard apartments in variations of the Mediterranean Revival style. Several of these were designed for developer Frederick Anhalt, including La Quinta (1927) on Capitol Hill and Seville Court, Barcelona Court (1927) and Franca Villa (1930) on Queen Anne. Montrose Court (1927) and Rosina Court (1928) show Tudor influences, while Briar Crest (1928), Olympus Manor, the Martha Lee (1930), the Catalina (1930), and the buildings at 411 E. Republican, and 26 and 432 Bellevue E. (1928) are more typical apartment blocks. He also worked with Frederick Anhalt on his early market buildings in neighborhood commercial districts, including the Cora M. Graham Store Building (1926) on Beacon Hill and a bungalow court (1926-27) in West Seattle. Most of these buildings were designed for Jerome Hardcastle or for his partnership with Anhalt, the Western Building and Leasing Company. In 1935, after apartment development had virtually halted due

96 Building records, Seattle Department of Planning & Development.
to the Depression, Whiteley joined with Anhalt in forming the Architectural Services Inc., which designed and built homes and sold sets of house plans throughout the country.97

APARTMENT DEVELOPMENT BY NEIGHBORHOOD

Intensive apartment development is focused in several neighborhoods close to downtown, each of which has its own distinct character. Apartment buildings are also found in other neighborhoods, focused along arterials (generally former streetcar routes) and close to business districts.

Pioneer Square

In the period of reconstruction after the fire of 1889, Pioneer Square saw the construction of both elegant hotels and numerous workers’ hotels. Notable hotels included the Hotel Seattle, the Butler, Hotel Seward (now the Morrison Hotel) and the later Frye Hotel (1906-11). Today, the Frye and the Morrison remain, renovated for low-income housing. Many of the district’s smaller buildings housed single workers in modest hotels of 2-to-4 stories with small residential units above retail uses on the ground floor. The residents, overwhelmingly male, stayed for weeks or months at a time, and included lumber camp workers, merchant seamen and other laborers. They shared baths on each floor and ate at the restaurants and taverns that proliferated nearby.

International District

The area known today as the Chinatown-International Historic District, located just east of Pioneer Square, is particularly rich in early hotels and apartment buildings. Historically, it was populated primarily with single men who arrived from China, Japan and the Philippines to work in the United States. Legal restrictions prevented them from owning land, living in other parts of the city and, often, from bringing women over so that they could establish families. These facts led to a dense development of workers’ hotels and a large number of ethnic restaurants, bathhouses and other services to serve the residents. Because of the immediate proximity to the train stations, larger buildings were also constructed to serve travelers. Most of these buildings remain today, except for those that were razed for construction of the I-5 freeway in the 1960s. Many have now been renovated (or are proposed for renovation) into low-income housing with larger units.

Downtown

Downtown Seattle between Pioneer Square and Belltown (roughly Cherry Street to Virginia Street) developed historically as a retail and business center with relatively little housing. Some apartments developed along the eastern edge, where downtown merged with First Hill. Most of these buildings were demolished for construction of the I-5 freeway or for large projects such as the Washington State Convention and Trade Center. Around the turn of the 20th century, family hotels such as the Lincoln and the Rainier Grand developed, but these are no longer extant. During the 1920s hotels catering primarily to the upper- and middle classes proliferated throughout downtown.
Although they focused primarily on travelers, they also had permanent residents. Some special purpose buildings also included hotels or apartments, notably the Moore Theater and Hotel, the Paramount Theater, the Fisher Studio Building and the Eagles building. Workers’ hotels were also built along First Avenue, convenient to the waterfront and the Pike Place Market.

Belltown/Denny Regrade/Queen Anne

The vicinity of First Avenue and Bell Street, north of downtown, developed concurrently with Pioneer Square, and its centerpiece, the Austin Bell Building, was constructed as apartments in 1889. However, Denny Hill blocked the city’s northward progress and it was not until the hill was regraded, between 1898 and 1911, that it opened up for development. It quickly became a concentrated residential area, with two distinct types of buildings. Workers’ hotels, typically without individual bath and cooking facilities, lined First Avenue. By 1906, larger buildings were constructed north of Denny Way to Queen Anne, primarily with efficiency apartments for sales clerks, clerical staff and other downtown workers. Following the 1911 regrade, this type of development spread throughout Belltown, east to Fifth Avenue. Because of its good streetcar service and outstanding city views, many apartments (including luxury buildings) were built on Queen Anne hill from 1906 through the 1920s, and it is today the site of some of the city’s best multifamily examples.

In 1917 the area of the first Denny Regrade, roughly between Second and Fifth avenues and from Stewart Street north to Cedar Street, was promoted as “the city’s coming
apartment zone.” Approximately thirty apartment buildings were built in this area before 1930, and most of them remain today. These red brick-clad buildings are a major part of the neighborhood streetscape. The numerous turn-of-the-century examples of worker’s hotels on First Avenue such as the Guiry (1903) and the Schillestad (1907) are also important, although more of them have been demolished. Their survival is primarily due to their having been purchased and rehabilitated by social service agencies to provide low income housing.

Eastlake/Cascade

The Cascade and Eastlake neighborhoods lie northeast of downtown Seattle, near Lake Union between the Denny Regrade and the University District. Its natural connections to Capitol Hill, just to the east, were cut off by the construction of the I-5 freeway in the early 1960s. Lake Union was one of the city’s earliest industrial areas, and Cascade was a community of worker housing, including small apartment buildings. A number of these survive today, including Carolina Court and the Jensen Block. The streetcar line began running along Eastlake Avenue in 1893, opening the area to the north up for residential development. Its convenient access to downtown and the University District led to a proliferation of apartment buildings. Eastlake is particularly noted for the density of bungalow courts along Eastlake Avenue and for the number of smaller buildings that fit into the urban fabric on the side streets much like large single-family homes.
First Hill

First Hill, just east of downtown, was the city's first intensively developed apartment district. When residential development moved east following the fire of 1889, this became a neighborhood of fine homes. By the early 20th century, however, institutions such as churches, hospitals and schools developed here, seeking larger lots than were available downtown. Apartments appeared in the same period, including the St. Paul (1901) and the San Marco (1905). By 1915, First Hill was probably the city's densest neighborhood, with numerous apartment buildings. This increased during the late 1920s, which saw the development of the high-rise buildings in the Boren Avenue vicinity. This trend intensified in the 1960s-70s and in recent decades.

Capitol Hill

Capitol Hill, adjacent to First Hill on the northeast, developed into a dense apartment district in the first decade of the 20th century, largely because of its excellent streetcar connections to downtown. It remains the city's primary apartment neighborhood, with apartments of all descriptions, from modest buildings with efficiency units to numerous luxury accommodations. Early development was encouraged by the construction of Broadway High School in 1902. Within ten years, a commercial district with several apartment buildings was constructed, and apartment development continued to spread. The district west of Broadway, from Madison to the Roy streets, was largely apartments by the early 1920s. Scattered apartments were also built in residential areas, before zoning prohibited this. In the 1920s, dense apartment construction spread east to 15th Avenue East and beyond. The area called Second Hill, or Renton Hill, at the top of
Madison Street, also saw significant apartment construction in the pre-World War period, because of its proximity to the cable car line and its outstanding views.

The University District

Not surprisingly, one of the first neighborhoods with dense apartment construction was that surrounding the University of Washington. The area was still rural when the university relocated here from downtown Seattle in 1895. From the beginning, group and multifamily living was a way of life for both students and faculty. However, actual development of apartment buildings was relatively slow until the 1920s, when at least 20 apartment buildings were constructed. The Collegiate Gothic style, used in campus buildings of the era, was favored, to reinforce the identity of the district and its connection to the university. Some of the buildings reach 7- to 8-stories, the largest built during this period in outlying neighborhoods. The larger ones have amenities such as elegant lobbies and ballrooms. The remaining buildings are 3- to 4 story walkup apartments typical of other neighborhoods, along with a small number of distinctive courtyard buildings, some in Tudor or Mediterranean Revival styles.

Other Neighborhoods

Nearly every Seattle neighborhood saw some apartment development during the late teens and 1920s. Most buildings were located in or adjacent to the neighborhood commercial districts and along arterial streets, close to streetcar lines. They were primarily of two types: two- to three-story walk-up apartments or two- to four-story buildings with stores on the first floor and apartments above. Some bungalow courts, or
apartments with retail uses in front, are also found. The most notable group is the outstanding apartment buildings near Woodland Park, which are more ornate in design than those found in other outlying areas. These include Hawthorne Square, a unique development of 24 townhouses arranged around a landscaped garden.
F. ASSOCIATED PROPERTY TYPES

This MPD includes two property types and three subtypes associated with Seattle apartment buildings:

- Apartment blocks
 - Low-Rise
 - Mid-Rise
 - High-rise
- Courtyard/townhouse apartments

Exclusions
Some property types that are commonly thought of as apartments are excluded from this MPD.

- Apartment/commercial buildings with one or more stories of commercial use are (buildings with less than 33 percent of the ground floor in commercial use are not excluded; also included are buildings in which the original dining room has been converted to a restaurant);
- Cottage groups, including true bungalow courts with several 1- or 2-unit buildings;
- Small buildings with two, three or four units; and,
- Multifamily buildings converted from other building types, including single family homes.

These exclusions do not imply in any way that these property types are not eligible for National Register listing, but only that they would not meet the registration requirements of this MPD.

DESCRIPTION
The purpose-built apartment buildings of Seattle are buildings that are designed and constructed specifically as multiple dwellings. As defined in this document, they contain at least five living units,
each with kitchen and bath facilities, and were constructed between 1900 and 1957. They have only incidental commercial use, with less than 25 percent of one floor dedicated to commercial use.

Construction Type: Seattle apartment buildings, other than High-Rise Apartment Blocks, are typically of wood frame construction. Some (predominately pre-World War I) examples of smaller apartment blocks are of brick masonry construction, but by the building boom of the 1920s, balloon frame was generally used in the smaller buildings. Mid-rise buildings (3-6 stories) are often of reinforced concrete, as are virtually all larger buildings.

Plan: The great majority of Seattle's apartment buildings have relatively simple plans (usually a rectangular or U-shape) that reflect cost-effective use of the land and an efficient apartment layout. Narrow light wells on the rear or sides sometimes larger buildings an L-, T-, E- or H-shaped plan. A relatively small number of properties have a triangular or irregular shape reflecting the topography or the shape of the parcel. Many pre-World War I buildings are distinguished by multistory three-sided bay windows, a feature that was not seen on later buildings. Another common early feature was a prominent central entry bay with open balconies on the upper floors.

Materials: The majority of Seattle apartment buildings are faced with brick veneer. Stucco is also seen, especially on Mediterranean Revival buildings. Terra cotta trim is ubiquitous in older buildings, and in an elegant building may extend to terra cotta cladding on the first one or two stories, with brick above. Stone is seen only occasionally, in earlier buildings. Many of these early buildings (pre-World War I) were clad with wood siding or shingles, especially those in the Craftsman style. Wood siding is also
common in smaller Modernistic buildings of the 1950s, as well as Roman brick and stone (often manufactured stone).

Style and ornamentation: Most Seattle buildings of the pre-World War II period have no intrinsic style, but have applied terra cotta or cast stone ornament that can exhibit a wide variety of stylistic influences. Most common are a variety of Neoclassical, English Tudor or Gothic-inspired elements such as shields, cartouches, medallions, columns, entablatures or lancet or Palladian windows. Ceramic tile, art glass and decorative brickwork, and clinker brick are often found in more ornate examples. Deep cornices with entablatures and brackets or curvilinear parapets are sometimes seen. A decorative frieze is often found around the parapet, and coping, belt courses, water tables and window sills are sometimes of decorative material (usually terra cotta). Older buildings sometimes use terra cotta extensively, cladding the entire first story. Although balconies and porches are not an important part of Seattle apartments as they might be in warmer climates, small recessed or projecting balconies are sometimes found, usually above the main entry. Modernistic apartments of the 1950s saw increasing use of balconies, usually with metal railings.

By the latter years of the 1920s Art Deco and Modernist influences were clearly apparent. The most common manifestation is the use of Art Deco ornament (usually cast stone), applied much as the Tudor elements had been used previously. Modernist buildings are distinguished by their clean lines and lack of ornament, usually retaining the simple block form. Only a small number of these buildings expressed their style through form or massing. The most notable example is the Bel Roy Apartments by Bain and Fries, although they do exist.
In the 1950s, the basic form changed considerably, with apartment units often opening directly off of exterior corridors, with a prominent entry bay or stair tower. These modern buildings typically had little or no ornamentation, relying on more complex forms, large expanses of glass and newer materials such as Roman brick, manufactured stone, Marblecrete or decorative concrete for visual interest.

An important sub-set of apartment buildings exhibit Spanish Eclectic, Mission or other Mediterranean-influenced styles. Although these are relatively few in number, their distinctive style and detailing make them stand out, and many examples have become important neighborhood landmarks because of their contrast with surrounding buildings. They typically have white stucco cladding (sometimes brick), red barrel tile roofs and arched windows and doors, with varied ornament including twisted columns, brightly-colored ceramic tiles, art glass and wrought iron. Some notable examples are L'Amourita and El Cerrito in Eastlake; El Monterey in the University District; La Quinta and La Flor on Capitol Hill; and the Alexander Hamilton, Villa Costella and Barcelona Court on Queen Anne.

Entries and Common Areas: Apartment blocks typically have a single primary entry with a sheltered vestibule and a lobby. The lobby was often small, accommodating only the mailboxes and the main staircase or, in larger buildings, an elevator. In both modest and elegant buildings the materials and detailing of the entry and lobby were important. Before World War II, most buildings had an ornate entry, often with a surround of terra cotta or cast stone, oak doors, a transom and sidelights (sometimes of leaded glass) and a vestibule and stairs clad with marble, terrazzo or tile.
Even a simple building would usually have wainscoting or wood trim in the lobby. Columned porticoes are sometimes featured. Larger buildings, especially those surrounding a courtyard, often have more than one entry. The large U-shaped Victoria, for example, has a small, elegant elevator lobby in each of the three wings. More elaborate buildings have a larger lobby, or a series of rooms containing the mailboxes, main staircase or elevator doors, and a lounge area. Larger buildings often had additional common spaces that were originally used as ballrooms, tearooms or dining rooms; most of these have now been converted to living units. The most common alteration of entry areas is the replacement of the original wood door and sidelights with modern steel-frame doors and windows. In general, however, entries and lobby areas seem to be largely intact.

The typical apartment block has most of its units arranged along both sides of a central corridor on each floor. Wood floors were probably common in the corridors, but many are now carpeted. Common decorative elements include wainscoting, wall paper, crown molding and other wood trim. Wood doors are most common, sometimes with attractive knockers or peepholes.

Dwelling Units: Historically, most Seattle apartment buildings have had predominantly small apartments, either studio or one-bedroom units. Sometimes the layout included some two-bedroom units as well; often the resident owner or manager would have a larger unit. A typical configuration for a 1920s building is a living room, a dining area or alcove, a separate compact kitchen, a bathroom and either a bedroom or a large alcove to be used either for a bed or as a dressing room with clothes storage. Those with only an alcove/dressing room are sometimes referred to as “efficiency” apartments, and often had a Murphy bed that folded into the wall.
Larger units are more likely to be found outside of the downtown/Belltown area. Not surprisingly, buildings catering to higher income residents were more spacious and elaborate, as they were competing with single-family homes. These usually had two bedrooms, sometimes supplemented by additional rooms such as separate dining rooms, sunrooms, dens, and a sleeping room for a maid (often on the basement level). They also featured fireplaces and more elegant woodwork and tilework, as well as technical advances such central refrigeration and radios. The buildings themselves sometimes had children's playrooms, entertaining rooms, gardens or recreational facilities. In the early years, building management sometimes provided services, such as meal preparation, but these decreased as wages increased.

Advertisements reveal that even simple apartment buildings with small units often had elegant details, such as leaded glass doors, oak floors and tile baths and kitchens. Amenities such as central refrigeration, radios and telephones were also advertised, especially for larger buildings. Regardless of the size of the units, features and finishes were important selling points to attract renters.

Windows: Windows are a major character-defining feature, and are the feature that is most often altered, for maintenance and energy efficiency reasons. Fenestration patterns typically reflect the interior arrangement of living areas, kitchens, stairwells and public spaces. Older Seattle apartment houses typically have one-over-one wood sash, sometimes in a three-part arrangement flanking a fixed picture window. Six- or eight-over-one configurations are also often found, sometimes with leaded muntins. Tudor, French or Mediterranean-inspired designs often have casement windows, and sometimes accent windows with diamond-paned or bottle glass. Beginning in the late 1920s, the small number of buildings
(mostly Modernistic in style) had steel sash, often casements. By the 1950s, larger windows (including picture windows), often in aluminum frames, became common. In recent years, wood sash have often been replaced with aluminum or vinyl sash (sometimes with false muntins) that varies greatly in the degree of compatibility with the original design.

Garages: By the early 1920s many apartment buildings incorporated garages for tenants’ automobiles, in spite of the fact that virtually all such buildings were close to streetcar lines. The presence of garages depended on the size and luxury of the intended market and on the building’s location. Garages are seldom found in downtown buildings of this era, but even in the high density areas of Capitol Hill and First Hill, garages were common. At first they were in separate structures at the rear or, by the mid-1920s, typically incorporated into the basement. Although no systematic study has been made of the number of garage spaces, the typical building fell far short one space per unit. After World War II, garages became a larger and more prominent, even before code changes required parking. Garage doors or open car ports beneath the building are often a primary feature.

Landscaping: The typical apartment block has only foundation plantings, if that, and the landscape is of minor importance. However, in most courtyard apartments (including U-shaped apartment blocks) the landscape was originally a major feature that was carefully designed and maintained. Developer Frederick Anhalt placed great emphasis on landscaped courtyards as a refuge, a pleasant view from the interiors, and a separation between the public street and individual units. Other quality developers of the era followed his example. The degree to which these landscapes have been maintained varies. The best
examples include features such as ponds or fountains, specimen trees and a variety of shrubs, flowers and groundcovers.

SIGNIFICANCE

The purpose-built apartment building is significant to the history of Seattle both for the expanded residential choices it brought to Seattleites and for its impact on the urban fabric and form of the city. The availability of apartment dwellings in the early 20th century made it possible for people of many income levels to move to the city and live comfortably and independently from their families. They provided an affordable and socially-acceptable housing alternative for teachers, store clerks, office workers and others who either could not afford to purchase a house, or were not ready to do so. More elegant buildings provided extensive amenities to wealthier people who preferred not to maintain a household, primarily single men, widows or childless couples.

The buildings themselves changed urban form significantly. They initially developed in proximity to streetcar lines, and the increased density, in turn, made the continuation of public transportation viable. Apartment buildings of this era also make significant aesthetic contributions to the streetscape, with landscaping and ornamentation that can be enjoyed by everyone.

Apartment buildings are significant primarily in the area of ARCHITECTURE. However, specific buildings may also be significant under other areas. For example, a building with elaborate and intact gardens could also be significant in LANDSCAPE ARCHITECTURE. An apartment complex that transformed a neighborhood and engendered further development could be significant under
COMMUNITY PLANNING AND DEVELOPMENT. Other buildings could potentially be important for their association with the history of a specific ethnic group (ETHNIC HERITAGE) or social movement or event (SOCIAL HISTORY).

Apartment buildings would typically be listed under National Register Criterion C: *Buildings that embody the distinctive characteristics of an architectural type, period or method of construction, or representing the work of a master or possessing high artistic value.* This criterion would be used most often, as many apartment buildings are good examples of their type or are the work of a master architect or builder. Outstanding detailing or use of terra cotta and other materials are often seen as well.

However, other National Register criteria could potentially apply to specific buildings. For example, a building significantly associated with an important event such as the Alaska-Yukon-Pacific Exposition could be eligible under Criterion A. A building associated with an important individual who was significant to our history could be eligible under Criterion B. This criterion would be used infrequently for apartment buildings, because apartments are typically transitory residences, and this criterion relies on a lengthy connection. However, a building may have been, for example, the home and workplace of an important person at the time that he or she created a significant work of art or literature.
REGISTRATION REQUIREMENTS

Applicable to all Building Types

To be eligible for listing in the National Register, the criteria described below must be sufficiently expressed to support the building’s specific contribution to the historic context. In addition, the building must have sufficient integrity that it retains its architectural character. Aspects of integrity to be considered include location, design, setting, workmanship, materials, association, and feeling. However, not all of these aspects are necessary. For example, a building in a transitional area where the setting is no longer residential would not necessarily lose its integrity.

Integrity of design and of materials is the most important consideration in apartment buildings. This typically means that a building retains its original character, including its architectural composition and plan, its original materials and the architectural detail on the primary elevation. Each building must be evaluated individually to insure that its specific contribution to the historic context is sufficiently intact to merit listing in the National Register. In doing this, consideration would be given to the defining characteristics of the building.

Easily reversible alterations, such as the addition of an awning at the entry or replacement of doors or windows are common and do not necessarily diminish a building’s contribution to the historic context. However, such alterations should be evaluated in terms of the extent to which the building’s original design and character are affected. For example, on a large building with extensive terra cotta ornamentation, a modern front entry or newer one-over-one vinyl window sash may have little effect on
the building's character and style. In contrast, steel sash in a Modernist building would be an important defining characteristic and its in appropriate replacement may significantly affect the building's style and character. Integrity of interior characteristics is also a consideration. An eligible building would have its original interior configuration of primary public spaces (such as lobbies and corridors) with few changes. Although changes within in units may occur, the original appearance of corridors and lobbies should be largely original, with original or compatible materials.

The following requirements must be met by any building qualifying under this MPD:

- Constructed between 1900 and 1957;
- Located within the city of Seattle corporate limits as of October 1, 2008 (as described in Section G below);
- Has at least five self-sufficient dwelling units, each with private kitchen and bath facilities.

Apartment Block

The apartment block is by far the most common apartment form in Seattle. They are divided into three subtypes, based primarily on height:

- **Low-Rise**

 Two-to-four story "walk-up" buildings are the most common apartment buildings in the city, found in high densities in the First Hill, Capitol Hill and University neighborhoods and primarily along arterials in other pre-World War II neighborhoods.
- **Mid-Rise**

 Five-to-seven story mid-rise apartments are concentrated in denser areas such as First Hill, Capitol Hill and the University District.

- **High-Rise**

 Buildings with eight or more stories are typically found close to downtown in First Hill and Capitol Hill, as well as the University District. Zoning changes in 1957 encouraged such development in Queen Anne and Madison Park as well.

Apartment blocks are typically rectangular in plan, but light wells on the rear or side often give a building an E- or H-shaped plan that is not apparent from the front. Other examples are triangular or L-shaped to accommodate specific site conditions. U-shaped blocks with landscaped courtyards are a common variation. The courtyard may be as narrow as a light well or as large as a city block.

Apartment blocks usually have one primary building entry, although larger buildings sometimes have a separate entry to each wing. Entries to individual units are off of interior hallways. The main entry is typically the most ornate part of the building, often with an elaborate surround of terra cotta or cast stone. Stairs and vestibules of marble, tile or terrazzo and wood doors with leaded or art glass are often seen. The lobby may only be large enough for the mailboxes and stair landing, or may be a large multi-roomed space with lounge areas and other amenities. Rich materials such as marble, terrazzo and plasterwork are often used, even in modest buildings.
SUB-TYPES

1. LOW-RISE APARTMENT BLOCK

Description
The Low-Rise Apartment Block was designed and built specifically as a multi-family residence. The typical example:

- Has at least five self-sufficient dwelling units, each with private kitchen and bath facilities;
- Is one to four stories in height;
- May or may not have an elevator;
- Has a single main public entry;
- Has a typical floor plan with corridors leading to most of the individual units;

In order to be listed under this property type, a building must meet the requirements of geography and construction date. The building’s integrity and the degree to which it expresses its style and design, especially materials and ornamentation, are the critical factors.

Characteristics found in the best examples include:

- Retention of the building’s plan and original materials, including window sash;
- Ornamentation appropriate to its period and overall character and style, typically including terra cotta or cast stone ornamentation;
- A distinctive primary entry and lobby with a high degree of integrity.
Significance
This sub-type is the most numerous and is found in all neighborhoods of the city. Accordingly, it has had the greatest significance both in terms of providing affordable housing and in its effect on the streetscape and neighborhood character.

Registration requirements
To be eligible for listing in the National Register, the characteristics and qualities described above must be sufficiently expressed to support the building’s specific contribution to the historic context. In addition to the requirements listed above as applicable to all building types, the registration requirements are:

- Retention of the building’s plan (a small shed or similar addition on the rear would be allowable);
- Retention of original materials on the primary façade, and substantial retention of original materials on minor facades;
- Substantially intact ornamentation;
- A substantially intact primary entry and lobby (a modern entry door would be allowable if the remainder of the entry is intact); and,
- Window sash, whether original or replacements, that are compatible with the building’s character and style.

2. MID-RISE APARTMENT BLOCK

Description
The Mid-Rise Apartment Block was designed and built specifically as a multi-family residence. The typical example:

- Is five to seven stories in height;
- Has one or more elevators;
• Has a single main public entry door and an elevator lobby; and,
• Has a typical floor plan with corridors leading to most of the individual units.

Significance
This sub-type is less common than the low-rise apartment block and is concentrated in a few neighborhoods. Because of its larger size, it has had a significant effect on the character of these neighborhoods, and has been a major contributor to the city’s housing supply.

Registration Requirements
To be eligible for listing in the National Register, the characteristics and qualities described above must be sufficiently expressed to support the building’s specific contribution to the historic context. In addition to the requirements listed above as applicable to all building types, the registration requirements are:

• Retention of the building’s plan (a small shed or similar addition on the rear would be allowable);
• Retention of original materials on all visible facades;
• Substantially intact ornamentation;
• A substantially intact primary entry and lobby (a modern entry door would be allowable if the remainder of the entry is intact); and,
• Window sash, whether original or replacements, that are compatible with the building’s character and style.

3. HIGH-RISE APARTMENT BLOCK

Description
The High-Rise Apartment Block was designed and built specifically as a multi-family residence. The typical example:
National Register of Historic Places

Seattle Apartment Buildings, 1900-1957
King County, Washington

Section number F Page 16 of 19

- Has at least eight self-sufficient dwelling units, each with private kitchen and bath facilities;
- Is more than eight stories in height;
- Has one or more elevators and an elevator lobby;
- Has a single main public entry door and lobby; and,
- Has a typical floor plan with corridors leading to most of the individual units.

Significance
This sub-type is the least common of the apartment blocks and is concentrated primarily in the First Hill and Capitol Hill neighborhoods and the University District. Because of their size, these buildings are a very important component of neighborhood character and comprise a significant portion of the housing stock. They are more likely to feature luxury units and a wider range of amenities than are the smaller buildings.

Registration Requirements
These buildings are generally highly intact, and minor changes such as newer window sash do not affect their overall character significantly. To be eligible for listing in the National Register, the characteristics and qualities described above must be sufficiently expressed to support the building’s specific contribution to the historic context. In addition to the requirements listed above as applicable to all building types, the registration requirements are:
- Retention of the building’s plan (a small shed or similar addition on the rear or a small roof addition would be allowable);
- Retention of original materials on all visible facades;
- Substantially intact ornamentation;
A substantially intact primary entry and lobby (a modern entry door would be allowable if the remainder of the entry is intact); and,
• Window sash, whether original or replacements, that are compatible with the building's character and style.

IV. COURTYARD/TOWNHOUSE APARTMENTS

Courtyard/townhouse apartments are Seattle's second most common apartment building form. They consist of one or more buildings arranged around a useable courtyard. The key feature differentiating these from the U-shaped apartment block is the presence of an individual entry to each dwelling unit (or small vestibules each accessing 2-4 units); most units are not accessed through interior corridors. Each entrance is marked in some way, usually with a stoop and hood, which emphasizes the individuality of the units.

Courtyard apartment buildings are typically U-shaped in plan with the courtyard in front. However, they may have other configurations (such as L-, E- or H-shape, or irregular), and the courtyard may be in the rear or to the side. The most common configuration has only one building. However, common variations include two or three buildings arranged around a courtyard, linear buildings (the double bar form) with a courtyard in between, or individual cottages around a courtyard. Townhouse units may also have a linear arrangement, without an enclosed courtyard. If there is a garage, it may be separate or integrated into the building(s). A minor commercial use is sometimes found, such as the conversion of one unit to an office.
In Seattle, examples are commonly found in the Craftsman style and in the Tudor, French and Mediterranean Revival styles. They may be clad with brick, stucco, wood siding or wood shingles, as appropriate. Decorative features appropriate to each style are generally found, including balconies, turrets, art glass, tile or decorative brickwork.

Description
The Courtyard/Townhouse Apartment Building was designed and built specifically as a multi-family dwelling. Characteristics found in the best examples include:

- At least five self-sufficient dwelling units, each with private kitchen and bath facilities;
- One to three stories in height; and
- A distinct individual entrance for each unit or for small groups of units.
- Detailing appropriate to its period and overall character and style;
- Distinctive landscaping in the courtyard; and,
- Original window sash, although appropriate replacements are allowable if the building’s overall character is not significantly altered.

Since this type includes townhouse, it is not necessary that there actually be a courtyard. Some examples have a linear plan without an enclosed courtyard.

Significance
This is the most distinctive apartment sub-type. The largest number is found in Capitol Hill, but good examples are also seen in Eastlake, Queen Anne, and the University District, with a scattering of examples in the other older neighborhoods. The typical small scale allows these buildings to be compatible with
either residential or small commercial neighborhood contexts, while adding variety to the streetscape. Their style, detailing and landscaping are significant aesthetic features of many neighborhoods. These buildings are also significant for their history of providing features similar to a single-family home, with individual front and rear entrances, at a more affordable price. The best examples of courtyard apartments are among the largest, most luxurious and highly-detailed apartment units in the city.

Registration Requirements
To be eligible for listing in the National Register, the characteristics and qualities described above must be sufficiently expressed to support the building’s specific contribution to the historic context. In addition to the requirements listed above as applicable to all building types, the registration requirements are:

- Retention of the overall plan of the complex (a small shed or similar addition at the rear would be allowable);
- Retention of original materials on primary facades;
- Substantially intact ornamentation; and,
- Window sash, whether original or replacements, that are compatible with the building’s character and style.
G. GEOGRAPHICAL DATA

The Multiple Property group included in this listing is limited to apartment buildings located within the legal limits of the City of Seattle, King County, Washington, as of January 1, 2007. This area is bounded by 145th Street on the north, Puget Sound and Elliott Bay on the west, Lake Washington on the east and a southern boundary generally defined as Seola Beach Drive SW/30th Avenue SW, SW Roxbury Street, S. Barton Street, S. Juniper Street, 59th Avenue S. and S. 112th Street.

H. SUMMARY OF IDENTIFICATION METHODS

This context statement is based on a combination of field data, archival data and literature review. In 2005-2006 four Seattle neighborhoods with the richest apartment heritage were comprehensively surveyed: Capitol Hill (including Pike/Pine), First Hill, Eastlake, and portions of the Central Area and Phinney Ridge communities. This information was combined with that from inventories of the University District, Queen Anne, Cascade, Wallingford and North Beacon Hill/Rainier Valley neighborhoods, all conducted between 2000 and 2005.

Archival resources used to identify apartment buildings included historical address directories and maps, supplemented by historic real estate materials and newspaper and magazine articles. King County Tax Assessor records from 1937 provided photos of both existing and demolished buildings. City of Seattle building permit files, which often include original architectural plans, were used to identify architects, owners and building details.
I. MAJOR BIBLIOGRAPHICAL REFERENCES

____________. *History of King County,* Vol. II. Seattle: Pioneer Publishing Company, 1924.

BOLA Architecture + Planning:

Gardner J. Gwinn, Inc. The Real Estate Investment of Today, c. 1929.

King County Assessor Property Tax Records

National Register of Historic Places. Multiple Property Documentation Forms for apartment buildings in Spokane, East Portland (OR), Pasadena (CA), Downtown Indianapolis, Birmingham (AL) and Washington, D.C.

Seattle Department of Neighborhoods Historic Preservation Program. Landmark Nomination forms for Harvard/Belmont Landmark District, International Special Review District, Pike Place Market Historic District, Pioneer Square Preservation District and individual apartment buildings: Reid Court, the Waldorf Hotel, Victorian Row, Maryland, Hillcrest, New Pacific, Jensen, Guiry, Barnes, Leamington/Pacific, Chelsea, Delamar, El Rio, Wintonia, San Remo, 1005 and 1014 East Roy Street.

Seattle Department of Planning and Development: Microfilm Permit and Drawing Files.

University of Washington Manuscripts, Archives and Special Collections, Digital Photo Collections: http://content.lib.washington.edu/

Washington Department of Licensing. Architecture License file, Blaine McCool.

Articles:

"The Manhattan Flats,” Seattle Mail & Herald, 12/30/1905

Seattle Post-Intelligencer, January 3, 10, 17, 1926
APPENDIX

A SAMPLE OF SEATTLE APARTMENT HOUSES, 1900-1957

This is a partial list that gives an indication of the apartment buildings that could be considered under this MPD. Inclusion on the list does not indicate whether the building is or is not eligible for either National Register listing or local landmark designation. Buildings that are currently listed in the National Register or are located in historic districts are excluded.

<table>
<thead>
<tr>
<th>CURRENT NAME (Historic Name)</th>
<th>ADDRESS</th>
<th>DATE</th>
<th>ARCHITECT (Owner/Developer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 8th Avenue (Netleton)</td>
<td>1000 8th Ave.</td>
<td>1949</td>
<td>Earl Morrison (Netleton, Baldwin & Anderson)</td>
</tr>
<tr>
<td>1005 E. Roy</td>
<td>1005 E. Roy St.</td>
<td>1930</td>
<td>Edwin Dofsen (Anhalt Co.)</td>
</tr>
<tr>
<td>1014 E. Roy</td>
<td>1014 E. Roy St.</td>
<td>1930</td>
<td>Edwin Dofsen (Anhalt Co.)</td>
</tr>
<tr>
<td>1201 John</td>
<td>1201 E. John St.</td>
<td>1929</td>
<td>Edwin Dofsen (Borchert Co.)</td>
</tr>
<tr>
<td>1320 Queen Anne Ave.</td>
<td>1320 Queen Anne Ave. N.</td>
<td>1927</td>
<td>(Western Bldg & Leasing)</td>
</tr>
<tr>
<td>2345 Franklin Ave. E.</td>
<td>2345 Franklin Ave. E.</td>
<td>1925</td>
<td>Everett J. Beardsley</td>
</tr>
<tr>
<td>405 Prospect (Prospect Terrace)</td>
<td>405 Prospect St.</td>
<td>1929</td>
<td>N. Torbit (A.P. Merrill)</td>
</tr>
<tr>
<td>417 Harvard East</td>
<td>417 Harvard Ave. E.</td>
<td>1929</td>
<td>Edwin Dofsen (Borchert Co.)</td>
</tr>
<tr>
<td>5th Avenue Court</td>
<td>2132 5th Ave.</td>
<td>1922</td>
<td>Lawton & Moldenhour (W. Carroll)</td>
</tr>
<tr>
<td>Adams</td>
<td>304-308 Bell St.</td>
<td>1915</td>
<td>Victor Voorhees (E.V. Adams)</td>
</tr>
<tr>
<td>Admiral</td>
<td>2203 California Ave. SW</td>
<td>1927</td>
<td>Harry H. James</td>
</tr>
<tr>
<td>Aladdin</td>
<td>1906 5th Ave. N.</td>
<td>1928</td>
<td>William Whiteley (Horace Leonard)</td>
</tr>
<tr>
<td>Alexander Hamilton</td>
<td>1127 Olympic Way W.</td>
<td>1929</td>
<td>William Whiteley (Vitor Sandberg)</td>
</tr>
<tr>
<td>Aloha (Stoddard Terrace)</td>
<td>902 E. Aloha St.</td>
<td>1944</td>
<td>G. W. Stoddard</td>
</tr>
<tr>
<td>Aloha Terrace</td>
<td>212 Aloha St.</td>
<td>1947</td>
<td>Stuart & Durham</td>
</tr>
<tr>
<td>Alta Casa</td>
<td>1645 10th Ave. E.</td>
<td>1923</td>
<td>Frank Fowler (J. C. Buie)</td>
</tr>
<tr>
<td>Ambassador</td>
<td>505 E. Denny Way</td>
<td>1923</td>
<td>Earl Roberts</td>
</tr>
<tr>
<td>Amherst</td>
<td>1902 5th Ave. N.</td>
<td>1928</td>
<td>William Whiteley (Horace Leonard)</td>
</tr>
<tr>
<td>Anhalt Arms (Berkeley Court)</td>
<td>1405 E. John St.</td>
<td>1928</td>
<td>Edwin Dofsen (Western Bldg & Leasing)</td>
</tr>
<tr>
<td>Arcadia</td>
<td>1222 Summit Ave.</td>
<td>1916</td>
<td>Iatham Johnson</td>
</tr>
<tr>
<td>Arkona (Pauleze)</td>
<td>107 1st Ave. N.</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>Astor Court</td>
<td>1450 E. Republican St.</td>
<td>1926</td>
<td>(Gardner Gwinn)</td>
</tr>
<tr>
<td>Auditorium</td>
<td>605 5th Ave. N.</td>
<td>1926</td>
<td></td>
</tr>
<tr>
<td>Avalon Cooperative</td>
<td>22 John St.</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>Bamberg</td>
<td>416 E. Roy St.</td>
<td>1910</td>
<td>John Corrigan (C. Bamberg)</td>
</tr>
<tr>
<td>Barbara Priestie</td>
<td>1102 17th Ave.</td>
<td>1929</td>
<td>Samuel Anderson</td>
</tr>
<tr>
<td>Barcelona Court</td>
<td>2205 Bigelow Ave. N.</td>
<td>1928</td>
<td>William Whiteley (Western Bldg & Leasing)</td>
</tr>
<tr>
<td>Baroness</td>
<td>1005 Spring St.</td>
<td>1931</td>
<td>Schack & Young</td>
</tr>
<tr>
<td>Bel Roy</td>
<td>703 Bellevue Ave. E.</td>
<td>1931</td>
<td>Bain & Pries</td>
</tr>
<tr>
<td>Ben Lomond</td>
<td>1027 Bellevue Ct. E.</td>
<td>1910</td>
<td>Elmer E. Green</td>
</tr>
<tr>
<td>Bering</td>
<td>233 14th Ave. E.</td>
<td>1930</td>
<td>Max Van House (Ideal Investment Co.)</td>
</tr>
<tr>
<td>Betsy Ross</td>
<td>1120 17th Ave.</td>
<td>1928</td>
<td>Samuel Anderson</td>
</tr>
<tr>
<td>Beverly Rae</td>
<td>303 Harvard Ave. N.</td>
<td>1949</td>
<td>Stuart & Durham (Beverly Rae Corp.)</td>
</tr>
<tr>
<td>Biltmore</td>
<td>418 E. Loretta Pl.</td>
<td>1924</td>
<td>Stuart & Wheatley (Stephen Berg)</td>
</tr>
<tr>
<td>Briar Crest</td>
<td>1103 E. Republican St.</td>
<td>1928</td>
<td>William Whiteley</td>
</tr>
<tr>
<td>Broadway Court</td>
<td>425-432 10th Ave. E.</td>
<td>1925</td>
<td></td>
</tr>
<tr>
<td>Buckley</td>
<td>201 17th Ave. E.</td>
<td>1928</td>
<td>Edward L. Merritt</td>
</tr>
<tr>
<td>Cambridge</td>
<td>903 Union St.</td>
<td>1922</td>
<td>Sherwood Ford (Real Estate Improvements)</td>
</tr>
<tr>
<td>(Cambridge Apt. Hotel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camellia Manor</td>
<td>322-334 Summit Ave. E.</td>
<td>1952</td>
<td>William Whiteley</td>
</tr>
<tr>
<td>CURRENT NAME (Historic Name)</td>
<td>ADDRESS</td>
<td>DATE</td>
<td>ARCHITECT (Owner/Developer)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Camelot</td>
<td>515 N. 50th St.</td>
<td>1928</td>
<td>Earl Morrison (Andrew Smith)</td>
</tr>
<tr>
<td>Campus</td>
<td>4210 Brooklyn NE</td>
<td>1923</td>
<td>John Creutzer</td>
</tr>
<tr>
<td>Canterbury Court</td>
<td>4225 Brooklyn Ave. NE</td>
<td>1929</td>
<td>Henry H. Hodgson</td>
</tr>
<tr>
<td>Carmona</td>
<td>1121 17th Ave.</td>
<td>1929</td>
<td>Samuel Anderson</td>
</tr>
<tr>
<td>Carol</td>
<td>1119 NE 43rd St.</td>
<td>1929</td>
<td>Eric C. Rising</td>
</tr>
<tr>
<td>Carolina Court</td>
<td>521 Eastlake Ave. E.</td>
<td>1916</td>
<td>John Creutzer (Claude Ramsay)</td>
</tr>
<tr>
<td>Carroll</td>
<td>305 Bellevue Ave. E.</td>
<td>1913</td>
<td>A. W. Gould (T. A. Loake)</td>
</tr>
<tr>
<td>Cassel Crag</td>
<td>1218 Terry Ave.</td>
<td>1925</td>
<td>H. G. Hammond (A. W. Cassels)</td>
</tr>
<tr>
<td>Castle</td>
<td>2432 2nd Ave.</td>
<td>1918</td>
<td>Lawton & Moldenhour (E. E. Uden)</td>
</tr>
<tr>
<td>Castlewood</td>
<td>2717 Franklin Ave. E.</td>
<td>1929</td>
<td>Paul Thiry (Wood & Milner)</td>
</tr>
<tr>
<td>Catalina</td>
<td>509 Bellevue Ave. E.</td>
<td>1930</td>
<td>William Whiteley (H. B. Pettijohn)</td>
</tr>
<tr>
<td>Chandler Hall (Westport)</td>
<td>119 W. Roy St.</td>
<td>1924</td>
<td></td>
</tr>
<tr>
<td>Charburn</td>
<td>1705 Belmont Ave.</td>
<td>1925</td>
<td>John Creutzer (C. F. Tregoning)</td>
</tr>
<tr>
<td>Chardonnay (Bellevue)</td>
<td>203 Bellevue Ave. E.</td>
<td>1906</td>
<td>F. H. Perkins</td>
</tr>
<tr>
<td>Charlesgate</td>
<td>2230 4th Ave.</td>
<td>1922</td>
<td>E.T. Osborn (Investors Corporation)</td>
</tr>
<tr>
<td>Charmaine</td>
<td>627 4th Ave. W.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Chaseltown</td>
<td>1017 Boren Ave.</td>
<td>1928</td>
<td>(John Hudson)</td>
</tr>
<tr>
<td>Chateau Margaux (Leeds)</td>
<td>1052 E. Thomas St.</td>
<td>1909</td>
<td></td>
</tr>
<tr>
<td>Chelan</td>
<td>616 4th Ave. W.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>Commodore-Duchess</td>
<td>4009 15th Ave. NE</td>
<td>1925</td>
<td>Earl Roberts</td>
</tr>
<tr>
<td>Conrad</td>
<td>1631 Belmont Ave.</td>
<td>1928</td>
<td>Howard Riley (Conrad Johnson)</td>
</tr>
<tr>
<td>Consulate</td>
<td>1619 Belmont Ave.</td>
<td>????</td>
<td></td>
</tr>
<tr>
<td>Cornelius</td>
<td>306 Blanchard St.</td>
<td>1926</td>
<td>Frank Fowler (Carroll Cornelius)</td>
</tr>
<tr>
<td>Cornell</td>
<td>531 Malden Ave. E.</td>
<td>1928</td>
<td>Frank Fowler</td>
</tr>
<tr>
<td>Coryell Court</td>
<td>1820 E. Thomas St.</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>Creswick</td>
<td>1305 E. Republican St.</td>
<td>1928</td>
<td>(Western Bldg & Leasing)</td>
</tr>
<tr>
<td>Davenport</td>
<td>420 Vine St.</td>
<td>1925</td>
<td>Henry Bittman</td>
</tr>
<tr>
<td>David II</td>
<td>741 Federal Ave. E.</td>
<td>1927</td>
<td>(Gardner J. Gwinn)</td>
</tr>
<tr>
<td>Del Masse</td>
<td>26 W. Harrison St.</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>Del Roy</td>
<td>25 E. Roy St.</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>DeLorges</td>
<td>325 Harvard Ave. E.</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>Devonshire</td>
<td>420 Blanchard St.</td>
<td>1925</td>
<td>Henry Bittman</td>
</tr>
<tr>
<td>Donaphilita</td>
<td>1707 Taylor Ave. N.</td>
<td>1927</td>
<td>Oscar F. Nelson (Loleta Smith)</td>
</tr>
<tr>
<td>Dover (Highland/Layeta)</td>
<td>901 6th Ave.</td>
<td>1903</td>
<td>Thompson & Thompson;</td>
</tr>
<tr>
<td>Edgar Court</td>
<td>2704 Eastlake Ave. E.</td>
<td>1925</td>
<td>Blackwell & Baker</td>
</tr>
<tr>
<td>Edgewater</td>
<td>2411 42nd Ave. E.</td>
<td>1938</td>
<td>John Graham Jr.</td>
</tr>
<tr>
<td>El Capitan (North)</td>
<td>1617 Yale Ave.</td>
<td>1925</td>
<td>Emil Guenther (Josephine North)</td>
</tr>
<tr>
<td>El Cerrito</td>
<td>608 E. Lynn St.</td>
<td>1930</td>
<td>Everett J. Beardsley</td>
</tr>
<tr>
<td>El Monterey</td>
<td>4200 11th Ave. NE</td>
<td>1928</td>
<td>Everett J. Beardsley</td>
</tr>
<tr>
<td>Elektra (Town House)</td>
<td>1400 Hubbell Pl.</td>
<td>1957</td>
<td></td>
</tr>
<tr>
<td>Ellenhiert</td>
<td>915 E. Harrison St.</td>
<td>1928</td>
<td>Max Van House</td>
</tr>
<tr>
<td>Embassy</td>
<td>1420 Boren Ave.</td>
<td>1925</td>
<td>William Bain, Sr.</td>
</tr>
<tr>
<td>Emerald Arms (Dunlap)</td>
<td>1741 Belmont Ave.</td>
<td>1926</td>
<td>(Mrs. A. C. Dunlap)</td>
</tr>
<tr>
<td>Envoy</td>
<td>821 9th Ave.</td>
<td>1929</td>
<td>William Bain, Sr.</td>
</tr>
<tr>
<td>Exeter House</td>
<td>720 Seneca St.</td>
<td>1927</td>
<td>Stuart & Wheatley</td>
</tr>
<tr>
<td>Fairmont</td>
<td>941 11th Ave. E.</td>
<td>1920</td>
<td>J. G. Scott (Charles Young)</td>
</tr>
<tr>
<td>Faneuil Hall</td>
<td>1562 E. Olive Way</td>
<td>1928</td>
<td>Harry Hudson (John Hudson)</td>
</tr>
<tr>
<td>Fionia</td>
<td>109 John St.</td>
<td>1922</td>
<td></td>
</tr>
<tr>
<td>Fleming</td>
<td>2312 14th Ave.</td>
<td>1916</td>
<td>Warren Milner (Meade & Forrestal)</td>
</tr>
<tr>
<td>Fleur de Lis</td>
<td>1114 17th Ave.</td>
<td>1928</td>
<td>Samuel Anderson</td>
</tr>
<tr>
<td>Four Hundred Blaine</td>
<td>400 Blaine St.</td>
<td>1909</td>
<td>Unknown</td>
</tr>
<tr>
<td>Franea Villa</td>
<td>1108 9th Ave. W.</td>
<td>1930</td>
<td>William Whiteley (Sandberg/Anhalt Co.)</td>
</tr>
<tr>
<td>Franconia</td>
<td>401 W. Mercer St.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>CURRENT NAME (Historic Name)</td>
<td>ADDRESS</td>
<td>DATE</td>
<td>ARCHITECT (Owner/Developer)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Franklin</td>
<td>2302 4th Ave.</td>
<td>1918</td>
<td>George W. Lawton (F. M. Jordan)</td>
</tr>
<tr>
<td>Frederick</td>
<td>4737 Brooklyn Ave. NE</td>
<td>1924</td>
<td>Charles White (Mrs. E. M. Wood)</td>
</tr>
<tr>
<td>Gainsborough</td>
<td>1017 Minor Ave.</td>
<td>1930</td>
<td>Earl Morrison</td>
</tr>
<tr>
<td>Garden Court</td>
<td>1631 16th Ave.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Gaylord</td>
<td>331 Bellevue Ave. E.</td>
<td>1923</td>
<td>Gardner Gwinn</td>
</tr>
<tr>
<td>Gellesley</td>
<td>4207 Brooklyn Ave. NE</td>
<td>1925</td>
<td>H. W. Rogers (G & D Investment Co.)</td>
</tr>
<tr>
<td>Glen Arms</td>
<td>512 Boylston Ave. E.</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>Glen Eden</td>
<td>921 1st Ave. W.</td>
<td>1929</td>
<td>Gardner Gwinn</td>
</tr>
<tr>
<td>Glencoe</td>
<td>1511 Boylston Ave.</td>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>Granada</td>
<td>1736 Belmont Ave.</td>
<td>1923</td>
<td>John Creutzer (L. C. Troughton)</td>
</tr>
<tr>
<td>Grandview</td>
<td>409 Eastlake Ave. E.</td>
<td>1907</td>
<td>Henderson Ryan (K. Kalseth & Co.)</td>
</tr>
<tr>
<td>Greenwich</td>
<td>1305 Queen Anne Ave. N.</td>
<td>1928</td>
<td>Gardner Gwinn</td>
</tr>
<tr>
<td>Haines</td>
<td>1415 E. Olive Way</td>
<td>1905</td>
<td></td>
</tr>
<tr>
<td>Hallmark</td>
<td>705 2nd Ave. W.</td>
<td>1946</td>
<td></td>
</tr>
<tr>
<td>Hamrick</td>
<td>702 2nd Ave. W.</td>
<td>1947</td>
<td></td>
</tr>
<tr>
<td>Harrison</td>
<td>800-810 E. Harrison St.</td>
<td>1911</td>
<td>F. H. Perkins (United Cities Trust Co.)</td>
</tr>
<tr>
<td>Harvard Crest</td>
<td>135 Harvard Ave. E.</td>
<td>1927</td>
<td>William Aitken (Emil Pohl)</td>
</tr>
<tr>
<td>Hawthorne Square</td>
<td>4800 Fremont Ave. N.</td>
<td>1924</td>
<td>Lawton & Meldenhour (Goodwin Real Estate Co.)</td>
</tr>
<tr>
<td>Heather Court</td>
<td>114 12th Ave. E.</td>
<td>1953</td>
<td>William Whiteley (S & S Investors)</td>
</tr>
<tr>
<td>Heights Court</td>
<td>768 Bellevue Ave. E.</td>
<td>1909</td>
<td>Lewis Palmer (H.A. Conn)</td>
</tr>
<tr>
<td>Helen V (Algonquin)</td>
<td>1319 E. Union St.</td>
<td>1907</td>
<td>Graham & Myers</td>
</tr>
<tr>
<td>Highland</td>
<td>925-931 11th Ave. E.</td>
<td>1924</td>
<td>Stuart & Wheatley (W. C. Malaney)</td>
</tr>
<tr>
<td>Highland Arms</td>
<td>1206 Queen Anne Ave. N.</td>
<td>1948</td>
<td></td>
</tr>
<tr>
<td>Highland Crest</td>
<td>1205 Queen Ann Ave. N.</td>
<td>1948</td>
<td></td>
</tr>
<tr>
<td>Hudson Arms</td>
<td>1111 Boren Ave.</td>
<td>1923</td>
<td>D. W. Dwyer (John Hudson)</td>
</tr>
<tr>
<td>Inn at Queen Anne</td>
<td>505 1st Ave. N.</td>
<td>1930</td>
<td>George Rasque (British-American Realty)</td>
</tr>
<tr>
<td>(Wedgewood Inn/Grex)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>100 W. Olympic Pl.</td>
<td>1927</td>
<td></td>
</tr>
<tr>
<td>Iris</td>
<td>415 W. Roy St.</td>
<td>1931</td>
<td></td>
</tr>
<tr>
<td>Jefferson Park</td>
<td>1756 S. Spokane St.</td>
<td>1925</td>
<td>J. M. Bard (West Coast Construction Co.)</td>
</tr>
<tr>
<td>John Alden</td>
<td>1019 Terry Ave.</td>
<td>1924</td>
<td>Harry Hudson (John Hudson)</td>
</tr>
<tr>
<td>John Wallace</td>
<td>417 E. Union St.</td>
<td>1930</td>
<td>Earl Morrison</td>
</tr>
<tr>
<td>John Winthrop</td>
<td>1020 Seneca St.</td>
<td>1925</td>
<td>Harry Hudson (John Hudson)</td>
</tr>
<tr>
<td>Kenneth</td>
<td>307 Queen Anne Ave. N.</td>
<td>1925</td>
<td></td>
</tr>
<tr>
<td>Kingsbury</td>
<td>1914 Bigelow Ave. N.</td>
<td>1928</td>
<td>Albert Geiser (H. A. Bakkenhus)</td>
</tr>
<tr>
<td>Kinney</td>
<td>905 Olympic Way</td>
<td>1908</td>
<td>W. P. White (Foutz & Williams)</td>
</tr>
<tr>
<td>L'Amourita</td>
<td>2901 Franklin Ave. E.</td>
<td>1909</td>
<td>(Adolph & Edith Jarmuth)</td>
</tr>
<tr>
<td>La Charme</td>
<td>637 3rd Ave. W.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>La Crosse</td>
<td>302 Malden Ave. E.</td>
<td>1907</td>
<td>Frank H. Perkins (W. & G. Bergman)</td>
</tr>
<tr>
<td>La Flor</td>
<td>323 16th Ave. E.</td>
<td>1929</td>
<td>Samuel Anderson</td>
</tr>
<tr>
<td>La Quinta</td>
<td>1710 E. Denny</td>
<td>1927</td>
<td>William Whiteley (Western Bldg & Leasing)</td>
</tr>
<tr>
<td>Lake Court Apts. (Lakecrest/Shoremont)</td>
<td>2020 43rd Ave. E.</td>
<td>William Bain; Bain & Pries, Taylor & Thiry; Frederick Anhalt (Harold Heathman)</td>
<td></td>
</tr>
<tr>
<td>Lake View (C & K Apartments)</td>
<td>1555 Lakeview Blvd. E.</td>
<td>1949</td>
<td>Chiarelli & Kirk</td>
</tr>
<tr>
<td>Latai</td>
<td>3240 Fuhrman Ave. E.</td>
<td>1955</td>
<td>Ted LaCourt (Orville Cohen)</td>
</tr>
<tr>
<td>Laurabell</td>
<td>1112 N. Broadway</td>
<td>1922</td>
<td></td>
</tr>
<tr>
<td>Laurel Crest</td>
<td>Terrace Dr. NE</td>
<td>1950</td>
<td>Stuart & Durham</td>
</tr>
<tr>
<td>Laurelton</td>
<td>1820 16th Ave.</td>
<td>1927</td>
<td>Baker, Vogel & Roush (Denny Way Holding Co.)</td>
</tr>
<tr>
<td>Lauren Renee (El Dorale)</td>
<td>312 E. Olive Pl.</td>
<td>1914</td>
<td>John Creutzer (August Johnson)</td>
</tr>
<tr>
<td>Lenawee</td>
<td>1629 Harvard Ave.</td>
<td>1918</td>
<td>John Creutzer (Bradner Co.)</td>
</tr>
<tr>
<td>CURRENT NAME (Historic Name)</td>
<td>ADDRESS</td>
<td>DATE</td>
<td>ARCHITECT (Owner/Developer)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Leonard</td>
<td>715 1st Ave. W.</td>
<td>1930</td>
<td>Horace Leonard</td>
</tr>
<tr>
<td>Levere</td>
<td>4105 Brooklyn Ave. NE</td>
<td>1927</td>
<td></td>
</tr>
<tr>
<td>Lexington-Concord</td>
<td>2402 2nd Ave.</td>
<td>1923</td>
<td>Harry Hudson (John Lorentz)</td>
</tr>
<tr>
<td>Lincoln Court</td>
<td>1020 E. Denny Way</td>
<td>1907</td>
<td>John H. Starbird</td>
</tr>
<tr>
<td>Linda Vista</td>
<td>92 E. Lynn St.</td>
<td>1930</td>
<td>William Whiteley</td>
</tr>
<tr>
<td>Lisa Carol</td>
<td>4405 Corliss Ave. N.</td>
<td>1926</td>
<td>Frank & Jean Davidson</td>
</tr>
<tr>
<td>Lock Vista (Ballard)</td>
<td>NW Market St./30-32nd Ave. NW</td>
<td>1949</td>
<td>Thomas, Grainger & Thomas</td>
</tr>
<tr>
<td>Lola</td>
<td>326 W. Mercer St.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Lomita Vista (Rosita Villa)</td>
<td>1208 10th Ave. W.</td>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td>214 Summit Ave. E.</td>
<td>1917</td>
<td></td>
</tr>
<tr>
<td>Lowell-Emerson</td>
<td>1100 9th Ave.</td>
<td>1928</td>
<td>Harry Hudson (Gibbs & Hudson)</td>
</tr>
<tr>
<td>Madison Court</td>
<td>1635 42nd E.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>Malloy</td>
<td>4337 15th NE</td>
<td>1928</td>
<td>Earl Roberts (Angus P. Malloy)</td>
</tr>
<tr>
<td>Margola</td>
<td>1109 17th Ave.</td>
<td>1928</td>
<td>Schack & Young</td>
</tr>
<tr>
<td>Marianne</td>
<td>633 4th Ave. W.</td>
<td>1929</td>
<td>Stuart & Wheatley (C. Sandland)</td>
</tr>
<tr>
<td>Marine</td>
<td>203 W. Republican St.</td>
<td>1947</td>
<td></td>
</tr>
<tr>
<td>Marlborough</td>
<td>1220 Boren Ave.</td>
<td>1926</td>
<td>Earl Morrison</td>
</tr>
<tr>
<td>Martha Anne</td>
<td>1115 17th Ave.</td>
<td>1928</td>
<td>Schack & Young (Mackintosh & Owsley)</td>
</tr>
<tr>
<td>Martha Lee</td>
<td>427 Bellevue Pl. E.</td>
<td>1930</td>
<td>William Whiteley (H. B. Pettijohn)</td>
</tr>
<tr>
<td>Maximillian</td>
<td>1414 Seneca St.</td>
<td>1918</td>
<td>Victor Voorhees</td>
</tr>
<tr>
<td>Mayfair Manor</td>
<td>1101 17th Ave.</td>
<td>1928</td>
<td>E. A. Gabryel Co.</td>
</tr>
<tr>
<td>McKean</td>
<td>1404 Olympic Way W.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Melrose</td>
<td>1520 Melrose Ave.</td>
<td>1916</td>
<td>W. W. Noyes (Sutherland McLean)</td>
</tr>
<tr>
<td>Mercedes</td>
<td>613 3rd Ave. W.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>Mission Inn</td>
<td>1743 Boylston Ave.</td>
<td>1926</td>
<td>Max Van House (Marion Investment Co.)</td>
</tr>
<tr>
<td>Montrachet</td>
<td>956 18th Ave. E.</td>
<td>1922</td>
<td></td>
</tr>
<tr>
<td>Montrose Court</td>
<td>205 W. Lee St.</td>
<td>1927</td>
<td>William Whiteley (Jerome Hardcastle)</td>
</tr>
<tr>
<td>Morris</td>
<td>1743 Summit Ave.</td>
<td>1916</td>
<td>E. J. Beardsley</td>
</tr>
<tr>
<td>Naomi</td>
<td>1733 Boylston Ave.</td>
<td>c. 1904</td>
<td>Charles Bliss (Porter & Bert Ehle)</td>
</tr>
<tr>
<td>Naomie</td>
<td>625 4th Ave. W.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>Narada</td>
<td>25 W. Highland Dr.</td>
<td>1926</td>
<td>Charles Haynes (Western Lime Co.)</td>
</tr>
<tr>
<td>New McDermott (McDermott)</td>
<td>1514 Bellevue Ave.</td>
<td>1926</td>
<td>Gerald C. Field (J. F. & R. J. McDermott)</td>
</tr>
<tr>
<td>Northgate Plaza</td>
<td>NE Northgate Way/1st-3rd Ave. NE</td>
<td>1951</td>
<td>John Graham, Jr.</td>
</tr>
<tr>
<td>Old Colony</td>
<td>615 Boren Ave.</td>
<td>1909</td>
<td></td>
</tr>
<tr>
<td>Olive Tower</td>
<td>1624 Boren Ave.</td>
<td>1928</td>
<td>Earl Morrison (Paul D. Ford)</td>
</tr>
<tr>
<td>Olympian</td>
<td>1605 E. Madison St.</td>
<td>1913</td>
<td>William P. White</td>
</tr>
<tr>
<td>Olympus</td>
<td>220 W. Olympic Pl.</td>
<td>1930</td>
<td>William Whiteley (Horace Leonard)</td>
</tr>
<tr>
<td>Oxford Crest</td>
<td>1400 Boren Ave.</td>
<td>1924</td>
<td></td>
</tr>
<tr>
<td>Park Court</td>
<td>921 11th Ave. E.</td>
<td>1922</td>
<td>G. W. Stoddard</td>
</tr>
<tr>
<td>Park Lane</td>
<td>400 Boylston Ave. E.</td>
<td>1931</td>
<td>Albert A. Geiser (Emil Pohl)</td>
</tr>
<tr>
<td>Park Vista</td>
<td>5810 Cowen Pl. NE</td>
<td>1928</td>
<td>John Greutzer</td>
</tr>
<tr>
<td>Parkhurst</td>
<td>505 14th Ave. E.</td>
<td>1928</td>
<td>(Gardner J. Gwinn)</td>
</tr>
<tr>
<td>Parkridge (Leona)</td>
<td>916 Queen Anne Ave. N.</td>
<td>1909</td>
<td>V. P. von Erlich (St. Louis-Seattle Investment Co.)</td>
</tr>
<tr>
<td>Paul Revere</td>
<td>1018 9th Ave.</td>
<td>1924</td>
<td>Harry Hudson (John Hudson)</td>
</tr>
<tr>
<td>Pittsburgh (#1)</td>
<td>125 Warren Ave. N.</td>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh (#2)</td>
<td>117-123 John St.</td>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>Portage Bay Plaza</td>
<td>3261 Fuhrman Ave. E.</td>
<td>1952</td>
<td>S. G. Morrison (Archie Iverson)</td>
</tr>
<tr>
<td>Qualman</td>
<td>1421 15th Ave.</td>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>Queen Anne</td>
<td>900 Queen Anne Ave. N.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Queen View</td>
<td>621 W. Galer St.</td>
<td>1917</td>
<td>William P. White</td>
</tr>
<tr>
<td>CURRENT NAME (Historic Name)</td>
<td>ADDRESS</td>
<td>DATE</td>
<td>ARCHITECT (Owner/Developer)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Queen Vista</td>
<td>1321 Queen Anne Ave. N.</td>
<td>1949</td>
<td>Stuart & Durham</td>
</tr>
<tr>
<td>Queen's Court</td>
<td>124 Warren Ave. N.</td>
<td>1930</td>
<td></td>
</tr>
<tr>
<td>Queensborough</td>
<td>101 W. Olympic Pl.</td>
<td>1950</td>
<td></td>
</tr>
<tr>
<td>Randolph</td>
<td>1833 13th Ave.</td>
<td>1928</td>
<td>Stuart & Wheatley</td>
</tr>
<tr>
<td>Ranice (Minerva)</td>
<td>4217 Brooklyn Ave. NE</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>Rhodes Arms</td>
<td>315-19 12th E.</td>
<td>1928</td>
<td>(John Hudson)</td>
</tr>
<tr>
<td>Ridgeview</td>
<td>315 N. 50th St.</td>
<td>1931</td>
<td>W. G. Brust</td>
</tr>
<tr>
<td>Roberta</td>
<td>1119 NE 43rd St.</td>
<td>1929</td>
<td>Eric C. Rising</td>
</tr>
<tr>
<td>Rosina Court</td>
<td>1101-1107 18th Ave.</td>
<td>1928</td>
<td>William Whiteley</td>
</tr>
<tr>
<td>Roundcliffe</td>
<td>845 Bellevue Pl. E.</td>
<td>1925</td>
<td>Stuart & Wheatley (E. J. Rounds)</td>
</tr>
<tr>
<td>Roxbury</td>
<td>1511 E. Mercer St.</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>Roy Vue</td>
<td>615 Bellevue Ave. E.</td>
<td>1924</td>
<td>Charles A. Haynes (W. G. Bergman)</td>
</tr>
<tr>
<td>Roycroft</td>
<td>317 Harvard Ave. E.</td>
<td>1906</td>
<td>Henderson Ryan (E. B. Roy)</td>
</tr>
<tr>
<td>Russell</td>
<td>909 9th Ave. E.</td>
<td>1927</td>
<td>Saunders & Lawton (Emmett Russell)</td>
</tr>
<tr>
<td>Ruth Court</td>
<td>133 18th Ave. E.</td>
<td>1927</td>
<td>(John Hudson)</td>
</tr>
<tr>
<td>San Marco</td>
<td>1205-09 Spring St.</td>
<td>1905</td>
<td>Saunders & Lawton (Bert Farrar)</td>
</tr>
<tr>
<td>San Remo</td>
<td>606 E. Thomas St.</td>
<td>1907</td>
<td>W. D. Van Siclen</td>
</tr>
<tr>
<td>Seaview</td>
<td>519 W. Roy</td>
<td>1932</td>
<td>Michael Leder (Lewis Realty/Cooper Mortgage)</td>
</tr>
<tr>
<td>Sergent</td>
<td>1908 5th Ave. N.</td>
<td>1928</td>
<td>William Whiteley (Horace Leonard)</td>
</tr>
<tr>
<td>Seville Court</td>
<td>906 1st Ave. N.</td>
<td>1927</td>
<td>William Whiteley (Western Bldg. & Leasing)</td>
</tr>
<tr>
<td>Shannon (Buckingham)</td>
<td>1220 Boylston Ave.</td>
<td>1905</td>
<td></td>
</tr>
<tr>
<td>Sheffield</td>
<td>200 17th Ave. E.</td>
<td>1929</td>
<td>David Dow (W. D. Perkins)</td>
</tr>
<tr>
<td>Sheridan (Perkins)</td>
<td>2011 5th Ave.</td>
<td>1914</td>
<td>David Dow (W. D. Perkins)</td>
</tr>
<tr>
<td>Sherwood</td>
<td>1633 Melrose Ave.</td>
<td>1916</td>
<td>George Lawton (Goodwin Real Estate Co.)</td>
</tr>
<tr>
<td>Sir Galahad</td>
<td>903 Bellevue Pl. E.</td>
<td>1926</td>
<td></td>
</tr>
<tr>
<td>Skyline House</td>
<td>600 W. Olympic Pl.</td>
<td>1956</td>
<td>Durham, Anderson, Freed (Ellsworth Lovell)</td>
</tr>
<tr>
<td>Sovereign</td>
<td>1317 Boren Ave.</td>
<td>1925</td>
<td>J. Lister Holmes</td>
</tr>
<tr>
<td>Spring</td>
<td>1223 Spring St.</td>
<td>1929</td>
<td>Earl Morrison</td>
</tr>
<tr>
<td>St. Florence</td>
<td>504 E. Denny Way</td>
<td>1914</td>
<td>Frank Fowler (Daniel O. Boyd)</td>
</tr>
<tr>
<td>St. Inghert</td>
<td>309 E. Harrison St.</td>
<td>1928</td>
<td>Ludwig Hellenthal</td>
</tr>
<tr>
<td>St. Paul</td>
<td>1206 Summit Ave.</td>
<td>1902</td>
<td>(E. C. Burke)</td>
</tr>
<tr>
<td>Stanford</td>
<td>404 E. Harrison St.</td>
<td>1927</td>
<td>Earl Morrison (Paul Ford)</td>
</tr>
<tr>
<td>Stanford (Smart)</td>
<td>1304 NE 42nd St.</td>
<td>1924</td>
<td>Earl Roberts (Mrs. J. E. Smart)</td>
</tr>
<tr>
<td>Sterling Court</td>
<td>17222 Belmont Ave.</td>
<td>1926</td>
<td>Stuart & Wheatley (H. M. Smith)</td>
</tr>
<tr>
<td>Stockbridge</td>
<td>1330 Boren Ave.</td>
<td>1925</td>
<td>Henry Bittman</td>
</tr>
<tr>
<td>Stonecliff (Tramontin)</td>
<td>2602 4th Ave.</td>
<td>1923</td>
<td>S. E. Sonnichsen (P. A. Tramontin)</td>
</tr>
<tr>
<td>Stratford (Nesika)</td>
<td>2021 4th Ave.</td>
<td>1915</td>
<td>Blackwell & Baker (Gardner & Lessey)</td>
</tr>
<tr>
<td>Strathmore</td>
<td>7 Harrison St.</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>Summit Arms</td>
<td>1512 Summit Ave.</td>
<td>1908</td>
<td></td>
</tr>
<tr>
<td>Summit Terrace</td>
<td>406 Summit Ave. E.</td>
<td>1924</td>
<td></td>
</tr>
<tr>
<td>Sunset Heights</td>
<td>455 N. 44th St.</td>
<td>1929</td>
<td>W. G. Brust (J. Knutsen)</td>
</tr>
<tr>
<td>Terrace View</td>
<td>1821 11th Ave. W.</td>
<td>1907</td>
<td></td>
</tr>
<tr>
<td>Thomas</td>
<td>510 E. Thomas St.</td>
<td>1956</td>
<td>Blaine McCool (Kay Corp.)</td>
</tr>
<tr>
<td>Thomas Park (Althea)</td>
<td>419 E. Thomas St.</td>
<td>1921</td>
<td></td>
</tr>
<tr>
<td>Thomas Park View (Thomas)</td>
<td>411 E. Thomas St.</td>
<td>1909</td>
<td></td>
</tr>
<tr>
<td>Tudor Court</td>
<td>1179 2nd Ave. N.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Tudor Manor</td>
<td>111 14th Ave. E.</td>
<td>1929</td>
<td></td>
</tr>
<tr>
<td>Tulane</td>
<td>408 Bellevue Ave. E.</td>
<td>1929</td>
<td>Huntington & Torbitt</td>
</tr>
<tr>
<td>Tuscany (Piedmont Apt. Hotel)</td>
<td>1215 Seneca St.</td>
<td>1928</td>
<td></td>
</tr>
<tr>
<td>Twin Gables</td>
<td>1536 E. Republican St.</td>
<td>1929</td>
<td>Edwin Dofsen (Borchert Co.)</td>
</tr>
</tbody>
</table>
SEATTLE APARTMENT BUILDINGS, 1900-1957 MPD
Approx. GEOGRAPHICAL AREA
Landmark Preservation Board Report on Designation: L’Amourita Apartment Building
Landmarks Preservation Board

700 Third Avenue 4th floor Seattle Washington 98104 (206) 684-0228

Landmark Nomination Form

Name L'Amourita Apartment Building Year Built 1909
(Common, present or historic)

Street and Number 2901 - 2917 Franklin Avenue East

Assessor's File No. 195970-2630

Legal Description Plat Name Denny Fuhrman Addition Block 34 Lot 11, 12 & 13
see attached

Present Owner L'Amourita Coop Association, Inc. Present Use Cooperative Apt. Building

Address 2905A Franklin Avenue East, Seattle, WA 98102

Architect NA Builder NA

Administered by The Office of Urban Conservation The Seattle Department of Neighborhoods
Description: Present and original (if known) physical appearance and characteristics

see attached
Statement of significance

see attached
Photographs:

see attached
L'Amourita Apartment Building
2901 - 2917 Franklin Avenue North
Landmark Nomination Report

December 2004

1. Introduction

Background

This landmark nomination report for the L'Amourita Cooperative Apartment Building has been undertaken at the request of the building's cooperative ownership group. The owners of the L'Amourita Apartments are proud of the building, and have been its active stewards. They are proposing landmark designation of the property as a way of recognizing its unique Mission Revival architecture character and its historic contribution to the Eastlake neighborhood.

This report includes the attached City of Seattle Landmark Nomination form, and descriptive text on the historic and architectural significance of the building, illustrated by historic and contemporary maps, photos and drawings, and accompanied by a bibliography. The report was developed by Susan Boyle of BOLA Architecture + Planning with assistance from Sonja Sokol Fürész and Angela Cassidy.

Susan Boyle undertook research in September and October 2004. Tasks included several site tours and review meetings at the building with co-op owners, and reviews of the co-op's documents and web site. Documents came from the following sources:

- City of Seattle Department of Planning and Development (DPD, formerly DCLU) permit list, and drawings for a 1985 renovation project and the 1998 retaining wall project
- Drawings by the Brown Associates/Architects of Seattle for exterior renovation project, dated July 15, 1985, and March 27, 1997
- UW Architecture and Urban Planning Library, and Special Collections digital photo collection
- City of Seattle Clerk's Municipal Archives digital historic photo collection
- The Dept. of Neighborhoods and Eastlake Community Council, for neighborhood history and data
- Seattle's Historic Preservation Program files for inventory and survey forms for this building and several nearby Mission Revival style apartment buildings
- The Museum of History and Industry (MOHAI) for an early photograph of the building
- History.Link.org, on-line essays on historic subjects, including the Eastlake neighborhood, Seward School, Roanoke Park, Rogers Playfield, Adelphi College, and Boeing Airplane Company
- Architectural publications and web site references on the Mission Revival architectural style and its design features, including the web site of the Everett Public Library, and other publications about the apartment building type, and its emergence in the late nineteenth century
- Kroll Map Company, historic insurance real estate maps
- The Seattle Public Library collections, including Polk Directories, publications and newspaper articles on the building and its neighborhood
- Information about cooperative organizations from the USDA and the National Cooperative Bank

Field research included several tours of the building and the Eastlake neighborhood to document the presence or loss of the building's character-providing design features, changes through time, and current conditions. Its physical context and exterior and interior were documented with photographs.
2. Property Data

Historic Building Name: L'Amourita Apartment Building
Common Building Name: / L'Amourita Cooperative Building

Address: 2901 - 2917 Franklin Avenue East, Seattle, Washington 98102

Location: West side of Franklin Avenue East, north of Seward Street and west of the Interstate 5, and one block east of Eastlake Avenue East.

Tax ID No.: 195970-2630

Legal Description: Lots 11, 12 and 13 and the south 50' of Lot 14, Block 34, Denny Fuhrman Addition to the City of Seattle, King County (Section SE 17, Township 25, Range 4)

Original Date of Construction: 1909

Original Designer: Unknown

Later Designers: Brown Associates/Architects, Seattle and Freeland, Washington, architects for the 1985 renovation project

Original Contractor: Unknown

Later Contractors: Authentic Construction (Jim Clayton, Owner), contractor for the 1985 renovation project

Integral Construction (Frank Russell, Contact), contractor for the 1998 retaining wall project

Original Use: Apartment Building - Townhouse Type
Present Use: Cooperative Apartment Building

Original Owner: Adolph J. Jarmuth and Edith De Long Jarmuth
Later Owners:
John R. Walther (or Waltherr, I. C. II), Dec. 15, 1922 - Dec. 17, 1936
Carl Rubenstein, January 19, 1942
C.H. Moy, April 5, 1945
Edward H. Hamlin, February 19, 1946
Jos. E. Flory, July 8, 1947
Cooperative Ownership since 1950

Present Owner: L'Amourita Coop Association, Inc.
2905A Franklin Avenue East
Seattle, WA 98102
James Keblas, President, tel. (206) 206.698.7625
Margaret Papaadakis, Treasurer, tel. (206) 331-1887
Richard Morhous, Co-op Member, No. 2915A, tel. (206) 323-6089

Property Size, Site: 17,050 gross square feet (0.39 acres)
Building Size: 24,330 gross square feet (21,786 net square feet), per King County Property Tax Records
3. Architectural Description

The Site and Urban Context

The 17,050-square-foot parcel is 150' wide and 110' deep, and follows the steep, slope of North Capitol Hill. The building is placed on the eastern two-thirds, setback 17.5' from the property line and an estimated 30' from the west edge of the paved sidewalk. Setbacks on the north and south are only 5', but there appears to be more property as the northern retaining wall is several feet farther north, and there is no sidewalk to identify the southern property edge.

The site slopes from downward toward the northwest, from a datum elevation of 100' at the southeast corner to approximately 92' at the northeast corner, and to 85' at the southwest and 85' at the northwest. Along the north property line this results in a drop of 11', and along the south a drop of 15'.

A three-stall paved parking lot is located at the northwest corner of the site, accessible by a narrow driveway along the north side of the building. The elevation of this 35' by 35' lot is approximately 10' below that of Franklin Avenue East. Until 1997, a second parking garage structure was located to the south of the north parking lot, and a concrete retaining wall was provided along the west property line. The grade then dropped 6' to 10' from the parking lot level to the grade on the west side of the wall. A portion of the lower area is a 15' wide City of Seattle right-of-way, which was platted originally as an alley. To the north there is a small retaining wall and to the northwest, the parking lot for the adjacent Pauline Apartments. Presently there is a concrete block and wood frame garage building on site. This 29' by 20', 580 square foot, three-car building is set back 36.5' from the south property line and 5.5' from the building's western face. The garage is accessed via a narrow driveway off East Shelby Street.

The front of the building is clearly the street-facing east facade. It is treated with projecting porches, window bays, and cast concrete steps and walkways that lead from the street and sidewalk, along with sloped lawns, to concrete steps at the three porches. Landscaping is carefully tended on all sides of the building, and includes grass turf, low-maintenance perennials, and tall, deciduous street trees in the parking strip along Franklin Avenue East.

The neighborhood that surrounds the station primarily contains wood-frame, single-family residences, and multi-family apartments of varied sizes. Along Eastlake Avenue East, to the west, there are also commercial buildings that house offices and retail businesses. Apartment buildings of a variety of ages and sizes and a few single-family houses are located along Franklin Avenue to the south of the building. To the north there are two small, brick apartment buildings.

Due east across Franklin Avenue is the right-of-way and Interstate 5. Because of the grades at this location, the freeway appears as a 15-to 30-foot-tall concrete wall, interspersed with lanes of busy traffic. The structure opens to the north to reveal eight lanes of traffic at the main level and reverse express lanes at a lower level.

The Building Structure and Exterior Features

Reinforced concrete foundations and stucco-clad, reinforced concrete exterior walls of up to 22" thick, make up the three-story building structure. 6x6 heavy timber posts serving as columns and 2x10 floor and roof joists are set at 16" on center. The building has overall dimensions of 57' by 142' with three 8'-wide and 27'-deep, west facing lightwells, which contain fire escapes and secondary entries. Primary entries are provided on the east facade, accessed below three hip-roofed porches supported on stucco-clad concrete walls with arched openings. Due to the topography, the lowest occupied floor is partially below grade with the two upper floors and the penthouse visible on the primary east facade.
Hips and gables make up approximately 60% of the total building roof, and these shapes are prominent on the east or primary side of the building. (When the building was re-roofed, the original red roof tiles were salvaged and reinstalled.) Approximately 40% of the building’s roof, on the west side, is flat and clad with built-up roofing. The tile-clad sloped roofs are further emphasized by decorative wood rafter tails, which project beyond the gutters to punctuate the front roof edge.

On the exterior, the L’Amourita Apartment Building is embellished many Mission-style decorative elements and details. The east façade features three projecting porches, each with open arched openings. The porches are characterized by hip roofs (at the outer two porches) or a flat roof (at the center), and by prominent curvilinear parapets, which rise above the northeast and southeast corners. The two outer corners are distinguished by tall battered pilasters, which terminate as small decorative towers surmounted by column-supported hip roofs. The façade is symmetrically composed around the center and subdivided by three porches and projecting roof features into three sections. Each of the three sections is also symmetrical.

The tallest center section on the east side reads as a tower. The tower features a hip roof mass, with the stucco walls punctuated by narrow, arched-head window openings (six frontal and one on each side) and a row of corbelling at the floor level. The tower element encloses a small penthouse made up by rooms in two of the current upper-floor dwellings. A U-shaped roof terrace at the second floor wraps this center tower section. Low, stucco-clad parapet walls and wood decking characterize the terrace. The second floor also features projecting window bays with either stacked bracket or oriel details below the windows, and tile-clad hip roofs over the entry porches below.

Windows are typically double-hung or casement, wood-frame types with vertical proportions and flat and arched heads, with the exception of the windows in the bays and those at the center tower section. The 1985 drawings indicate five different types of windows, all composed with two sash, with overall sizes that range from 1 ½’ by 5.5’ to 3.3’ by 4.5’. Originally many of the upper sash units featured multiple lights, with diamond pattern glazing held by a tracery of wood sash members. Windows at the lower level feature upper sash with vertical glazing patterns.

Secondary north and south facades are composed with the raised parapet sections on the east and flat roof profiles on the west. Windows on the south façade vary also, with those toward the east resembling windows on the primary façade. In contrast to the primary façade, the west or back facade is very simple, with a simple rhythm of rectangular window openings set into the planar stucco wall.

The Plan and Interior Features

The exterior of the L’Amourita provides only a sense of its unusual and inventive layout. The building is symmetrically organized, with four separate front entry porches providing access on the façade. According to cooperative members, the original layout featured eight townhouse units, each accessed from the porch, with an exterior door leading through an archway into the living room of each unit, with a straight stair leading to the second floor which contained bedrooms. The southernmost unit had a dining room call button for servants, and a staircase that led to the servants quarters in the lower southwest corner of the building.

At some time in the early history of the building it was subdivided from two-story townhouses into smaller flats. The Polk Directory noted 18 apartment units in 1922, and the 1932 issue of Heiden’s House and Street Directory of Seattle noted 18 units for listings at 2901 -2917 Franklin Avenue North (presently Franklin Avenue East).
Presently there are 21 units in the building, eight on each of the upper two floors and five in the lower floor. At the main level (second floor) there are four recessed entries at the three separate porches. They each lead to two entry doors, each of which leads to small vestibules that access a lower and an upper unit, thus giving each apartment a sense of privacy and individuality. Separate side entries are provided also to the outer second floor apartments, and direct entries to those at the lower level.

The unit layout at both the main and upper floor provides for two outer dwellings, which are wider, and six interior ones. Straight runs of stairs lead to the upper floor apartments. These units have projecting window bays in front rooms, facing east, and also north or south. Access is provided from the four center upper floor units to the second floor roof deck above the center porch, and from the six interior units to back porches and fire escapes within the lightwells. The southern and northern upper units access fire escapes on the outer walls.

The original building owner, the Jarmuth family, lived in the southernmost dwelling. Up through 1936, this unit remained a seven-room townhouse, according to the tax assessment records of that year. Presently it, like the others, has been subdivided into two flats, each with one bedroom. There are also four one bedroom and one smaller studio apartments at the lower level.

Dwellings range in size from a studio of approximately 300 square feet to one-bedroom units of approximately 440 to over 970 square feet. The largest units are located on the main level which have large basement storage rooms accessed by private internal stairs. The two apartments at the northwest and southwest corners appear larger too, because of their side wall bay windows. The other upper floor interior units also have projecting bays and the interior four access a roof terrace on the east side. A third-floor dwelling room, enclosed by the central tower, is provided in the central two, upper-floor units.

As a residual aspect of the original townhouse layout, the east and west rooms in the upper level flats have almost equivalent sized bedrooms and living/dining rooms. Other original interior features provide residents with a strong sense of the building’s history. These include spatial qualities, such as enclosed entry vestibules and relatively tall ceiling heights (recorded as 9'-4" at the first floor, 9'-2" at the second floor, and 8'-9" at the third floor). The layout at the upper floor features larger rooms at the ends, and kitchens and baths accessed off stair halls. There are butler pantries in several apartments at the main level.

A sense of the building’s history is reinforced by the presence of original finishes: painted plaster on lath and plaster on concrete walls, and wood trim including coffered ceilings, picture rails, tall wood base, framed windows and doors, and inlaid wood oak flooring at the first floor. Remaining original stairwells have turned wood balustrades and there are deep window bays in front-facing second and third-floor units.

Gas fired fireplaces are provided in many of the units and typically they each retain distinctive, original tile surrounds. These surrounds include inset tiles with relief patterns and geometric and figurative motifs and several feature mantelpieces. While one is painted, others retain the original tile finishes.

Original interior doors were typically panel types, with transom windows. Ample light enters each of the one-bedroom units from windows on three or four walls in the upper units, including the west-facing lightwells. Many of the various-sized windows, which have deep surrounds, feature casement or single-hung operation.
Construction History

No records of original permit or construction drawings are on file at the city's Department of Planning and Development. According to one of the current owners, the architect who worked on the 1985 rehabilitation project does not recall having original drawings. Tax records and historic photos cite an original construction completion date of 1909. A 1917 Sanborn insurance map indicates there were then 19 apartment units in the building. The number was cited in the 1936 era tax assessor's records as 19, and subsequently changed to 21 apartments.

The original designer and contractor remain unknown. However, there were several architects practicing in Seattle in the first two decades of the twentieth century who worked in the Mission Revival style. Further description follows in the section on the Building Style.

Documented Changes to the Building and Current Conditions

The following changes to the building are indicated in historic photos or are cited in DPD permit records, or have been observed at the building:

1923, 1924, 1927, 1934 Unidentified permits for unknown work

1951 Stairway alterations; addition of exterior metal stairway and ladder

1952, 1959 Unidentified alterations

1973 Installation of gas-fired water heater

1974 Replacement of electrical service

1986 Renovation (including window replacement, insulation, and other repairs)

1999 Removal of the central steam heat system and replacement by electric baseboard heaters in each unit

The building has been repainted over its history. A record from the USGS, regarding a benchmark placed on the building roof in 1915, cites it as a yellow building in the 1920s and gray in the 1950s. Presently it is a warm off-white with deep red windows and doors, with terra cotta roof tiles. Historic cooperative records suggest that a new boiler was provided in 1959, repainting occurred that year and again in 1973, and major roof repairs and reroofing occurred in 1973.

In 1997 the Cooperative hired a local geotechnical engineering firm, Shannon and Wilson, to study existing site conditions. The resulting geotechnical report cited a major landslide that occurred after heavy rains in the previous winter. It recommended construction of a soldier pile wall, with wide flange steel beams, concrete and tiebacks, and continuous subsurface drains inside a preexisting concrete wall to retain the grade and improve drainage. (This description is an overview and is provided for reference only. Readers of this report should not rely on this report to represent actual conditions or the intent of the geotechnical study, and should refer to the actual report for information.)
The project to address geotechnical issues was undertaken in 1998 at an estimated construction cost of $150,000, according to the city's permit records. The project also resulted in removal of one of the two garages and creation of a garden terrace with trellises and new planting beds at the center back of the site. Meanwhile a recent development to the west has resulted in tall foundation / retaining walls as part of a new four to five story mixed-use apartment building. According to cooperative members, existing tiebacks were used during its construction until the foundation construction was completed.

Current conditions reflect a variety of interior changes to the individual dwellings, including larger kitchens and opening of partitioned spaces. Finishes vary, with several units retaining original coffer treatments and others finished with smooth gypsum wallboard or plaster ceilings. Bathroom and kitchen plumbing fixtures, built-in cabinetry, light fixtures and appliances vary. Many of the rooms are relatively small but they seem luminous with ample daylight. There is an evident sense of care and house pride throughout.

4. Historic Context

Historic Development of the Eastlake Neighborhood

Eastlake is an elongated, hillside community on Lake Union. When Interstate 5 was constructed in 1962, it cut Eastlake off from Capitol Hill, of which it was once a part. The L'Amourita Apartment Building property is located very close to the west side of Interstate 5, and has been impacted by the freeway's audible and visual presence. The building shares its historic, economic, and social development with the neighborhood of Eastlake, as well as with North Capitol Hill and the nearby Roanoke Park area.

As defined by the lake and Interstate highway, the Eastlake neighborhood is only five blocks wide, but stretches over twelve blocks (one and one-half miles) in length from the intersection of Fairview and Eastlake Avenues on the south to the University Bridge on the North. The neighborhood emerged in the early 1880s as a group of small farmhouses, homes and small businesses along the street that linked the city's downtown to communities along the north end of Lake Union, such as Latona and Portage Bay. Travel through the area became common, with establishment of a streetcar line and the draw of the University after the current campus was established in the 1890s and the Alaska Yukon Pacific Exposition was held in 1909.

When the University Bridge was constructed in 1919, travel along Eastlake Avenue increased. Buses replaced the streetcars in the early 1940s, but Eastlake remained one of the city's prominent north-south routes. It connected areas north of the city, such as the University District, Roosevelt, Northgate and Lake City, as well as nearby towns of Kenmore and Bothell via Roosevelt Way Northeast and led to the downtown via Denny Way on the south.

Like many of the city's oldest neighborhoods, Eastlake contains a wide mix of uses and building types. Traditionally it was a blue collar residential and industrial neighborhood with Seattle City Light's earliest electric generating plant (presently Zymogenetics) at its south end, and businesses such as Lake Union Dry Dock, Sound Propeller Company, William Boeing's 1916 airplane facility, and numerous marinas along Fairview Avenue and the lake front. There were cafes and taverns, some fishing boats from the Alaska Fishing Fleet, and the main store of Goodwill Industries was on a pier at the south end. Only a few of these businesses remain, mixed in with present-day offices, specialty retailers and services, taverns, and restaurants and cafes.

The neighborhood retains many other examples of its built history with Victorian farmhouses, Craftsman style bungalows and Mission Revival and Art Deco apartment buildings. Eastlake also contains one of
the city's oldest schools – the original wood-frame Seward Elementary School, which dates from 1893 - 1895.

Houseboats on Lake Union were built in the teens and 1920s, initially as simple small, inexpensive dwellings for seasonal workers, such as loggers and fishermen. During the 1920s, they served as a floating "Hooverville," for occupants, many of whom were unemployed during the Depression. The houseboats were gradually transformed into a low-income residential community of bohemians, poets, students and teachers in the 1950s and 1960s. Permanent sewer connections were installed in the 1970s, and the dwelling sizes of houseboats gradually grew to include multi-story houseboats with decks and roof terraces. The houseboat community changed to provide romantic, water-bound residences for middle and high-income residents.

In the late 1950s and early 1960s Eastlake was physically divorced from the Capitol Hill neighborhood by construction of Interstate 5. Official planning for the freeway began in the 1950s, and envisioned few of the real impacts of traffic, noise or dislocation that have resulted. During construction of the freeway, however, many of the large old homes were removed. Some of these were relocated, but many buildings were demolished, some replaced by surface parking lots. The double-height, eight-lane interstate has remained a defining edge and an open concrete scar on the neighborhood for over four decades. Open space below Interstate 5 provides classical-like columns among some open space.

Eastlake has developed as a vital urban neighborhood characterized by the presence of diverse housing, including apartments, multiplexes, small-scale courtyard housing and single-family residences. It has a large elementary school and a rich mix of office and neighborhood commercial buildings along Eastlake Avenue East. Along Lake Union there are houseboats, marinas and boat repair yards, a few houses and apartments, and commercial buildings.

The physical character of the neighborhood emphasizes its topography, the close relationship to the city's downtown and freeways, the wide variety of buildings, and mix of their scales and uses. There are reminders and remnants of early industries, including the site of William Boeing's first airplane factory at the western foot of Roanoke Street. A number of significant historic buildings are located in the neighborhood. Some of these, noted below, have been recognized by designation as local landmarks or by listing in the National Register of Historic Places:

- Seward School/former Denny-Fuhrman School (1893 - 1895, 1906 and 1918, remodeled and expended in 1997), 2500 Franklin Avenue East (along Boylston Avenue also), a landmark property
- Steinbrueck Residence (1891 - 1893), 2622 Franklin Avenue East, a local landmark
- The Stanley House/Fisher - Howell Residence (1890s), 2819 Franklin Avenue East, a local landmark
- Castlewod Apartment Building (1928 - 1929; Paul Thiry), 2727 Franklin Avenue East
- Lake Union Hydro House and Steam Plant (1909 - 1921), a local landmark

There are many commercial and apartment buildings in the neighborhood that date from the 1950s and 1960s. Recent development has impacted the neighborhood with the construction of many more condominium and apartment buildings, most in three- to five-story structures.

Growth in the neighborhood appears to have occurred in part in response to the Eastlake Neighborhood Plan of September 1998. The plan called for preservation and enhancement of Eastlake's existing and future character as a residential, lakefront community with a mix of elements. The plan's integrated goals included 1) increased density in the complex, mixed-use urban neighborhood, with a diversity of incomes, ethnicity and residential/commercial use; 2) development of Eastlake Avenue as a "main street"; 3) a focus on the Fairview Avenue shoreline; and 4) traffic strategies for safety, pedestrian and bicycle connections, and noise reduction.
The L'Amourita Building is presently zoned L-3, for Low-rise Multifamily uses. Nearby blocks along Eastlake Avenue East are zoned NC-40, for neighborhood commercial/residential development. The NC zoning has encouraged developments, such as the recently constructed mixed-use condominium building to the west.

Neighborhood Demographic Patterns

Census documents from 1940 describe the residential make up of the neighborhood and the types of housing available 50 or more years ago. The patterns that these documents suggest are similar to those embodied by physical structures. Eastlake was then home to many people with varied incomes. It was the end of the Depression and nearly 30% of its occupants were unemployed or seeking work. Residents represented a variety of occupations: professionals, managers and officials, domestic service workers and laborers. In contrast to the relatively high homeownership seen in other areas of Seattle, fewer than 22% of the residents owned their dwellings. Rents averaged $24/month. (Schmid, p.155 - 183, and p. 218 - 254.)

When the Eastlake neighborhood was profiled as part of the 1998 Eastlake Neighborhood Plan, nearly sixty years later, it had been physically separated from Capitol Hill. The Plan noted there were 2,437 residential units in the neighborhood, a rise of 261, or 11% growth, between 1990 and 1997. The plan called for a goal of 3,500 residents balanced by 3,000 jobs.

According to the 2000 U.S. Census, Tract 61 which includes the north end of Eastlake and Capitol Hill, was the home to 4,447 residents who lived in 2,595 households. (The city as a whole had a total population of 563,374 people.) The average age of residents in the tract was 35.2 years. Over 31% were family households, with married couple families making up nearly 26%, and single people nearly 69%. Only 9.1% of residents were children under 18 (404 total).

The cost of housing has risen dramatically, as it has throughout the city. The median value of owner occupied housing units was $455,300, with median mortgage costs of $2,157 per month vs. an average of $1,497 city wide; and median rent in renter occupied units of $741.

The 2000 Census noted that 40.3% of residents in the tract owned their homes, vs. 48.4% of all city residents; 59.7% were renters, vs. 51.6% citywide. (Dwellings include houses, condominiums, and the L'Amourita Co-op.) 54.2% of the housing units in Eastlake were in dwellings with over five units, and 40.6% of the dwelling structures were built before 1939, while 34.3% dated from 1940 to 1970. Most of the residents in the neighborhood were relatively new, with 77.5% having moved into their dwellings between 1995 and March 2000.

The Original Property Owner, Adolph J. Jarmuth and Edith De Long Jarmuth

Adolph J. Jarmuth, the president of Northern Investment Company, has been cited as the original building owner. Little is known about Mr. Jarmuth. His wife, Edith De Long Jarmuth, was a supporter of socialist causes. Apparently she relocated to and died in New York after leaving Seattle around 1912. She was a friend of national feminist and radical, Emma Goldman.

In her autobiography, My Life, Goldman described Edith De Long Jarmuth as, "Japanese-looking with her blue-black hair, almond shaped eyes, and marble-white skin, [like] a lotus flower in alien soil. She was a strange and ethereal figure in her wealthy and heavy bourgeoisie home in Seattle. Later her apartment in Riverside Drive in New York became the rendezvous of radicals and intellectual Bohemians. Edith was their magnet, and she felt alive to their ideas and work. Her own interests ... sprang from her
yearning for the exotic and the picturesque. In life as in art Edith was a dreamer who lacked creative strength. One loved her more for what she was than for what she did. Her personality and native charm were her greatest gifts.” (Goldman, 1931, Vol. 2. Presumably the home that Goldman referred to was the townhouse in the original L'Amourita Apartment Building)

The *Polk Directory to Seattle*, for years 1900 through 1920 was reviewed as part of the research for this report. The 1909 Directory is the first one that lists Adolph Jarmuth, noting his business office and his residence in the L'Amourita Apartments, at 2901 Franklin Avenue North. The first citing of the L'Amourita was in the *Polk Directory* of that year, which lists it as an apartment building. (This information seems to discredit a long-told romantic story about the original building owner as an Italian or Portuguese immigrant father of many daughters, who built eight dwelling units, one for each child, to keep them close.). The Jarmuths had only two children, both boys (Douglas F. and John A., who were listed as students in the *Polk Directory*).

It appears that the family moved out of the building around 1912. The last listing pertaining to the Jarmuths is that year and only for Mr. Jarmuth's business, which was cited as the Northern Investment Company in 1910, 1911 and 1912, noting it as "Investments - Real Estate and Mining."

Brief genealogical research has resulted in no additional information, with the exception of the deaths recorded of a John Jarmuth in Skokie, Illinois in 1971 and that of Douglas Jarmuth in Kent, Washington, in 1973.

Formation of the Cooperative

The L'Amourita Apartment Building was built initially as an investment by its original owner, and appears to have been a rental property for over four decades. The 1939 *Polk Directory* lists 21 separate units. In ca. 1950 the building ownership was reorganized as a cooperative.

The L'Amourita Co-Operative Association, Inc. was incorporated on April 21, 1950, by the following individuals: S.J. Mordau, Bruno Owen, Mac Hartman, Allen C. Shamek, Virginia B. Wilhite, Robert Reindorf, A.H. Lindblad and A.A. Lizotte. Its goal was to "provide housing for its members and stockholders, their families, relatives and friends, on the cooperative plan and not for profit, by acquiring, operating, maintaining, leasing, conveying or otherwise making available to members and stockholders such apartment housing accommodations as are in the property known as L'Amourita Apartments, 2901-03-05-07-09-11-13-15-17 Franklin Avenue, or other properties to be purchased.“ (Articles of Incorporation, Section II, April 19, 1950.)

The co-op issued capital stock of 1,210 shares, at $100 per share for a total of $120,000. The Cooperative Association purchased the property from Joseph E. and Evlyn O. Flory with a final mortgage payment of $72,510 in August 1954. The association term was 50 years, and it was renewed in 2000.

The National Co-op Bank is a nationwide, specialized lender that services housing cooperatives. As noted by a bank representative, approximately 80% of housing coops are in New York, with over 6,000 cooperative buildings in New York City. Members of the L'Amourita Co-op has estimated that there are 67 housing co-ops in Washington State, and the NCB has identified 44 in its current database.

Individual units in housing co-ops are typically purchased through share loan mortgages, which are somewhat similar to loans for condominium units. The cooperative association is a non-profit organization that can take out large long-term loans of up to 30 years for long-term repairs and major projects. These finance methods contrast to special assessments by a condominium association, and
condominium improvement loans, which are typically amortized over a much shorter, five to ten year period. Housing cooperatives are not structured typically to limit investment or increases in equity based on the market. A limited equity co-op was a type of entity that HUD developed in the 1960s to address low-income housing needs by limiting resale value and prospective purchasers. (Information about cooperative housing structures comes in part from Mary Alex Dundics, of NCB, during a phone interview on November 23, 2004.)

Early housing co-ops were organized in the teens and 1920s, some with exclusionary goals, in that their memberships were restricted to people of similar wealth and upper-class backgrounds, and/or by ethnicity and religion. One early record of the L'Amourita Cooperative clearly indicated that prospective applicants with families be discouraged. Contemporary housing laws forbid these types of discrimination, but do allow contemporary cooperatives to consider individual applicants.

In a condominium, each owner actually owns his or her unit. In a cooperative the individuals own a share of the corporation, and enter into a proprietary lease to occupy their space. Banks offer share lending to the cooperative members. Monthly maintenance fees are based on the share of ownership, similar to that in a condominium. The L'Amourita Co-op is organized presently by its 21 members with rules for sharing general upkeep and maintenance, and limiting disturbances, such as excess noise.

Overview of Cooperative Organizations in America

There are many forms of cooperative organizations in America, in addition to housing groups. Locally some of the best known are consumer groups and health care organizations, such as REI, PCC and Group Health. Historically the cooperative organizations derived from the early guilds and fraternal organizations, which provided financial aid, life insurance, and old-age benefits to their members, and from early labor unions.

The American Grange, which was founded in 1867, served as the source for what became agricultural and rural cooperatives in America. Based on European precedents and Rochdale principles the Grange set up stores to serve its members, selling groceries and dry goods in addition to clothing as farm supplies, hardware and agricultural implements. Granges were marketing collectives made up by farmers, often by the products they raised, such as cotton, grain, tobacco and wool in different parts of the country. In the Northwest the best known Granges may have been those in Eastern Washington which marketed wheat.

Many Granges went out of business during the Great Depression, but other cooperative businesses were initiated in the late nineteenth century and early twentieth century. By 1920 with an estimated 14,000 farmer cooperatives were operating.

In the 1930s farmer cooperatives developed their own financial institutions through the Farm Credit System. The National Cooperative Bank, and other agencies initiated cooperatives during the New Deal era. At that time some financial assistance was provided also by government agencies. The Rural Electrification Administration (REA) and the National Rural Electric Cooperative Finance Corporation (CFC), for example, were formed to finance and help provide rural electrification. (Information in this section is summarized from Donald Frederick, "U. S. D. A. Cooperative Information Report, No. 55.")

Present-day cooperative services include financial services, such as credit unions, and consumer buying groups, as well as marketing for food and agriculture industries, and purchasing coops for grocery and hardware stores and public institutions, such as state universities.
The Mission Revival Style

With the use of gable and hip roof forms, clay roof tiles, stucco cladding, and arched openings, the L’Amourita is as a fine example of the Mission Revival style. It shares features of this style with several other apartment buildings in Seattle, although most of the other examples are stucco-clad wood frame rather than concrete structures. Examples of the Mission Revival include several nearby buildings and others in the University District and on Capitol and Queen Anne Hills:

- The Hacienda, 1029 Summit Avenue East (1925, 2 buildings with 21 units / 25,047 square feet)
- La Quinta, 1710 East Denny (1926, a 2 story courtyard building with 16 units / 14,400 square feet)
- 906 - 1st Avenue West (1927, a 2 story courtyard complex with 16 units and 15,380 square feet)
- Villa Costella, 328 West Olympic Place (1929, 1 - 3 stories, with 20 units / 21,140 square feet)
- Linda Vista, 92 East Lynn Street at Yale East (1930, a 3 story building, with 20 units / 18,360)
- El Cerrito Apartments, 608 East Lynn Street at Franklin East (1930, 3 stories, 9 units / 10,458 s.f.)
- El Monterey, 4204 - 11th Avenue Northeast (3 stories, 20 units / 16,240 square feet)

Nearby buildings include the Buena Vista at 2822 Eastlake Avenue East. The two larger buildings in Eastlake -- El Cerrito and Linda Vista -- are blockier than the L’Amourita, and are set on smaller, more urban sites. Dating from 1930, they each gain some of unique identity from exterior brick and decorative ceramic tile insets, painted steel sash windows, and taller, stepped massing. Another nearby example that shares some formal aspects with the L’Amourita is the 1906, single family house at 2612 Harvard Avenue East, which is just four blocks southeast of the subject building.

Three buildings originally made up the 1925 Hacienda, including a single-family house. It features complex siting and massing, and buildings with exterior wood balconies and sashwells, and multi-level units that feature fireplaces and large arched head windows. It and the El Cerrito was designed by contractor Everett Beardsley (Ochsner, p. 338, and from John Heiderich, owner of the El Cerrito.) The Hacienda complex is set high above Lakeview Boulevard, where its unique presence is somewhat invisible. In the University District the courtyard apartment building, El Monterey, is more prominent at the corner of Northeast 42nd Avenue and 11th Avenue Northeast.

On Queen Anne Hill there is a somewhat similar U-shaped Mediterranean Revival courtyard apartment building of 1930 at 906 - 1st Avenue West, and the 1928 Villa Castello on West Olympic Drive. Two-story courtyard apartments in the Mission Revival style on Capitol Hill include a 1925 era building 914 - 922 East Lynn Street and the 1930 era L’Aqunta Apartments. (L’Aquinta is reported to have been designed and constructed by Fred Anhalt, a well-known local developer, recognized for his fine Tudor styled buildings on Capitol and Queen Anne Hills.)

In comparison to the other apartment buildings, the L’Amourita appears to be a more robust and stylized example of the Mission Revival style because of its complex massing and large gable and hip roof forms, the well detailed entry porch, thick concrete walls with arched openings, varied and highly articulated wood windows, and presence of Mission-style clay roof tiles and stucco cladding.

The Mission Revival style in Seattle appears in single-family houses, apartment buildings and low-scale courtyard multiplex dwellings. Non-residential examples are more unusual in Seattle, but they include school buildings such as the original Cornish College of the Arts on Capitol Hill (1920 - 1921, at 710 East Roy Street), and the Seattle University School of Nursing, at 1130 Madison Street. There are some noteworthy public buildings that utilize the Mission Revival style to enclose varied functions: the Fremont Public Library (1921, at 731 North 35th Street), Fire Station No. 37 (1928, at 7302 - 5th Avenue Southwest) and the original hydro house at the Lake Union Steam Plant (1909, at 1161 Eastlake Avenue East).
A recognized regional example of the Mission Revival style is the 1911 era Snohomish County Courthouse in Everett. The courthouse, with its long tile-clad hip and gable roofed mass and window and bracket detailing, appears similar to the L’Amourita building. The former building was designed by a Seattle/Everett architect, Augustus Heide, of DeNeuf and Heide. Heide had practiced in Los Angeles before coming to the Northwest, but he may have acquired his interest in the Mission Revival style at that time. (Ochsner, p. 341) The Snohomish County Courthouse was constructed the same year as the L’Amourita, in 1909, much earlier than the Hacienda, Monterey, Villa Castello, and El Cerrito Apartments Buildings, which all date from 1925 - 1930. (No records have been discovered that connect either architect Augustus Heide or contractor/designer Everett Beardsley with Adolph Jarmuth or the L’Amourita Building, but it is an engaging coincidence that all three men arrived in Seattle in ca. 1909.)

Mission Revival architecture is somewhat unusual in the Northwest, and is often associated with sunnier climates and romantic or thematic building types, such as theaters, hotels and resorts. Mediterranean and Mission Revival styles flourished in California, particularly before the 1920s, and in other areas of the country during the years 1915 to 1945. In California, Revival designs often "built on an existing popular flavor for regional traditions, using ideas from similar European regions, were added to local traditions, and providing material affluence and a connection to venerated traditions. The use of the revival style avoided extensive adaptation of local traditions and provided (and guaranteed) the respectability of their precedents" (Gelernter, p. 235).

In the western United States the most directly related predecessor of the Mediterranean style was the Mission style. In California’s 1890s-population boom, an immediate image and identity was needed to market real estate. Local eighteenth and nineteenth century Spanish Colonial Missions, rather than Native American Pueblos, were used to supply the necessary imagery and tradition and exerted strong stylistic influences. Consequently Hispanic elements such as ogee gable ends, bell towers, and shallow tiled roofs were incorporated into the style. As elements were drawn from other geographically similar areas such as Mexico, Italy, Greece, and North Africa, the Mission style developed into what is considered the Mediterranean style (Gelernter, p. 199 - 200).

Characteristics of the Mission style include deeply recessed openings, sometimes fronted by arcades or porches. Roof forms are typically gable or hip, clad with red "Mission Style" (half-vault shaped), glazed or unglazed terra-cotta tiles. Walls are nearly always clad with stucco, and both exterior and interior wall surfaces are typically smooth plastered. The buildings often feature exposed wood framing elements on the interior, and carved rafters and beam-ends. Balconies, terraces, or patios are provided to create a close indoor-outdoor relation. In Mission and Mediterranean Revival styles, decoration may include ornamental ironwork or glazed tiles, with foliate and geometric motifs drawn from Plateresque or Churrigueresque styles in cast terra cotta or plaster friezes and panels. Cast iron or turned-wood window grilles are often present. Balconies are frequent, as are towers and turrets capped by domes or hip roofs.

There are recognized stylistic subtypes which include buildings with symmetrical facades, such as the L’Amourita Apartment Building, and those which feature asymmetrical facades superimposed on a simple square or rectangular plan. Although they are close in appearance, the absence of sculptural ornament is a "negative" characteristic that distinguishes Mission style buildings from those of the Spanish Colonial Revival style.

Architectural historian Marcus Whiffen described the Mission Style as a California counterpart of the earlier Georgian Revival in the East. It represented a distinctly Western interest in history in reaction to popular styles in the East, and disenchantment with architecture present at the turn of the century. Inspiration for the Mission Revival style came from Spanish Colonial Missions of the seventeenth and eighteenth century, as well as the later California Building at the Columbia Exposition in Chicago (1893, designed by A. Page Brown) and buildings at the 1894 California Midwinter Fair in San Francisco (Whiffen, p. 213 - 216).
Other examples include the Riverside Inn in Riverside, California (1890 - 1901), the Alvarado Hotel in Albuquerque (1901 - 1905), buildings at the Pan Pacific International Exposition in San Diego (1915), romantic style hotels and stations built by the Santa Fe and Southern Pacific Railroads in the west, such as the Boise Train Station (1920s), and buildings at the Presidio in San Francisco, such as the Fort Winfield Scott Barracks, Building No. 1204 (1912).

Later, in the well known Women’s Club and Community Center (1913 and 1914, Bernard Maybeck and Irving Gill) in La Jolla, and in Seattle’s Fire Stations No. 13, 16, and 38 (1928 - 1930), there is an emphasis on simpler designs, less ornamentation, and more cubist Moderne massing.

5. Preliminary Evaluation

The Landmark Process in Seattle

Designated historic landmarks are those properties that have been recognized locally, regionally, or nationally as important resources to the community, city, state or nation. Recognition may be provided by listing a property in the State Register or National Register of Historic Places. Historic recognition in Seattle is provided by the City’s designation of the property as a historic landmark. The City’s landmark process is a multi-part proceeding of three sequential steps undertaken by the Board:

1) submission of a nomination and its review and approval by the Landmarks Preservation Board
2) a designation by the Board
3) negotiation of controls and incentives by the property owner and the Board staff

A final step in Seattle’s landmark process is approval of the designation by an ordinance passed by the City Council. All of these steps occur with public hearings for input from the owner and/or applicant, members of the public, and other interested parties. Seattle’s landmark process is quasi-judicial, with the Board making a ruling, rather than serving as an advisory body to a commission, department, or agency.

Under its ordinance more than 245 individual properties have become designated landmarks in the City of Seattle. Several hundred other properties are designated by their presence within one of the city’s special review districts or historic districts, which include the Harvard Belmont, Ballard, Pioneer Square, Columbia City, Pike Place Market, and International Special Review Districts. Designated landmark properties in Seattle include individual buildings and structures, building assemblages, landscapes, and objects. In contrast to the National Register or landmark designation in some other jurisdictions, Seattle’s process does not require owner consent.

Seattle’s Landmark Preservation Ordinance has threshold requirements that a potential landmark must meet. This requires a property to be more than 25 years old and "have significant character, interest or value, as part of the development, heritage or cultural characteristics of the City, State or Nation." (In contrast, a property typically must be 50 years old to be listed in the National Register of Historic Places.)

The threshold standard calling for significant character may be described as a standard of integrity. Integrity is a term used to indicate that sufficient original building fabric is present to convey the historic and architectural significance of the property. Seattle’s landmark ordinance also requires a property meet one or more of six designation criteria:

Criterion A. It is associated in a significant way with an historic event, which has had a significant effect on the community, city, state or nation.
Criterion B. It is associated in a significant way with the life of a person important in the history of the city, state, or nation.

Criterion C. It is associated in a significant way with a significant aspect of the cultural, political or economic heritage of the community, city, state or nation.

Criterion D. It embodies the distinctive visible characteristics of an architectural style, period or method of construction.

Criterion E. It is an outstanding work of a designer or builder.

Criterion F. It is an easily identifiable feature of its neighborhood or the city due to the prominence of its spatial location; contrasts of siting, age or scale; and it contributes to the distinctive quality or identity of its neighborhood or the city.

In Seattle, a landmark nomination may be prepared by a property owner, an interested party or individual, or by the staff of the city’s Historic Preservation Division in the Department of Neighborhoods. The ordinance requires that the Landmarks Board consider a nomination if it is adequate in terms of its information and documentation. Seattle’s landmark process does not include consideration of future changes to a property, the merits of a development proposal, or continuance of any specific uses.

Since July 1995, the Department of Planning and Development has required a review of "potentially eligible landmarks" for commercial projects over 4,000 square feet as part of the Master Use Permit (MUP) process.

Preliminary Evaluation

The L’Amourita Cooperative Apartment Building is associated with the early development of the Eastlake and North Capitol Hill neighborhoods, and serves as a striking and intact example of the Mission Revival style. As previously noted, the Seattle Landmarks Preservation Board is the only group with jurisdiction over official recognition of local landmarks through its nomination and designation process. The following comments are offered, however, as a preliminary evaluation based on the research and information provided in this report.

Criterion C.
The apartment building was constructed nearly a century ago, and has long been associated with the development history of North Capitol Hill and Eastlake. It appears to be associated in a significant way with a significant aspect of the economic development and heritage of the community, and meets Criterion C. Also, the property has been organized as a cooperative, with occupant ownership since 1950.

Criterion D.
L’Amourita is a beautiful Mission Revival style building, constructed of stucco-clad concrete walls with wood-framed floors and roof, and wood doors and windows. As City of Seattle historic property surveyor Mark Peckham noted, in 1979, "this may be one of the most representative examples of the Mission Style in Seattle." The building’s exuberant expression and enduring construction methods are clearly visible in its massing, sequence of exterior spaces, and facade features.

A number of historic Mission Revival style buildings in Seattle have been nominated and/or designated as historic landmarks. These include the 1921 Fremont Library, 1909 Lake Union Hydro Plant (a part of
the Lake Union Steam Plant), and recently 1925 Fire Station No. 37. The L’Amourita Apartment Building compares well with these landmarks, and with a number of apartment buildings dating from 1925 to 1930. However, it presents unique stylistic and design features that date from the first decade of the twentieth century. As an apartment building its plan layout was unusual and innovative, featuring spacious well-lit units for middle-class residents and smaller units for domestic and maintenance staff. These original, character-providing qualities have been retained and preserved in the current co-op building. The property clearly meets Criterion D.

Criterion E.
There are no records to attribute the design and construction of the building to a designer or builder, but it is outstanding. In a similar fashion as with a vernacular building, it appears to meet this criteria.

Criterion F.
Although the unfortunate siting of Interstate 5 in the early 1960s impacted the building’s visibility in the neighborhood, L’Amourita remains a well-recognized historic element in the Eastlake neighborhood. The building has become an easily identifiable feature in the city. As noted in the 1972 Guide to Architecture in Washington State, the building is an “exuberant Mission Revival, which catches the eye even from the (Interstate 5) freeway.” (Woodbridge, p. 169). L’Amourita Apartment Building clearly meets Criterion F.

6. Bibliography

L’Amourita Co-op:
Advertisement for Bids, July 30, 1985.

BOLA Architecture + Planning:
Landmark Nomination for Fire Station No. 37, Seattle, September 2004.

City of Seattle:
Department of Community Development. Census Statistics.
Department of Planning and Development:
Microfilm Permit and Drawing Files.
DPD Permits for 2901 Franklin Avenue East, Permit No. 696904.
Municipal Archives, Digital Photo Collection.

King County Tax Division: Property Tax Records for Parcel No. 195970-2630 (and for other cited Mission Revival style buildings) http://www5.metrokc.gov/parcelviewer/viewer/kingcounty/viewer.asp.

National Cooperative Bank, telephone conversation with Mary Alex Dundics, of NCB, November 23, 2004, and www.ncb.coop.com

University of Washington, Special Collections, Digital Photo Collections. http://content.lib.washington.edu/

Information for this report came from historic records of the L'Amourita Cooperative, and several of its current members. Apartment building managers or owners of other Mission Revival style apartment buildings -- the Linda Vista, El Cerrito and Hacienda Apartments -- shared information. Coldwell Banker Bain's website provided data on the house at 2612 Harvard Avenue East. Other sources include: City of Seattle Municipal Archives, Photo Collection, http://clerk.ci.seattle.wa.us

Queen Anne Historical Society web site (Historic Sites): http://www.qahistory.org

University of Washington Library Digital Photo Collections, http://content.lib.washington.edu
Note: Many images in this report have been selected from the cited source repositories. Many of these are copyrighted, and are used with strict permission for this document only. Copyright holders do not permit reproduction or reuse for any other purpose.

Below, two figure-ground maps of a portion of the Eastlake neighborhood dating from 1912 - 1920 and 1940 - 1960, which show its gradual development and the impact of the construction of Interstate 5. (The Kroll Map Company.)
In 1975, Historic Seattle surveyed urban and historic features in the Eastlake/Cascade neighborhoods in an effort led by architects Victor Steinbrueck and Folke Nyberg. A portion of the inventory map is copied, left. The footprint of the L’Amourita Apartment Building is shown in orange. Buildings that were cited as being “significant to the city” were shown in a solid orange color on the map, while those that were “significant to the community” were outlined in orange. Other historic buildings with city significance, which are in the four blocks south of the L’Amourita, include No. 3, the ca. 1895 Fisher-Howell House; No. 4, the 1929 Art Deco Castlewood Apartment Building; No. 5, the 1891-1893 Steinbrueck Residence; and No. 6, the 1895-1917 Seward School. This portion of the map shows the narrow north end of Eastlake, a sliver of land isolated from nearby North Capitol Hill by Interstate 5. (Steinbrueck and Nyberg, 1975, n.p.)
The late nineteenth-century Thomas Denny residence, shown in this undated historic photograph, was once located nearby at 2800 Eastlake Avenue. (University of Washington Special Collections, negative SEA0177.)

The Mission Revival style became popular for single-family houses and apartments early in the twentieth century. This nearby house is one example that dates from 1906. It is located at 2612 Harvard Avenue East, four blocks from the L'Amourita building. (Current photo from Coldwell Banker Real Estate web site.)
A 1946 aerial view of Eastlake, looking north, shows the area as part of North Capitol Hill with industries along the lake, prior to the construction of Interstate 5. (MOHAI, image PI20656.)

Above, a contemporary aerial view of the property, showing its proximity to Interstate 5. (DPD Map Center, November 2004)
Franklin Avenue houses being auctioned prior to freeway construction, February 13, 1958. The L'Amourita building is in the background. (MOHAI, image 1986.5.3991.)

A 1910 view of Roanoke Park, located approximately five blocks east of the L'Amourita. (Seattle Municipal Archives, item no. 30147.)
Rogers Playfield and Seward School are located three blocks south of the L'Amourita Apartment Building. This historic 1910 photo view is toward the southeast. (Seattle Municipal Archives, item no. 30171.)

Fire Station No. 37, at 7302 - 35th Avenue Southwest, dates from 1925. It is an example of a public building designed by City Architect Daniel R. Huntington in the Mission Revival style. (Puget Sound Regional Archives, King County Tax Assessor File.)
The 1921 Fremont Public Library at 731 North 35th Street was also designed by Huntington in the Mission Style. (Seattle Public Library.)

The Snohomish County Courthouse in Everett was designed in 1910 by Augustus Heide of Siebrand & Heide. (Everett Public Library Northwest Collection.)
The Hacienda Apartment complex, at 1029 Summit Avenue East, at the corner of Lakeview Boulevard, is shown in these three views. It is another Seattle apartment building designed in the Mission Revival Style. On the following pages are additional examples of buildings dating from ca. 1925 - 1930 that utilized the same style.

These photos and other contemporary photos in the report are by BOLA Architecture + Planning, and date from September - November 2004.
A general view of the El Cerrito Apartment Building, looking northeast, and a detail view of the primary south facade and separate entry to one apartment. This building, at 608 Lynn Street and Franklin Avenue East, also has features of the Mediterranean Revival style, such as glazed tile inserts and ornamental metal elements.
General view and main entrance detail of the Linda Vista, at 92 East Lynn Street.
Similar to the L'Amourita building, the Villa Castello, at 348 West Olympic Way on the south slope of Queen Anne Hill, provides a sense of individual units within a complex massing. Top, general view looking northeast. Middle, view of easternmost section. Bottom, detail of the central entrance on the south facade.
This modest-scale courtyard apartment complex, at 906 - 1st Avenue West on the south slope of Queen Anne Hill, is another example of the use of Mission Revival architecture for residential buildings.

Above, view looking north-east. Below, two courtyard views.
Mission Revival style buildings are found throughout the country, but are more common in the West. Top, historic and current views of the San Diego Santa Fe Train Depot, built in 1915. (San Diego Railroad Museum website).

Center, the 1912 Wilson Scott Barracks at the Presidio in San Francisco. (National Park Service, Presidio of San Francisco website.)

Below, the 1925 Boise Train Station in Boise, Idaho, which was designed by New York architects Carrere, Hastings, Shreve and Landro. (Great Railroad Stations website.) Train stations throughout the southwest and California used this style.
In this historic tax assessment photo of L'Amourita Apartment Building, the trees were still small and did not obscure front views of the building. View looking northwest, 1937. Note the ivy-clad portion in the background. (Puget Sound Regional Archives, King County Tax Assessor File.)

Current photograph showing a similar view, looking northwest at the primary east facade.
Above, oblique view of the east and south facades. Below, a view of the south facade showing the steep slope of the site, and the full three stories of the building. Note the raised parapet and corner tower, oriel window bays with tile-clad hip roofs, arched head and rectangular window openings, and the variety of divided lite patterns in the window sash.
Above, oblique view of the west and partial view of the north facade. The current concrete ramp replaced an earlier stair, which left an imprint of risers and treads along the south wall. Below, the southernmost wing of the west facade. All units on the upper floors feature windows on three sides. The plan features deep, 8'-wide lightwells that supply daylight and natural ventilation to units in the four wings. They also provide exits from the apartments on the west side.
The primary east facade is symmetrically composed, but large trees obscure full views of it during much of the year. These photos show the northern portion, above left, the southern portion, above right, a detail of an outer corner showing a typical battered pilaster and tower, below left, and the central portion with its wide porch and roof terrace, below right.
Top, the arcaded central entry porch. Below left, a typical wood panel entry door with multi-lite upper panel. There are transom windows above all of the east-facing exterior doors. Below right, typical porch features include arched openings and concrete steps with ornamental rail. The stairs lead to small vestibules that presently serve multiple units as primary entries.
Above, detail of basement apartment entrance, south facade. Left, detail view of the porch at the south end of the east facade.
Exterior and interior views showing details of windows on the primary east facade. All of these windows have tripartite arrangement, whether they form bays or are flush with the wall. Multi-pane lites decorate the top sash portions of many windows.
Above, views of two of the west-facing lightwells. Below left, a detail view of the central second-floor roof terrace, access door and bay window. Below right, another view of the terrace with parapet wall and wood decking.
Detail views of fireplaces in four different dwelling units, showing tile surrounds and mantels. Below right, an apartment which also features a coffered ceiling treatment.
Interior views. Above left, a main level apartment, showing original wood trim and inlaid flooring. Other photos show stair halls in upper level units, spaces that originally were separate rooms.
These three photos show the close proximity of the building to Interstate 5. Above, views from the freeway bridge, looking south, include the L'Amourita building and portions of Lake Union and the Eastlake neighborhood. Middle, a view looking south on Franklin Avenue East toward the freeway, which crosses obliquely at the north end of the block, with the sidewalk running through below it. Below, a partial view of the building's primary east facade and the west edge of the multi-level freeway structure.
Left, the west side garden and Interstate 5 to the north in the far background. The remaining three-car garage, top right. Other photos show site details with garden spaces and landscaping.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>AC.</th>
<th>LAND</th>
<th>BLOCK</th>
<th>TOTAL</th>
<th>DATE</th>
<th>BY</th>
<th>REASON</th>
<th>DECREASE</th>
<th>INCREASE</th>
<th>DECREASE</th>
<th>INCREASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1932</td>
<td></td>
<td>630</td>
<td>12190</td>
<td>12820</td>
<td>2-14-32</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td></td>
<td>750</td>
<td>15300</td>
<td>16050</td>
<td>11-17-49</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1930</td>
<td></td>
<td>1240</td>
<td>15300</td>
<td>16540</td>
<td>7-5-31</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1935</td>
<td></td>
<td>1640</td>
<td>16600</td>
<td>18240</td>
<td>5-30-41</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951</td>
<td></td>
<td>2440</td>
<td>15400</td>
<td>20840</td>
<td>6-19-49</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1966</td>
<td></td>
<td>1560</td>
<td>15600</td>
<td>21260</td>
<td>7-12-66</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>L</td>
<td>13700</td>
<td>41000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td></td>
<td>54170</td>
<td>68470</td>
<td>100640</td>
<td>3-19-71</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td></td>
<td>29364</td>
<td>54365</td>
<td>83729</td>
<td>9-17-71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td>31370</td>
<td>68970</td>
<td>100340</td>
<td>4-7-71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td></td>
<td>21790</td>
<td>65380</td>
<td>97170</td>
<td>3-19-73</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
- **LAND CLASSIFICATION OR DESCRIPTION**: A company named 'AVON' has been mentioned on the block.
National Register of Historic Places
Registration Form: William Parsons House
United States Department of the Interior
National Park Service

National Register of Historic Places Registration Form

This form is for use in nominating or requesting determinations of eligibility for individual properties or districts. See Instructions in Guidelines for Completing National Register Forms (National Register Bulletin 16). Complete each item by marking "x" in the appropriate box or by entering the requested information. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, styles, materials, and areas of significance, enter only the categories and subcategories listed in the Instructions. For additional space use continuation sheets (Form 10-900-a). Type all entries.

1. **Name of Property**
 - **historic name**: Parsons, William, House
 - **other names/site number**: Harvard Mansion

2. **Location**
 - **street & number**: 2706 Harvard Ave. E.
 - **city, town**: Seattle
 - **state**: Washington
 - **code**: WA
 - **county**: King
 - **code**: 033
 - **zip code**: 98102

3. **Classification**

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒ private</td>
<td>☒ building(s)</td>
<td>☒ contributing 2 buildings</td>
</tr>
<tr>
<td>☐ public-local</td>
<td>☐ district</td>
<td>☐ noncontributing 0 sites</td>
</tr>
<tr>
<td>☐ public-State</td>
<td>☐ site</td>
<td>☐ structures</td>
</tr>
<tr>
<td>☐ public-Federal</td>
<td>☐ structure</td>
<td>☐ objects</td>
</tr>
<tr>
<td>☐ object</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

 Number of contributing resources previously listed in the National Register: 0

4. **State/Federal Agency Certification**

 As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property ☒ meets ☐ does not meet the National Register criteria. ☐ See continuation sheet.

 Signature of certifying official: [Signature]
 Date: 11/1/91

 Office of Archaeology and Historic Preservation

 State or Federal agency and bureau: [Office]

 In my opinion, the property ☐ meets ☒ does not meet the National Register criteria. ☐ See continuation sheet.

 Signature of commenting or other official: [Signature]
 Date: [Date]

 State or Federal agency and bureau: [Office]

5. **National Park Service Certification**

 I, hereby certify that this property is: ☐ entered in the National Register. ☐ See continuation sheet.

 ☐ determined eligible for the National Register. ☐ See continuation sheet.

 ☐ determined not eligible for the National Register.

 ☐ removed from the National Register.

 ☐ other, (explain): [Explain]

 Signature of the Keeper: [Signature]
 Date of Action: [Date]
The Harvard Mansion is one of Seattle's most prominent and best known residences, situated at the corner of Harvard Avenue East and East Edgar Street along Interstate 5 in the Roanoke Park neighborhood of North Capitol Hill. The double lot provides the mansion with a spacious setting with lawns, gardens, and a brick courtyard in the rear. All three of the mansion's floors afford spectacular views of Lake Union, the Olympic Mountains, Queen Anne Hill, the Fremont and Wallingford neighborhoods, and the downtown Seattle skyline. (The third floor also provides partial views east to the Cascade Mountains and Lake Washington.) Conversely, looking east toward Roanoke Park from these areas, the mansion is clearly seen as the most highly pronounced landmark on the horizon, perched atop the Roanoke Park ridge.

The Roanoke Park neighborhood is one of the oldest intact single family residential districts in Seattle. The predominant age of homes in the neighborhood is about 70 years; the Harvard Mansion, built in 1903, is somewhat older, and exemplifies the few houses in the area built around the turn of the century. The houses nearby range in size and style, but are uniformly well maintained and well landscaped with large deciduous and evergreen trees. Within one block of the Harvard Mansion is St. Patrick's Church and Roanoke Park itself.

Exterior: The Harvard Mansion is a three story wood frame structure that reflects the popular Neoclassical Style of the early 20th century, characterized by a dramatic classical portico, veranda, and cornice moldings. The house is built on a rectangular plan that contains approximately 5,500 square feet of living space on three floors. The house rests on a stone foundation with daylight basement, and is capped by a medium pitched hipped roof with pedimented dormers.

The front facade of the house is dominated by the full-height portico which rises from the front porch to the third floor dormer. The portico features a full entablature supported by four colossal fluted columns with glazed terra cotta Corinthian capitals. Similar Corinthian pilasters rise against the facade. The entablature features a projecting cornice, with modillion blocks and dentil course, and a wide frieze and architrave. Atop the entablature is a balustrade with turned spindle railing, forming a third floor porch.

The portico partially shelters a two story full width veranda, added in 1910 by William Parsons, which wraps around the house on the front and side elevations. The porch is supported by nine fluted columns with Ionic capitals which rise to a porch roof with full entablature. The porch roof, in turn, serves as the deck of the second floor balcony. Both the first and second story porches are surrounded by a balustrade with spindle railing.
The medium pitched hipped roof is covered with composition shingles, and features three large pedimented dormers extending on the south, west, and north slopes. The western dormer provides access to the third floor porch through large double sliding glass doors added in 1965. Three active chimney units rise above the roofline, serving the five fireplaces and furnaces. One double-stack chimney and one single stack are clustered on the right side; a triple joined stack is located in the center. A fourth single stack rises along the rear roof slope, but is no longer in use.

Beneath the roof line, the dramatic cornice of the house features projecting boxed eaves, underscored by modillion blocks and a dentil course above a wide architrave and frieze. Windows are mostly double hung, one-over-one wood sash units, with wood frames and projecting entablature hoods. The five windows that flank the front entry, and the transom windows above the large first floor windows, are ornamented with leaded, bevelled glass whose cames form sunburst patterns, with a leaded Gothic shield in the center.

A rounded one story bay window projects off the east (rear) facade of the house, illuminating the historic sitting room. In 1915, William Parsons added an adjacent sunroom, surrounded by windows, which projects off the southeast corner of the first floor. A rear sleeping room was located above the sunroom. Wide stone steps lead to the front entry, and stone steps also lead to the south side entrance (where Roman urns form the base of the solid stair railings).

The large mahogany front door opens into the central entry hall. The glazed south side door, which leads to the sunroom, has multiple transom windows. Tall glazed double-leaf doors provide access to the first and second floor porches. There is also a multi-paneled wood door on the north side providing access to the kitchen from an elevated porch.

The main loss of integrity on the exterior resulted from the 1958 application of aluminum siding over the original narrow gauge clapboards. The siding has a wider gauge than the original, and also covers the original cornerboards. Otherwise, all exterior detail and trim remains original and intact.

To the rear of the house is a large detached garage with a flat roof accessible from the back alley. The easterly back yard is a landscaped courtyard containing a fountain, a rose arbor, and lights. The bay windows from the dining room and sunroom overlook the back yard. A vegetable garden flanks the north side of the house.

A stone retaining wall frames the front and south lawns, with corner stone pedestals connecting to the stone stairs which lead to the house. The retaining wall provides an attractive framing around the mansion, separating the elevated main landscaped grass lawns from the trees which run along the sidewalks.
Interior: Most of the original interior of the Harvard Mansion remains intact, although the kitchen, bathrooms, plumbing and electricity have all been updated. There are a total of 24 rooms in the house. The first floor has eight rooms: foyer-entry hall, dining room (now living room), living room (now music room), sitting room (now dining room), kitchen, butler's pantry, half bathroom, and sunroom. The second floor has six rooms: large master bedroom, three other bedrooms (one now used as a library), and two full bathrooms. The third floor has four rooms: a large ballroom, a maid's bedroom, a kitchen, and a full bathroom. The basement includes a laundry room, wine cellar, and storage rooms.

Throughout the interior, the house features ten foot ceiling heights, original light fixtures, wide ceiling and baseboard moldings, classical window and door surrounds, beamed ceilings, paneled wood doors, double leaf glazed doors, brass door plates and handles, and some original bathroom fixtures like porcelain pedestal sinks.

The first floor of the house has a symmetrical floor plan organized around a central hall. All major rooms are accessed through two entrances, including one leading to the hall. Upon entering the formal entry hall, the original living room is to the right, the dining room is to the left, and a grand staircase rises in the hallway. The flooring in these formal areas is dark oak. Both the living room and the dining room have marble fireplaces with custom oak carved dark mahogany wood mantels and columns. The dining room also features a box beam ceiling. Both rooms also retain the original light fixtures and have tall double-leaf doors providing access to the central foyer. The doors feature glazed upper panels and solid lower panels.

The original living room leads to the rear sunroom, which is also accessible through a rear side door entrance leading to the porch. The sunroom has a terrazzo floor, and is lighted by large windows which overlook the brick courtyard in the rear. In addition to this entrance, the sunroom has three sets of glazed double leaf doors leading to the first floor deck, the living room, and the original sitting room.

The sitting room, located directly off the central hall, features dark oak in-laid floors and a large window seat under the bay window. Two double-leaf paneled doors, beneath elliptical fanlight transoms, lead to the hall. In the northeast corner of the floor plan is the kitchen and butler's pantry, which feature oak parquet flooring and original cabinetry with leaded glass. The pantry leads to the dining room.

The hallway itself features the main staircase ascending in three flights, as well as a secondary maid's staircase, closet, bathroom, and arched columned entry to the dining room.

The second story also has a symmetrical plan organized around the central hall. The four bedrooms have fir floors. Running the full length of the south side of the floor is the master bedroom (which incorporated an older rear sleeping room above the sunroom in the 1970s). The bedroom has a carved
walnut mantel supported by columns, and accented with green tiles. There is a walk-through dressing area with two sets of large closets and a double-leaf three panel glass door leading to the second story porch deck. The master bathroom features grey tiles, two pedestal sinks, a bathtub, and a tiled shower stall. The main hallway on the second floor is also accessible through a dressing room in the master bedroom.

The north side of the second floor is flanked by two more bedrooms with a full bath between them. The northwest bedroom (now used as a library) has a marble fireplace with a carved maple mantelpiece supported by columns.

The staircase to the third floor is accessed through French doors in the second floor hallway. At the top of the landing, one entrance leads to a fifth bedroom, finished with fir floors and a partial easterly view. A bathroom is connected to this bedroom. Straight ahead from the landing is the ballroom, with maple dance floor. The ballroom also has a marble fireplace, added in 1965, inside the southern roof dormer. The west dormer contains the bandstand and a short flight of steps leads to the nonhistoric sliding glass doors which provide access to the deck above the front portico. Connected to the ballroom is a kitchen in the north dormer.

The basement is entered through the maid’s staircase. It is mostly unfinished except for the wine cellar and the storage room and half bathroom. The basement is lighted by daylight basement windows.

Recent rehabilitation work has included replacing rotted structural supports on the porch, resurfacing the porch deck, tuckpointing the brick chimneys, completing electrical and kitchen remodeling, installing new brass door knobs, adding a vegetable garden, and painting the exterior.

Contributing Resources:

1 house
1 garage
Built in 1903 in the dramatic Neoclassical style, the Harvard Mansion is historically significant for its association with William Parsons, a leading financier in the Pacific Northwest, who lived in the house from 1909 until 1935 during which time he organized the largest financial institution in the region. Architecturally, the house is distinguished by a colossal Corinthian portico, full width two-story veranda, and well-preserved interior. When completed, the Harvard Mansion was the most visually prominent landmark on the north end of Capitol Hill. Today, nearly 90 years later, it remains an outstanding example of the residential architecture of its period and an important reminder of the influential career of its second owner.

Historical Background: When constructed in 1903 by Seattle contractor and builder Edward Duhamel, the Harvard Mansion was one of the first and most prominent structures in the Denny-Furhman Addition on the north end of Capitol Hill (platted in the 1890s). The Neoclassical house boasted a dramatic portico, was located on a landscaped double lot, and commanded sweeping views of the surrounding city. Even as late as 1910, historic photographs indicate that the mansion was the largest and most prominently sited of the area’s homes.

Duhamel was born in Buffalo, New York, in 1850, and became an apprentice architect in Chicago in 1867. In 1875, he moved to Texas, where he started architectural practices in Galveston and Houston. In 1889, Duhamel moved to Seattle, where he became a contractor and builder, completing commissions for buildings in Seattle, Tacoma, Port Townsend, and even Chicago.

By 1900, Duhamel was partners with John Megrath and F. M. Gribble in the firm of Megrath and Duhamel and in the Washington Brick and Tile Company, which had a capacity of making 60,000 bricks a day. In his role as builder, Duhamel worked with architects C. H. Bebb, A. Warren Gould, Saunders and Lawton, and Max Umbrecht.

Perhaps his most notable commission was the Federal Building and Post Office at Third and Union in downtown Seattle. Completed in 1900 after six years of work, the building was one of the most prominent landmarks in the young city. Although the building was demolished in 1950, other Duhamel buildings still stand including the Rainier Club and Smith Building, Squire Building, and Hambach Building in Pioneer Square.

In 1909, about a year before his death, Duhamel sold the house to William Hinckley Parsons. Parsons
was born in Oconomowoc, Wisconsin, in 1865, and began his business career in his hometown as co-proprietor of Parsons Brothers, a mercantile and department store. In 1895, Parsons moved west to Seattle, and in 1898, during the Alaska Gold Rush, went north to serve as general manager of the Ames Mercantile Company in Dawson City, Yukon Territory. From Dawson, Parsons successfully established a group of stores in Alaska. In 1903, he sold his interest and returned to Seattle.

But Parsons was soon back in Alaska. In March, 1905, he was selected by the Washington Trust Company of Seattle to open the first bank in the interior of the territory. Parsons reputedly mushed across 500 miles of ice and snow by dog sled in 15 days, arriving in Fairbanks with $100,000 in currency strapped to his waist. With this capital, he established the Washington-Alaska Bank of Fairbanks. It was the first financial institution in the area. But Parsons was able to gain the trust of miners and set up a successful credit system in the region. Within four months, Parsons' bank had deposits of two million dollars, and had shipped six million dollars in gold. After four years, having shipped over $30 million in gold to Seattle, Parsons returned to the city to assume the vice-presidency of the Washington Trust Company.

Upon his return in 1909, Parsons purchased the Harvard Mansion, next door to the house (now demolished) of his brother-in-law Edgar Webster (co-owner of the Washington-Alaska Bank and host of the summer “Golden Potlatch Festivals” held each year from 1911-1915 to celebrate Seattle’s commercial dominance of Alaskan trade).

The next year, the Washington Trust Company was absorbed by the Dexter Horton National Bank. Parsons was appointed first vice-president and director of the newly merged banks, and also became director of the Dexter Horton Trust and Savings Bank (which was later consolidated with the Horton National Bank). After 13 years as a senior officer and director of the bank--the largest in the Pacific Northwest at the time--Parsons assumed the presidency in 1922.

The 1920s were an era of great expansion in the banking industry, and under Parsons' leadership the Dexter Horton bank grew to become the leading institution in the region. In an interview with Forbes magazine, conducted in 1928 from his Harvard Avenue home, Parsons (described by the magazine as the “Northwest's great banker”) explained his theory of bank expansion. “The Pacific Northwest has moved forward with gigantic strides in the past few years,” he noted, “until it was beyond the scope of any one bank in this region to adequately finance growing industry or new industries. ... Merger was the natural solution.” In addition, Parsons stated, Seattle “must be prepared with vision and resources adequate to develop” potential Asian markets.

Parsons' commitment to this vision of large scale finance was realized in the 1920s when Dexter Horton bank subsumed two more banks into its growing empire. In 1929, the Dexter Horton Bank--largely as
a result of Parsons' efforts—absorbed the First National Bank of Seattle and the Seattle National Bank. The consolidated banks were renamed Seattle-First National Bank, and Parsons assumed the role of chairman of the board.

The merger led to the creation of the largest and most powerful bank in the Northwest, and one of the largest on the West Coast. According to the bank's corporate history, the mergers of the period reflected Parsons' philosophy that "there is strength in size; risks can be taken by a large bank that cannot be contemplated by a small bank. The fusion of the three major bank groups in 1929 flooded the bank's internal organization with competitive, aggressive managerial talent that could express itself only in growth." Parsons presided at the helm of this organization until 1934, when he retired. Even so, he remained an active director until 1948.

In 1932, with American business reeling from the Great Depression, President Herbert Hoover appointed Parsons chairman of the first Western Washington advisory committee for the Reconstruction Finance Corporation. The funds from this federal relief agency (the first created during the Depression) were used to make loans to businesses, finance public works, and provide assistance to keep banks from failing. Parsons took an active role in chairing the organization, and served until his death in 1948. In addition, Parsons was appointed President of the Seattle Clearing House Associates, which was set up to be sole judge of the value and acceptability of collateral toward the issuance of loans.

In 1935, Parsons moved to Washington Park, although he continued to own the Harvard Mansion until 1941. Parsons died in 1948.

Architectural Character: The Harvard Mansion is a dramatic example of the Neoclassical style in the residential architecture of the early 20th century. The house is characterized by a colossal Corinthian portico, full width two-story veranda, ornate classical entablature and decorative moldings, and a well preserved interior. The style of the house is complemented by its prominent setting, which affords sweeping views of the city. The application of aluminum siding in 1958 constitutes the major loss of historic integrity, although all other significant exterior and interior features remain intact. Although the house retains its dramatic character and most of its significant features, the aluminum siding diminishes the significance of the original design and therefore architecture is not identified as an area of significance for the purposes of the nomination. The Harvard Mansion was designated a City of Seattle landmark in 1990.
9. Major Bibliographical References

"Edward J. Duhamel, contractor; died yesterday, *Seattle Post-Intelligencer*, January 24, 1911.
"William H. Parsons, Chairman of merged bank," *Seattle Times*, August 11, 1929.
"William H. Parsons funeral to be held tomorrow," *Seattle Times*, July 18, 1948.

10. Geographical Data

Acreage of property less than one

UTM References

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>551035</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>5276840</td>
</tr>
</tbody>
</table>

Verbal Boundary Description

Lots 6, 7, Block 15, Denny-Fuhrman Addition, City of Seattle.

Boundary Justification

The nominated parcel includes the entire double lot historically associated with the Harvard Mansion and its second owner, William Parsons.

11. Form Prepared By

Name/title

Randy Apsel, edited by L. Garfield

organization

owner

street & number

2706 Harvard Ave. E.

Seattle

date

June 1990 (edited February 1991)
telephone

(206) 323-2743

state

Washington

zip code

98102
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

SUPPLEMENTARY LISTING RECORD

NRIS Reference Number: 91000782 Date Listed: 6/21/91

William Parsons House
Property Name

King
County

WA
State

This property is listed in the National Register of Historic Places in accordance with the attached nomination documentation subject to the following exceptions, exclusions, or amendments, notwithstanding the National Park Service certification included in the nomination documentation.

Signature of the Keeper 6/26/91

Date of Action

Amended Items in Nomination:

Statement of Significance: Under Applicable National Register Criterion B is checked. Criterion A is removed.

This information was confirmed with Leonard Garfield of the Washington State Historic Preservation Office.

DISTRIBUTION:
National Register property file
Nominating Authority (without nomination attachment)
William Parsons House
(Harvard Mansion)
Seattle, King Co., WA
UTM References:
10/551035/5276840

Mapped by the Army Map Service
Published for civil use by the Geological Survey
Control by USC&GS and King County Engineer office
Topography from aerial photographs by multiplex methods
Aerial photographs taken 1943. Field check 1949
Polyconic projection. 1927 North American datum
10,000-foot grid based on Washington coordinate system,
north zone
1000-meter Universal Transverse Mercator grid ticks,
zone 10, shown in blue
Red tint indicates areas in which only
landmark buildings are shown
No distinction is made between barns, dwellings,
commercial and industrial buildings

CONTOUR INTERVAL
DATUM IS MEAN "OR EL. H." THE AP
THE AVERAGE RANGE OF TIDE

FOR SALE BY U.S. GEOLOGICAL SURVEY, DENVER
A FOLDER DESCRIBING TOPOGRAPHIC MAPS.
Corner view of Harvard Mansion with current owners, Randy J. Apsel and Olga D. Bourlin, and daughter, Halle Hennessey, in same positions as the Parsons family in 1910 photo in Figure 26.
Figure 26. Corner view of Harvard Mansion in 1910 with William H. Parsons and Ella R. Parsons on front steps, daughter Rosamund seated to right and son William Bulk on tricycle. Compare to current

Courtesy, Allen William Engle
National Register of Historic Places
Registration Form: Roanoke Park
Historic District
United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking “X” in the appropriate box or by entering the information requested. If any item does not apply to the property being documented, enter “N/A” for “not applicable.” For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

Historic name Roanoke Park Historic District
Other names/site number

2. Location

street & number Roughly bounded by Shelby St. on the north, Roanoke St on the south, Harvard Ave on the west, and Tenth Ave on the East.
city or town Seattle
county King

3. State/Federal Agency Certification

As the designated authority under the National Historic Preservation Act of 1986, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets does not meet the National Register criteria. I recommend that this property be considered significant nationally statewide locally. (See continuation sheet for additional comments.)

Signature of certifying official/Title Date

Washington State Historic Preservation Office State or Federal agency and bureau

In my opinion, the property meets does not meet the National Register criteria. (See continuation sheet for additional comments.)

Signature of certifying official/Title Date

State or Federal agency and bureau

4. National Park Service Certification

I, hereby, certify that this property is:

entered in the National Register.
See continuation sheet
determined eligible for the National Register.
See continuation sheet
determined not eligible for the National Register.
removed from the National Register.
other (explain:)

Signature of the Keeper Date of Action
5. Classification

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>X private</td>
<td>X district</td>
<td>78 buildings</td>
</tr>
<tr>
<td>X public-local</td>
<td>X site</td>
<td>1 site</td>
</tr>
<tr>
<td>public-State</td>
<td></td>
<td>55 structures</td>
</tr>
<tr>
<td>public-Federal</td>
<td>object</td>
<td>43 objects</td>
</tr>
</tbody>
</table>

Total: 134 resources

Number of contributing resources previously listed in the National Register:
One

Name of related multiple property listing:
N/A

6. Functions or Use

<table>
<thead>
<tr>
<th>Historic Functions</th>
<th>Current Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMESTIC / Single Dwelling</td>
<td>DOMESTIC / Single Dwelling</td>
</tr>
<tr>
<td>LANDSCAPE / Park</td>
<td>LANDSCAPE / Park</td>
</tr>
<tr>
<td>RELIGION / Religious Facility</td>
<td>RELIGION / Religious Facility</td>
</tr>
</tbody>
</table>

7. Description

<table>
<thead>
<tr>
<th>Architectural Classification</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATE VICTORIAN / Queen Anne;</td>
<td>foundation Concrete, Brick, Stone</td>
</tr>
<tr>
<td>LATE 19TH & 20TH CENTURY REVIVAL;</td>
<td>walls Wood, Brick, Stucco, Stone</td>
</tr>
<tr>
<td>Colonial Revival, Tudor Revival,</td>
<td>roof Asphalt, Wood, Metal</td>
</tr>
<tr>
<td>Mission/Spanish Colonial Revival, Italian</td>
<td>other Terra Cotta</td>
</tr>
<tr>
<td>Renaissance; LATE 19TH & EARLY 20TH CENTURY AMERICAN MOVEMENT;</td>
<td></td>
</tr>
<tr>
<td>Bungalow / Craftsman</td>
<td></td>
</tr>
</tbody>
</table>

Narrative Description:
SEE CONTINUATION SHEET
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

- A Property is associated with events that have made a significant contribution to the broad patterns of our history.
- B Property is associated with the lives of persons significant in our past.
- C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.
- D Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark "x" in all the boxes that apply.)

Property is:

- A owned by a religious institution or used for religious purposes.
- B removed from its original location.
- C a birthplace or grave.
- D a cemetery.
- E a reconstructed building, object, or structure.
- F a commemorative property.
- G less than 50 years old or achieving significance within the past 50 years.

Areas of Significance
(Enter categories from instructions)

ARCHITECTURE

COMMERCE

LAW

POLITICS/GOVERNMENT

Period of Significance
1899–1939

Significant Dates
1899, 1909, 1918, 1919, 1926, 1929, 1937

Significant Person
(Complete if Criterion B is marked above)

Cultural Affiliation

Architect/Builder
Green, Elmer E.; Dwyer, W.E.; Ivey, Edwin J.; Ayer, Elizabeth; Sexton, Frederick; Wilcox W.R.B.; Sayward, William J.; Willatsen, Andrew; Gould, Carl F.; Huntington, Daniel R.; Lawton, George A.; Moldenhour, Herman A. (Architects)

Narrative Statement of Significance
(Explain the significance of the property.)

SEE CONTINUATION SHEET

9. Major Bibliographical References

Bibliography
(Cite the books, articles, and other sources used in preparing this form.)

SEE CONTINUATION SHEET

Primary location of additional data:

X State Historic Preservation Office
Other State agency
Federal agency
X Local government
X University
Other

Name of repository:
UW Special Collections; MOHAI;
City of Seattle DPD Office
10. Geographical Data

Acreage of Property
Approx. 18.25 acres

UTM References
(Place additional UTM References on a continuation sheet.)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5 50 917</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>5 51 142</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5 27 198</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>5 50 917</td>
</tr>
</tbody>
</table>

Verbal Boundary Description
(Describe the boundaries of the property.)
See continuation sheet.

Boundary Justification
(Explain why the boundaries were selected.)
See continuation sheet.

11. Form Prepared By

name/title/org Erin O'Connor, Lee O'Connor, Cheryl Thomas (Edited by DAHP Staff) date March 2009
name/title/org Friends of Roanoke Park; Roanoke Neighborhood Elms Fund
street & number 2612 Tenth Avenue East (10th Avenue E) telephone (206) 322-2125
city or town Seattle state WA zip code 98102

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets
Maps
A USGS map (7.5 or 15 minute series) indicating the property's location.
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional Items
(Check with the SHPO or FPO for any additional items.)

Property Owner (Complete this item at the request of the SHPO or FPO.)

name Various
street & number ______________________________ telephone ______________________________
city or town ______________________________ state ______________________________ zip code ______________________________
Narrative Description:

Period of Significance
The Roanoke Park Historic District contains a distinctive collection of housing stock representative of a forty-year period from 1899 through 1939. One house was built as a duplex; all of the other properties were built as single-family residences except the 1961 St. Patrick's Church. Block 9 of the district is Roanoke Park, so designated in 1908.

Provenance
The two oldest houses in the Roanoke Park Historic District, having been built in 1899 and 1900, are 109 and 108 years old, respectively. Forty-eight of the houses (including the two just mentioned) in the Roanoke Park Historic District will be at least 100 years old by the end of 1909, as is Roanoke Park itself already. By the end of 2010, the centenary of the district's housing boom, a total of 63 percent of the 100 buildings in the district will be 100 years old.

Architectural styles ranging from Colonial Revival, Neo-classical Revival, Tudor Revival, Mission/Spanish Revival, English Arts and Crafts, Craftsman, American Foursquare, Italian Renaissance, French Norman Revival, and many subtypes, combinations, and permutations of such styles and others ("Eclectics") provide architectural representation, variety, and interest.

The residential work from 1900 through the 1920s of architects Eric Almquist, Bebb & Gould, Beezer Bros., Bertrand & Chamberlin, Cutter & Malmgren (undocumented, but a strong possibility for Site ID #14), Edward J. Duhamel, W. F. Dwyer (four houses), Julian Franklin Everett, Elmer Ellsworth Green (two houses), Virgil Hall, Charles Haynes, Hunt & Wheatley, Huntington & Gould (two houses), Edwin J. Ivey (two houses), Alvin L. Johnson, Lawton & Moldenhour, McClelland & Pinneh, Edward L. Merritt, Merritt, Hall & Merritt, Frederick A. Sexton (two houses), Bertram Dudley Stuart, Victor W. Voorhees (two houses), Thomas L. West, Arthur Wheatley, W. R. B. WIlcox, Wilcox & Sayward, and Andrew Willatsen, and later, in the 1930s, of T. F. Bellamy and John I. Mattson, is represented by houses in the district, as is landscape design work undocumented but attributed to architect Elizabeth Ayer and the craftsmanship of many fine builders and designer-builders. Many of the houses in the district have been featured as exemplars in northwest architectural reference books since 1913, and their appearances in those books will be noted in the course of the inventory.

1 The 100 count includes St. Patrick's Church (1961).
District Integrity
The integrity of the Roanoke Park Historic District is high with a 78 to 21 ratio of contributing vs. non-contributing resources. Over the years the neighborhood’s residences have largely escaped the radical remodeling projects that have marred many historic houses in and around Seattle.

And after a long period of sheltering residents whose children had grown up and moved away, the district is alive again with at least 100 children and counting. Their young parents, many with jobs in the area’s high tech companies, moved into the neighborhood during the 1990s and the first decade of the twenty-first century. Sensitive updating that preserves the architectural integrity of the houses while bringing them in line with modern standards of comfort has been the order of the day.

Setting
The Roanoke Park Historic District lies in the approximate center of Seattle, at Latitude 47° 37' N and Longitude 122° 38' W, about 148 feet above sea level, on the lower north Capitol Hill plateau that tops the Denny-Fuhrman Addition (in Section NE 20/Township 25/Range 4) and the Denny-Fuhrman Addition Supplement (Section SE 17/Township 25/Range 4) platted by David T. Denny and Henry Fuhrman.

The plateau is bounded on the north by E Shelby St, on the west by Harvard Ave E, on the south by E Roanoke St including the Gates-Bass Mansion at 1018 E Roanoke St, and on the east by Tenth Ave E. In this district, Broadway Ave E, in the three blocks running along the west edge of Roanoke Park and on north to E Shelby St, was once known as Mansion Street. E Shelby St is continuous from Harvard Ave E to Fuhrman Avenue E and thus blocks the further progress of Broadway Ave E and Tenth Ave E (and the further progress of Eleventh Ave E, which is immediately below the plateau). The houses on E Shelby St that lie on the plateau and within the Roanoke Park Historic District run from 808 through 1000 E Shelby St. Note that the north side of E Shelby St is in Block C of the Denny-Fuhrman Supplemental Addition (or Denny-Fuhrman Addition Supplement).

On all sides of the plateau, abrupt changes in topography distinguish the district from surrounding streets. On the west, the Interstate-5 “moat” divides Harvard Ave E from Boylston Ave E before a steep descent to Lake Union. On the south, the SR-520 moat isolates the plateau from a steep ascending hill on the other side. A steep descent to Lake Washington marks the eastern border of the district, and the properties on which the houses along E Shelby St sit at the top of the plateau drop precipitously to an alley on the north between E Shelby St. and E Gwinn St below.

Views abound. On the east side of the district, residents at the top of the E Shelby St, E Hamlin St, E Edgar St, and E Roanoke St hills enjoy the morning sun and watery views of the Montlake Cut and the exquisite Montlake drawbridge (1925) with its neogothic control towers. All along the ridge going south along Tenth Ave E, from E Shelby St to E Roanoke St, residents enjoy views of the Portage Bay house boats below and, across the bay, the Colonial Revival Seattle Yacht Club (1919–1921) with its red roof, enduring mock lighthouse, and trim blue and white. A school of sailboats with the advanced students’ lime-and-navy-striped sails or the novice’s white are likely to appear in the foreground, near the Queen City Yacht Club at the bottom of the plateau.

In the distance, the view includes Kirkland across Lake Washington and the mirrored skyscrapers of Bellevue. The Cascade Mountains rise up behind. Both the Collegiate Gothic Suzzallo Library and many more recent buildings of the University of Washington are visible across the bay to the northeast, and the roar of the stadium crowd on a fall football day is audible—as is the only slightly more subdued enthusiasm of crew competition fans lined along the Montlake Cut between Portage Bay and Lake Washington on a Saturday morning. Northeast Boat Street with its marine businesses and restaurants runs along the northeast bank, and NOAA’s large laboratory ship docks alongside the NOAA building between voyages of discovery.

On the west, Harvard Ave E residents enjoy views of the downtown skyscrapers, the Space Needle, and the setting sun over tiny Lake Union with its ships in dry dock and its boats, seaplanes, and historic floating homes on the water. The industrial structures of landscape architect Richard Haag’s internationally famous Gas Works Park are to the north. The Aurora Bridge, the east side of Queen Anne’s hill, and the rugged Olympic Mountains make for a dramatic backdrop.

Down the hill to the north, on E Gwinn St, a long, uninterrupted street of modest bungalows built in the 1920s and largely unaltered sit back on their lawns, lining both sides of the street from Fuhrman Avenue East to Harvard Ave E.
Streetscape
A Seattle Architectural Foundation walking tour brochure described the neighborhood surrounding Roanoke Park as “a quiet, largely unexplored island of tree-lined streets with lovely residences that reflect early 20th century home styles.” Parcel sizes as originally platted are mostly 50 feet wide and 110 feet deep. A few of the grander houses on intersection corners, the granite Vivekananda House in the middle of the 2700 block of Broadway Ave E, and the Italian Renaissance Mylroie House in the center of the three blocks of E Shelby St that lie on the plateau occupy more than one parcel.

The houses sit back on their lawns and hillsides, and fences rarely interrupt the long views down the avenues. Most curb lawns contain mature shade trees, ornamental fruit trees, or younger saplings planted by neighbors and other volunteers in recent years under the aegis of the Seattle Department of Neighborhoods Street Tree Program.

Most of the garages were built to cohere with the styles of the houses. Many of the attached and lower-level garages have been converted to residential uses. A few of the detached garages have been converted to residences and studios. Driveways to garages in the rear of lots appear infrequently as the lots are relatively narrow. Most of the detached-garage entrances face the alleys. A few of the houses share single driveways from the street to each of two garages. Most of the garages were built on the property lines in the days before modern setback requirements. Owners tend not to tear them down because they would have to site replacement garages farther inside their narrow lots.

A Heritage of Mature Shade Trees
The twenty-five mature elms in Roanoke Park and on the immediately surrounding streets are 100 years old and have been identified by City Arborist Nolan Rundquist as a “significant elm cluster.” In recent years, residents have organized a Roanoke Neighborhood Elms Fund for prophylactic pruning and injections to ward off Dutch elm disease (DED), recently arrived in the Northwest.

To keep elm consciousness high, the Roanoke Neighborhood Elms Fund successfully nominated the handsome elm in the center of the park’s west lawn as a Heritage Elm within the City of Seattle, marked by a small boulder and plaque at the elm’s foot.

6 In conversation during a meeting about the risk of Dutch elm disease (DED) to elm stands in the city, with residents Robert Buchanan and Erin O’Connor and commercial arborist John Hushagen, of Seattle Tree Preservation, 4-2-2002.
Along with an allee of elms in the curb lawns along E Edgar St from Tenth Ave E to Harvard Ave E and the elms in Roanoke Park and along the St. Patrick’s Church curb lawns, are towering Horse Chestnuts and Hedge Maples in some of the district’s generously wide curb beds.

Landmark Sites

Beloved local landmarks—Grasshopper Hill (the steep, unpaved block of E Edgar St between Tenth Ave E and Eleventh Ave E), Devil’s Dip (the traditional sledding hill—the Gates-Bass Mansion is at the top of the hill), and the Bagley Wright Viewpoint across E Roanoke St from the Gates-Bass Mansion, (formerly a viewpoint at the western end of Interlaken Park that was isolated from its park by the SR-520 freeway) round out a description of the neighborhood but for Roanoke Park itself. Longtime resident Gerry Conley cuts the grass on Grasshopper Hill, and he and neighbors Anne and Ned Neal have seen to the planting of Rhododendrons and other shrubs plus the pruning of several large trees on the hill. The late Tom Owens planted many of the trees on Grasshopper.

Roanoke Park 1908

Roanoke Park is the district’s jewel, a 2.2-acre, green gateway to a distinguished neighborhood and an antidote to the arterial and freeway traffic to the west and the south. Originally intended by the Olmsted Brothers to be the Roanoke terminus of Interlaken Park, which is now to the southeast off Delmar Drive, Roanoke Park, which occupies all of the Denny-Fuhrman Addition’s Block 9 and the two “parklands” on the south side of E Roanoke St, on either side of Tenth Ave E, has been isolated from the rest of Capitol Hill by SR-520. Resolution No. 152, dated 11-14-1929, an exhibit in Don Sherwood’s history of Seattle’s Parks, says in part,

> Be it resolved that one park, viz., Roanoke Park, and the public squares at street intersections, be set aside as memorial sites and that memorials shall not be erected in other parks in the City of Seattle."

7 Don Sherwood, History Files, a handwritten history of Seattle’s parks that for Roanoke Park includes among its exhibits the 5-14-1896 Sheriff’s Deed that describes the City’s earlier lawsuit against David T. Denny, et al., the judgment of which had decreed a public auction of Denny’s lands 5-3-1895, in front of the Courthouse door. The deed goes on to say that the City of Seattle, highest bidder, had bought many of the lots on some of the blocks for a total of $15,396.80. According to Sherwood’s account, Block 9, for Roanoke Park, although included in the property description in the 1896 deed, had been held out of the public Sheriff’s Sale in 1895, had been paid for by the City in 1900, and was transferred to the Parks Department’s jurisdiction in 1908.

Copies of a map, the Sheriff’s Deed, the Sherwood account, and a Resolution No. 152 were furnished by resident, former history teacher, and architectural restorer Don Logan, March 2008. A version of Sherwood’s history that includes the map and a typewritten copy of Sherwood’s handwritten account but does not include the Sheriff’s Deed (filed for record 5-22-1896, and in Recorded Volume 185 of Deeds, page 314) and Resolution 152 (with a handwritten note that it is to be filed in “Fountains & Memorials”) exhibits is available online at www.Seattle.gov/parks/history/sherwood.htm (accessed 10-14-2008).

8 Don Sherwood, History of Seattle Parks, exhibit “Resolution No. 152.”
The resolution was passed by the Board of Commissioners, but, like the old No Ball playing sign embedded in the trunk of the Heritage Elm in the center of the park’s west lawn, just above home plate, the resolution was honored more in the breach than in the observance. Roanoke Park in fact had no memorials at all until the plaque honoring the Heritage Elm, a kind of memorial, was installed a few years ago, in 2003.9

Roanoke Park has undergone an extensive renovation over the past ten years. Working with the Parks Department, the Department of Neighborhoods, and resident University of Washington Professor Emeritus of Landscape Architecture Robert Buchanan, residents and other volunteer groups have planted some 500 trees in the neighborhood and at least 100 trees and thousands of shrubs and perennials in Roanoke Park, which now contains 79 varieties of trees. Parents and other residents worked with the Parks Department to reconfigure, resurface, and re-equip the Buchanan-redesigned playground at the north end of the park, and Buchanan laid out a more pleasing, curving path and bed configuration to encourage strolling along the park’s paths and new beds. The informal basketball court under the evergreens was “formalized” with a concrete pad, and a new hoop at standard height was installed. As a result of these improvements, Roanoke Park has become a destination park for people from outside the neighborhood. Residents have bought new and more park benches to encourage visitors to spend time in the park.10

The Garrett-Erickson Mansion and St Patrick’s Church
On March 5, 1959, in anticipation of losing its church, rectory, and elementary school farther up the Tenth Ave E hill at East Lynn Street to Interstate-5, St. Patrick’s Parish bought the Beezer Bros.—designed Garrett-Erickson Mansion at 815 E Edgar St, on the southwest corner of E Edgar St and Broadway Ave E, and four other lots. The church tore down the Garret-Erickson Mansion and most of the property’s handsome perimeter wall designed by Bebb & Gould, and constructed St. Patrick’s Church (1961).

According to St. Patrick’s neighbor and lifelong resident David Storm (b. 1928), the mansion had been occupied during his boyhood by John F. Erickson, who had been a naval surgeon.11 All that remains of the

9 Sherwood himself complained that “by 1974 there wasn’t even a ‘memorial’ tree in the Park, although an effort was made in 1941 to place the bust of Dr. M.A. Matthews, reformation preacher, but it went to Denny Pk.”

10 Both mature trees and some of the new trees in Roanoke Park have botanical interest enough to have been included in the second edition of Arthur Lee Jacobson’s Trees of Seattle: The Complete Tree-finder’s Guide to the City’s 740 Varieties, 2d edition (Seattle, 2006).

11 In conversation 2-10-2005. Also Polk Seattle Directory 1910 (Seattle: R. L. Polk & Co., 1910). Subsequent data from Polk directories for various years will not be footnoted. Note that some addresses in the district and some other addresses in Seattle in earlier days had no directional designators or, in the case of the Roanoke Park Historic District, no directional designator or the designator “North” rather than “East.” Addresses in this district inventory will use the current East directional designator for all streets and avenues.
Garrett-Erickson Mansion is a tennis court wall. The Mansion garden also featured a pergola (called a "summer house" in the City of Seattle's Property Record Card for the address)\(^\text{12}\) and a pond.\(^\text{13}\)

Before it was finished, St. Patrick's Church would own two more houses with their lots (purchased 4-8-1960 and 6-28-1960), west of the Garrett-Erickson Mansion, and turn them into part of its blacktop parking lot.\(^\text{14}\) The Property Record Cards for those houses show Fee Owner R. O. Mylroie 5-15-1939 and that the houses were "wrecked" 2-14-1961.

Three houses that the Church purchased were left intact: the handsome Andrew Willatsen-designed Neterer House (1915) that now serves as the parish house (Site ID #5), the Hanson House (1911, "Broadway House," Site ID #2) subsequently sold to the Low-Income Housing Institution, and the Hillman House (1912, "Roanoke House," Site ID #1) subsequently sold to Shepherd's Counseling Services.

The St. Patrick perturbations, the building earlier of a one-storey house at 2617 Broadway Ave E (Site ID #4, 1942), then of two privately owned post–World War II smaller brick cottages at 2636 (Site ID #38, 1945) and 2632 (Site ID #37, 1946) Harvard Ave E, and of course the complete disappearance of all of the residences along the west side of Harvard Ave E (and the east side of Boylston Ave E) to make way for Interstate-5 just about account for the changes to the plateau since the settlement that began in 1899. An additional change was the relatively recent transition of the property at 2600–2606 Harvard Ave E from a Standard Oil gas station (Fee Owner Jacob R. Hiller 1937)\(^\text{15}\) to the Flower Lady's stand, to a single-storey residence at 2606 (1979) and the contemporary Thomas/Lane Mansion at 2600 (1991). Assessments of at least two historic houses near the gas station had been revalued down as a result of gas station "damag"\(^\text{16}\) during its tenure on the property. The two historic houses (the Clemmer House and the King House) have recovered their value and then some.

\(^{12}\) Property Record Card for Block 8, Lots 13 through 16, Puget Sound Regional Archives (Bellevue, Wash.).
\(^{13}\) Resident Dave Storm in conversation 2-9-2006.
\(^{14}\) Kavanaugh, 48.
\(^{15}\) Property Record Card for Block 8, Lots 7-8.
\(^{16}\) Property Record Cards for Block 8 Lots 6 and 4.
Non-Contributing Properties
The seven structures built after 1939—the house built in 1942 (Site ID #4), the two brick cottages built in 1945 (Site ID #38) and 1946 (Site ID #37), St. Patrick’s Church erected in 1961 (Site ID #28), the residence built in 1979 (Site ID #34), the 1991 mansion (Site ID #33), and another large house built in 1991 (Site ID #84)—appear as Non-Historic Non-Contributing properties in the inventory. Fifteen houses in the district that were built during the 1899-1939 period of significance have been altered to the extent that their classification in the inventory is Historic Non-contributing. The William H. Parsons House, also known as the Harvard Mansion (1903-1909), was previously listed on the National Register as an individual property.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Primary Building</th>
<th>Accessory Structures</th>
<th>Total Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributing</td>
<td>78 + 1 (site)</td>
<td>55</td>
<td>134</td>
</tr>
<tr>
<td>Non-Contributing</td>
<td>21</td>
<td>22</td>
<td>43</td>
</tr>
<tr>
<td>Total Resources</td>
<td>100</td>
<td>72</td>
<td>172</td>
</tr>
</tbody>
</table>

INVENTORY OF PROPERTIES

2600 Block of Broadway Ave E

Site ID #1 2601 Broadway Ave E (formerly 818 E Roanoke St) Built: 1912
Historic Name: Betterton-Hillman House
Contemporary Name: Roanoke House
Denny-Fuhrman Addition Block 8 Lot 9
Style: Craftsman with Prairie influences Builder: J. F. Erickson Architect: Elmer E. Green
Classification: Historic Contributing
Description: Building Permit No. 109643, dated 1-4-1912, authorized applicant, owner, builder J. F. Erickson, of 2448 Harvard Ave E, to build a two and a half-story residence 34 feet by 57 feet designed by architect Elmer Ellsworth Green.¹⁷ The substantial-looking house of brick veneer construction with

¹⁷ Seattle building permit microfilm rolls at the Microfilm Library, City of Seattle Department of Planning and Development (DPD), 700 Fifth Avenue, Suite 2200, Seattle, WA 98124-4010. The Library’s microfilm rolls make available films of building permits from 1908 through 1938. Some houses dated 1908 had building permits applied for in 1907, so that their building permits are not accessible. Building permits provide some basis for corrections to or corroboration of the build dates furnished in the City of Seattle’s online parcel data and the King County Assessor Real Property online data, which are based on
Craftsman details features a hipped roof with a central large gabled dormer similar to the one on the house next door at 2609 Broadway Ave E and generously sized gabled dormers on the sides and rear of the house. A large two-storey porch is centered under the front gable. A small one-storey porch on the East Roanoke side of the house has been glazed, probably as a defense against the traffic streaming by on its way to Harvard Ave E and the freeway entrance for northbound traffic. The current entrance to the house is on that porch, accessed by a sidewalk and steps on the south side of the front of the house. The two-storey porch centered on the front of the house has been converted to a two-storey balcony by the simple expedient of removing its steps.

Cultural Data: The house next door, at 2609 Broadway Ave E, has been attributed to Elmer Ellsworth Green as well. Perhaps the designs for both houses come from Green’s pattern book, *Practical Plan Book* (1912) or another plan book. Building Permit No. 96651, for 2609 Broadway Ave E, which could have provided corroboration or not that E. E. Green designed both houses, is missing from the microfilm collection at the Department of Planning and Development.

In 1910, John F. Erickson (sometimes Erikson), who played a long and prolific role in the neighborhood’s development, particularly in its southwest end, owned the corner Lot 9 of Block 8. Erickson, who according to the 1910 Polk directory, lived with his family up the hill at 2448 Harvard Ave E, was the first owner of the house, which was built in 1912. It’s doubtful that Erickson built this house as other than an investment. The Ericksons had a large menage up the hill and eventually moved into and added to the Garrett-Erickson Mansion (1915, destroyed) at the other end of the block on four lots at the southwest corner of E Edgar St and Broadway Ave E.

The first owner-resident, by 1915, was Charles L. Betterton (wife Maude L.), who according to a 1916 Polk directory entry was president of Betterton-Morgan Co., an investment company, and lived at 818 E Roanoke St, which was the address of the house then. By 1925, “Ruth A. Hiller” (should be “Hillman”) owned the house on the northwest corner of Broadway Ave E and E Roanoke St. “T. K. Hillman Co.” (the scribe probably misheard “C. K. Hillman”) paid the taxes that year. Ruth A. “Hiller,” shown on the Tax Assessor rolls, is probably a misnomer, too, from Jacob R. and Jessie S. Hiller’s ownership of adjacent property in the block. J. R. Hiller is listed in the Polk directory as a salesman.
To add to the confusion, two Ruth A. Hillmans show up in early census data. R. A. Hillman (Ruth A. Hillman, (formerly Ruth Allyne Johnson, b. 1893), who owned the house in 1925, would have been 37. Another Ruth A. Hillman was born to Clarence Dayton Hillman (1870–1935), the rapscallion, imaginative, and energetic developer who in addition to founding Hillman City in the Rainier Valley and Kennydale (named after his wife, Bessie Kenny) imposed elaborate real estate scams on the unsuspecting. That Ruth A. Hillman was born in 1909 and is less likely to be the owner in 1925 since she would have been only 16.

Both Hillman lines had an unfortunate habit of changing first and middle names over time, so it becomes difficult to keep the two Hillman families sorted out. The C. Kirk Hillman family (sometimes known as the Charles K. Hillman family, not to be confused with C. D. Hillman’s son Charles K. Hillman, who was born in 1911, or with C. Kirk Hillman’s own son, C. Kirk Hillman, who was born in 1918 and is sometimes known as C. Van Kirk Hillman, Charles Vankirk Hillman, Jr., and Van Hillman) inhabited the house starting in 1925. C. Kirk Hillman the elder and his wife, Ruth A. (Johnson) Hillman, had four sons and a daughter. The first son, William W. Hillman, died early of a blood disease. The second son, Van Hillman, founded Seattle’s Polyclinic. Third son, Donald E. Hillman, was an ace World War II pilot, the most decorated WWII serviceman in the state of Washington, and a German POW. He paid a recent visit to the house. The fourth son, Malcolm, was born in 1923. Finally, just to keep matters confusing, a daughter,
Ruth Allyne Hillman, close contemporary of Dave Storm and a playmate, was born to C. Kirk Hillman and Ruth Allyne (Johnson) Hillman in 1927. C. Kirk Hillman (the elder) was a manufacturer of electrical machinery for resource extraction, both mining and logging. His wife, Ruth Allyne (Johnson) Hillman, had majored in and then taught Domestic Science at the University of Washington, and her son Don Hillman averred, “She ran a tight ship.”

Accessory Structure: None. Built:
Description: The Volume 4 Sanborn map of the district shows no accessory dwellings, and there is none today.

Site ID # 2 2609 Broadway Ave E Built: 1911
Historic Name: Johnson–Hanson House
Contemporary Name: Broadway House
Denny-Fuhrman Addition Block 8 Lot 10 Legal: 1959700440
Style: Arts & Crafts Builder: Architect: Elmer Ellsworth Green
Classification: Historic Contributing
Description: A two-storey brick house with a full-width, two-storey front porch. The house has a hipped roof with broad boxed eaves underlined by ornate modillions. A large center gable dormer with stucco finish is on the main façade. It features Craftsman knee brackets and decorative cut barge boards. The windows are original. Half of the second storey porch has been enclosed. The double wood porch supports resting on brick stands feature decorative mortise and tenon detailing. The second floor porch is highlighted by tapered columns and an arched balustrade. The entrance is via a door on the right side of the house over which a gable protruding beyond the porch roof proper is centered. The mortise and tenon motif is carried out on the porch gable’s façade.
Cultural Data: In addition to publishing his Practical Plan Book (1912) from which the designs for 2601 and 2609 Broadway Ave E might have come, Elmer Ellsworth Green designed many residences and
apartment buildings. His house for B. L. Gates at 1018 E Roanoke St (Site ID #52) and his house at 903 E Roanoke St for Captain David Gilmore (destroyed to make way for SR-520), both substantial houses, were typical of the grand, one-off designs by even pattern book architects of the time. The Gilmore house appears in a photo in Homes and Gardens of the Pacific Coast: Seattle 1913.26

Oscar Johnson, who participated in the building of many houses and other structures in the district, was the first owner-resident of the house at 2609 Broadway Ave E.

Johnson's brief residency tends to be overshadowed, though, by that of Ole Hanson (1874–1947), the second owner-resident of what is now known as Broadway House. Ole Hanson came on the Seattle scene as a real estate developer, and he, his wife, Nellie, and their eventual eight children lived at 2609 Broadway Ave E before and during his brief tenure as Seattle's mayor (1918–1919). In 1911, according to that year's Polk directory, Ole Hanson was the president of Ole Hanson & Co. Inc. and secretary-treasurer of A. H. Reid Real Estate. By 1918, he was Seattle's mayor. (The mayorship had become a non-partisan office in 1910.)

The mayor saved many lives by closing public businesses and schools (an unpopular move) as a health safeguard during the deadly flu epidemic of 1918.27 (Even so, more than 1300 Seattle citizens died of the influenza.) Less heroic was the mayor's participation in the City of Seattle's purchase in 1918 of most of Puget Power's streetcar lines. The lines were said to be overvalued, at three times their actual worth, and the city's purchase left it deeply in debt to Stone & Webster, the predatory eastern company that tried to use the debt as a wedge into privatizing and monopolizing the supply of all power to the City of Seattle. Walt Crowley's version of the story goes on to exonerate the mayor somewhat, reporting that a grand jury found the mayor "guilty of stupidity" but not of criminal conspiracy.28

Mayor Hanson next leveraged the Seattle General Strike of 1919, which appeared to fizzle on its own after four days but which Hanson claimed to have broken on behalf of anti-Bolsheviks everywhere in this time of the Red Scare. Having survived a flu epidemic and a grand jury inquiry, and ready to capitalize on the Seattle General Strike, Hanson embarked on a national lecture tour. Exploiting the self-generated publicity about his heroic role in breaking the strike, he even wrote a book about the strike and his role in foiling it. He was also an aspirant for the Republican nomination for the presidency, which went to Warren G. Harding.

25 Katheryn Hills Krafft, "Green, Elmer Ellsworth" entry in "Additional Significant Seattle Architects," in Ochsner, 344.
26 Frank Calvert, ed., Homes and Gardens of the Pacific Coast: Volume 1 Seattle, 1913 (Beaux Arts Village, Lake Washington: Beaux Arts Society, 1913), no page numbers; republished by Christopher Laughlin, ed. (Seattle: Allied Arts of Seattle, 1974), no page numbers.
27 Kavanaugh, 47.
29 Walt Crowley, HistoryLink.org essay.
Hanson and his family had relocated to California 3-18-1919, and, no doubt after reviewing all of his options, Hanson sent a letter back to Seattle resigning his mayorship 8-28-1919. In California the energetic Hanson founded San Clemente, later to be the site of the West Coast White House of President Richard M. Nixon. In San Clemente, Hanson engaged the services of Kirtland Kelsey Cutter for the design of the Hotel San Clemente in 1930, but the hotel was never built.30

C. B. Fitzgerald was appointed to serve out Hanson’s two-year term in 1919. In 1920, Hugh M. Caldwell, who lived in the district at the same time as Ole Hanson, a short block and a half away, and even closer to Judge Jeremiah Neterer (Site ID #5) before whom he had pleaded a streetcar case as the City’s Corporation Counsel, defeated Fitzgerald in the next mayoral election. See 2717 Tenth Ave E (Site ID #79) for an account of Caldwell’s distinguished career as public servant and Mayor of Seattle. And see 2702 Broadway Ave E (Site ID #5) for more on the Hon. Jeremiah Neterer.

Accessory Structure: Single-car frame garage on west side of house. **Built: 1913**

Description: Historic Contributing.

Building Permit No. 123183, dated 5-21-1913, authorized owner-resident Oscar Johnson, of 2609 Broadway Ave E, to build a one-storey concrete garage 18 feet by 18 feet. The garage has a concrete floor and a steep, hipped composition roof. It appears on the Volume 4 Sanborn map and is still standing but is in bad condition.

Site ID #3 2611 Broadway Ave E **Built: 1924**

Historic Name: Storm, Jerome R. and Dorothy, House

Contemporary Name: Storm, David, House

Denny-Fuhrman Addition **Block 8 Lot 11** **Legal:** 1959700445

Style: Composite Tudor **Builder:** Eric Almquist **Architect:** McClelland & Pinneh

Classification: Historic Contributing

Description: Building Permit No. 229491, dated 12-10-1923, authorized owner J. R. Storm, of 816 E Shelby St, to have contractor Eric Almquist build a residence per plan filed, 33 feet 2 inches by 38 feet 11 inches, designed by McClelland & Pinneh. The one and a half storey house31 has a steep, bellcast hipped roof with a projecting gable entry wing on the main facade. The entry wing has a sweeping “catslide” roof. The recessed entry porch set into the low side of the sweep has a glazed fanlight, an unusual detail. A hipped-roofed 24-light bay window is on the first floor of the entry wing, and a Palladian window with a stylized...

31 King County Assessor Real Property [online] Report. In addition to a build date that might or might not be strictly accurate and other information, the Report for each property provides a description of each house along with block and lot numbers and news of current owners and recent sales.
elongated keystone is above the bay on the second floor. Two smaller multi-light windows are on the left side of the first story, which has a slightly overhanging modillioned eave. A small shed-roofed dormer with a four-light window is above.

Cultural Data: The Storm house was designed by McClelland & Pinneh. Robert “Jack” McClelland was MIT-trained and had worked as a draftsman before founding a partnership with Edward F. Pinneh in 1922. In 1930, the two added Victor N. Jones to the partnership. Pinneh left the firm in 1933, and Jones remained with McClelland until 1946. Around 1952, after Jones had left the firm, McClelland formed a lasting partnership with Hugo Osterman. Among their many commercial commissions was the Lundquist-Lilly Men’s Wear store (1955—see Site ID #24). Robert F. McClelland was president of the American Institute of Architects (AIA) Seattle Chapter in 1934, 1935, and 1936.32

Contractor Eric Almquist, was the builder of record for the Storm House. He built several other houses in the district.

Jerome R. Storm, who also owned Lot 12 in 1-2-24, is shown as the first owner.33 He was an independent insurance man who invented the insurance umbrella symbol and gave it to his former employer, the Traveler’s Insurance Co. His wife, Dorothy Anderson Storm, is shown as Fee Owner of the property at 2611 Broadway Ave E in 1923 and years following.

Dorothy Storm was one of six children of Aaron. Frederick Anderson, who relocated into the neighborhood from Michigan after attending the Alaska-Yukon-Pacific Exposition of 1909. A. F. Anderson had interests in many properties in the neighborhood, including his own residence at 816 E Shelby St.

Jerome and Dorothy Storm’s son, Episcopal priest David Storm, has lived most of his life (since 1928), in the house at 2611 Broadway Ave E. Dave remembers many of the original neighborhood parents and played with their children in houses all over the neighborhood.34

Accessory Structure: Garage on southwest corner of lot.

Built: ca. 1924

Description: Historic Contributing.

Building Permit No. 229491, for building the residence, also authorized the building of a garage 17 feet by 19 feet with a concrete floor, alley entrance, doors opening on private ground, 15 feet from a door or

33 City of Seattle Side Sewer Card 3551.
34 The mysterious S. Womnile, who owned several lots in the neighborhood before they were improved and owned this lot before the house was built, has eluded the writer’s detection in all sources so far. The closest to the name discovered thus far is Welthy Womnell, said to be the widow of Eugene Womnell. The tax rolls transcriptionist might have gotten the name entirely wrong. Another possibility is Seymour Wetmore, whose name appears on a street in the Mt. Baker area.
window of the dwelling on the next lot, and allowed to be on the property line. A 6-inch retaining wall 18 inches into the ground was included as well. The steep-hip-roofed garage in keeping with the house’s style appears on the Volume 4 Sanborn map and is in good condition.

Site ID #4 2617 Broadway Ave E Built: 1942
Historic Name: Winter, Sr., Al, House
Contemporary Name: Worley, Providence, House
Denny-Fuhrman Addition Block 8 Lot 12 Legal: 1959700450
Style: Spanish Colonial Revival Builder: Architect:
Classification: Non-Historic Non-Contributing
Description: A one-storey newer house. The house exterior is an example of an extruded mortar style of brickwork. A large arched window is on the left, protruding side of the house. The recessed entrance is on the left, on the long side of the sideways (rotate right 90 degrees) “L” formed by the living room wing and the rest of the house.

Cultural Data: The Property Record Card for Block 8, Lot 12, shows that the lot belonged to John Erickson of “815 Edgar St 10-17-34” and “7-30-36.” The tennis court wall on the north side of the house is the only extant relic of the Erickson Mansion, which was torn down to make way for St. Patrick’s Church and parking in 1961. Despite material shortages during World War II, the house was built by Al Winter, Sr., as a wedding gift for his son and his bride in 1942. Perhaps the shortages kept its size relatively small compared to the sizes of most houses in the district just as the depression had kept the sizes of the only three houses built in the 1930s relatively small.

Accessory Structure: Detached garage Built: 1940s
Description: Non-Historic, Non-Contributing
The detached, hip-roofed, two-car garage on the southwest corner of the lot is shown on the Volume 4 Sanborn map and is still in use.

35 King County Assessor Real Property [online] Report.
36 Puget Sound Regional Archives.
37 Marilyn Kavanaugh in an e-mail to Erin O’Connor, Monday, April 21, 2008.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet -
ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 7
Page 16 of 121

2700 Block of Broadway Ave E

Site ID # 5
2702 Broadway Ave E
Built: 1915

Historic Name: Neterer, Jeremiah and Sarah E. (Becker), House
Contemporary Name: St. Patrick’s Parish House

Denny-Fuhrman Addition
Block 14 Lot 7 and S 10’ of Lot 6
Legal: 1959700795

Style: Tudor Revival
Builder:
Architect: Andrew Willatsen

Classification: Historic Contributing

Description: The two and a half-storey, Elizabethan Tudor Revival house has a brick first floor and a stucco and half-timbered second floor. The house has a side-gabled roof with a prominent central gable and two gabled dormers. Centered on the main façade is a one-storey gable entry porch. The porch is approached by steps on its west side. An original brick, one-storey sunroom wing on the west side of the house supports a lattice-railed balcony. Multi-paned, leaded-glass casement windows are either individual or grouped in pairs. The current owner, the Irish priests of St. Patrick’s, probably added the exterior shamrocks in green defiance of the half-timbered English façade. Newer sliding aluminum windows in the two attic dormers that flank the front gabled bump-out are a more significant alteration.

Building Permit No. 224106, dated 6-6-1923, authorized owner Jeremiah Neterer to have contractor P. C. Nielson build a sleeping porch on the second storey, designed by Andrew Willatsen.

Cultural Data: Architect Andrew Willatsen (earlier Willatzen and spelled that way on the building permit and the drawings for the house), who studied at Frank Lloyd Wright’s Oak Park Studio “during Wright’s most creative period,” designed houses for many of Seattle’s most prominent citizens. Willatsen’s J. C. Black House (222 West Highland, 1914; destroyed 2004), was a much-admired Prairie-style example of Frank Lloyd Wright’s influence on Willatsen. The massing of the Frederick Hurlbut house (1015 East Prospect Street, in the Harvard-Belmont Historic District, 1914) is quite similar to that of the Neterer House. Architectural historians Jess M. Giessel and Grant Hildebrand note that the Hurlbut house is a

39 Many of those Irish Catholic priests had come directly from Ireland, and the names of St. Patrick’s parish priests make up a Hibernian litany: Fr. Michael O’Dwyer, Fr. Aloysius McLough, Fr. Michael Murtagh, Fr. William Treacy, Fr. Jim Moran...Kavanaugh, 8-11.

40 Mark Peckham, Washington State Historic Preservation Inventory Project, Washington State University.

41 Regina Hackett, “Queen Anne reels after Wright-style house is torn down,” Seattle Post-Intelligencer, Friday, Jan. 23, 2004. The Seattle art critic wrote about the stealthy-seeming demolition over the Christmas holidays of the Andrew Willatsen-designed Black House.
"personal interpretation" of the Tudor style with "Prairie overtones" in its "horizontal bands and aligned second floor" They note that the Neterer house built at roughly the same time "is a more academic work." Willatsen was also practiced in the Classical Revival (John H. Carter house, 1615 36th Avenue, 1916) and Federal Revival (Fred Burwell house, 425 35th Avenue, 1925) styles. The Hon. Jeremiah Neterer was a Superior Court Judge listed among "United States judges, past and present" in Clarence B. Bagley's history of King County. In the Bellingham Business Journal, he appears in an account of Fairhaven and New Whatcom businessmen "who bicycled to and from their jobs." Neterer moved from Bellingham, where he had been City Attorney, Chairman of the Board of Trustees for the State Normal School, and then Superior Court Judge for Whatcom County, to buy Lot 7 plus part of Lot 6 and to commission the handsome English-style house. While in Bellingham, Neterer had built (in 1904) and lived in a two-storey bungalow-style house at 1700 Eldridge Ave in what is now the Eldridge Historic District.

As early as 1916, in the Ninth Circuit Court of Appeals, Judge Neterer, who would hear many labor cases in his career, ruled in a seaman's favor in a dispute about overtime wages and was upheld. In court, he rebuked his across-the-alley neighbor U. S. Attorney Robert C. Saunders (at 2701 Tenth Ave E, Site ID #73) for trying to blame all of the unrest in Seattle on unions during the J. D. Ross City Light showdown with Stone & Webster's Pacific Traction, Power & Light Co. Neterer also presided over the sensational trial of rum runner Roy Olmstead involving an early decision on wiretapping, in which pillars of the community including Frederick Struve and William Boeing testified that they had bought illegal liquor from the popular Olmstead. Neterer's ruling that the evidence against Olmstead acquired via a wiretap on Olmstead's home phone was admissible was upheld by the U. S. Supreme Court.

Neterer seems to have presided over most of the controversial cases of the day. In a dispute over patent infringement in the construction of the University, Fremont, and Ballard bascule bridges, Neterer presided over proceedings in a suit filed by the Strauss Bascule Bridge Company of Chicago, who had not received any fees for the use of their patented trunnion technique for bascule bridges. The City Council's finance committee refused to pay a fee for the use of the technique on the upcoming Montlake Bridge as well. The company sued for recovery of damages and argued that Neterer should enjoin the construction of

42 Jess M. Giesel & Grant Hildebrand, "Andrew Willatsen," in Ochsner, 168-73.
43 Clarence B. Bagley, History of King County Volume I (Chicago-Seattle: S. J. Clarke Publishing, 1929), 609.
44 "'Safety bicycles' were the rage in 1895," available online at www.thebellinghambusinessjournal.com/may_07/lookingback.html (accessed 1/7/2009).
the Montlake Bridge unless Seattle gave Strauss the contract to build it. Seattle engineers figured out a way to build the bridge without exactly copying Strauss's technique and claimed that Strauss's patent would therefore not be infringed. Neterer ruled that he could not intervene in the construction of the bridge because the City was liable only for damages and that patent infringement did not constitute damages. The U. S. Circuit Court of Appeals upheld his decision.48

Neterer was also the judge in cases involving close neighbor Mayor Hugh M. Caldwell (in the middle of the same block of Tenth Ave E), who lived on the same alley as Saunders, Neterer, and Saunders' law partner Israel Nelson, at 2717 Tenth Ave E (Site ID # 79). And he presided over the case that determined liability in the wreck of the steamship *Princess Sophia* on Vanderbilt Reef October 24, 1918.49

The Neterer's elder daughter, Elisabeth Neterer, according to the 1930 U. S. Census, was a public school teacher. She donated the Jeremiah Neterer papers to the University of Washington Special Collections.

Accessory Structure: Detached garage. **Built:** 1915

Description: Historic Contributing

The brick garage atop a one-storey retaining wall foundation appears in Andrew Willatsen's 1915 plans for the house and on the Volume 4 Sanborn map. The garage is on the northeast corner of the lot.

Site ID #6 2706 Broadway Ave E **Built:** 1921

Historic Name: Nelson, Israel, and Esther M., House

Contemporary Name: Logan, Donald W., House

Denny-Fuhrman Addition Block 14 Lot N. 40' of 6 Legal: 1959700790

Style: Colonial Revival **Builder**: Herman Austin **Architect**: Bertram Dudley Stuart

Classification: Historic Contributing

Description: Building Permit No. 202378, dated 5-10-1921, authorized owner Israel Nelson, of 510 Central Building, to have contractor Herman Austin "build residence per plans." The residence was designed by architect Bertram Dudley Stuart. The two-storey Colonial Revival house with gable roof is clad in brick veneer. The house faces perpendicular to the street, toward the rear of the Jeremiah Neterer House. The entry is a classical-inspired portico with paired Tuscan columns. A large chimney is centered on the west (street) façade of the house. Eight-over-eight double-hung wood windows have decorative

49 Ann Chandonnet, "Tragedy at Sea: Shipwreck was one of worst west coast disasters," available online at www.juneauprime.com/stories/566803/so_sophia.shtml (accessed 1/7/2009). Resident Thomas J. King (2616 Harvard Ave E, Site ID #36) owned the *King & Winge*, one of the ships that had offered rescue to the captain of the *Princess Sophia*.
shutters and are highlighted on the first floor by wooden spandrel panels. The gable ends have quarter-round attic windows.

Cultural Data: London-born architect Bertram Dudley Stuart practiced first in Edmonton, Alberta, and Vancouver, B.C., and he arrived in Seattle in 1918. After designing this house while in independent practice, he formed a partnership with architect Arthur Wheatley, which lasted from 1925 to 1930. (See the house at 2802 Tenth Ave E, Site ID #86, for a Hunt & Wheatley design.) Stuart designed the Exeter House Apartments (1927); the Bergonian Hotel, now the Mayflower Hotel (1926); and the Marlborough Apartments (1926-27). He also designed Firehouse No. 6 (1931), a cast concrete building “with a dramatic lightning-bolt grille” over the firehouse doors. He employed then recent University of Washington graduate Robert L. Durham as a draftsman in 1936-37. In 1941 Stuart and Durham formed their partnership, which lasted until Stuart’s retirement in 1954.

By 1920, attorney Israel Nelson, partner of Robert C. Saunders, was paying the taxes. His wife, Esther M. Nelson, was the owner of record in 1925. As a partner in the law firm Saunders & Nelson, Israel Nelson undoubtedly had professional associations with Judge Neterer next door along with his neighbor and law partner Robert C. Saunders. Neighbor-historian Dave Storm remembers that Mrs. Nelson played the piano and would reward his attention with cookies and milk. According to the 1910 U.S. Census, she was a church singer as well. Their daughter, Helen Clare Nelson, was a high school teacher.

Accessory Structure: Underground two-car garage. **Built:** 1992
Description: Non-Historic Non-Contributing
No garage is shown on the Volume 4 Sanborn map. The present garage was built by owner Don Logan. It is a bunker-like structure with a terrace on top. At the end of this two-to-three year project, the garage complex will include a wine cellar and a sauna.

Site ID #7 2707 Broadway Ave E **Built:** 1937
Historic Name: Arensberg, Charles and Anna M., House
Contemporary Name: Burnett, James E. and Silverstone, Sharon R., House
Denny-Fuhrman Addition Block 15 Lot 9 **Legal:** 1959700890
Style: Tudor Revival **Builder:** Charles Arensberg **Architect:** John I. Mattson
Classification: Historic Contributing
Description: Building Permit No. 322786, dated 4-13-1937, authorized owner, contractor Charles Arensberg, of 4317 Burk Avenue, to build a 38 feet by 28 feet single-family residence designed by John I.

51 Walt Crowley, National Trust Guide. 146, 223. The firehouse is pictured and has a truly stunning entrance. The firehouse is also pictured in Woodbridge and Montgomery, 152.
Mattson. This two-storey, cross-gable, brick Tudor Revival house is well-kept and sits on a rise of manicured shrubs and lawn. The exterior is "Brick veneer face kind." As for many of the houses in the district, the roof's original wood shingles have been replaced by composite. A recent addition was made to the back of the house, on the west. The front façade retains its leaded glass windows.

Cultural Data: Architect John I. Mattson was born in Finland in 1894 and died in Seattle in 1980. He is best known for modest residential work on Beacon Hill near the Jefferson Park Golf Course. He practiced alone from 1929 to 1949 and later took on several partners in combinations variously including Edgar Putnam, Robert Simkins, and Tsutomu Saito. Mattson designed several duplexes and a single-family residence in the Jefferson Park vicinity for Standard Homes in 1948—all of which had predominantly horizontal, unadorned modern lines. The Arensberg House is representative of Mattson's early work. Tudor Revival in style, it is in keeping with the traditional revival styles of the Roanoke Park district.

Charles and Anna Arensberg lived in the house at least through 1940. According to the Polk directory and the 1930 U.S. Census, Charles was a building contractor who had been born in Germany in 1888.

Accessory Structure: None

Description: None

Building Permit No. 322786 for the residence also authorized the building of a 10 feet by 20 feet garage at the rear of the lot with an alley entrance. The garage was destroyed in 2005 to make way for an addition to the back of the house. A two-car garage was built under the new addition at the back of the house in 2005.

Site ID #8

2712 Broadway Ave E

Built: 1918

Historic Name: Helt, Frank and Ora J., House

Contemporary Name: Kavanaugh, James V. and Marilyn J., House

Denny-Fuhrman Addition Block 14 Lot 5

Style: Colonial Revival

Builder: Frank M. Dever

Architect: Charles Haynes

Classification: Historic Contributing

Description: Building Permit No. 172828, dated 10-14-1918, authorized owner Mrs. Ora J. Helt, of 3014 Mt. St. Helen's PI, to have contractor Frank M. Dever build a 28 feet by 24 feet residence with a full basement, designed by architect Charles Haynes. The permit stipulated that no part of the building could be nearer than 1 foot 6 inches to any adjoining lot line.

52 Property Record Card.

53 Owner-resident Sharon Silverstone in conversation 12-1-2008.
The result is a two and a half-storey Colonial Revival house with painted cedar siding. A gable-roofed square-columned porch is centered on the narrow, street-side of the house. Centered on the main façade is an enclosed one-storey porch, which has a gable roof. The street-side windows with the exception of the half-storey window are double-hung with six lights over one with heavy cornice molding. A triple stained-glass window is on the stair landing, and stained glass windows are on either side of the fireplace. They feature pears, grapes, and greengage plums, all of which were growing in the yard when the present owners, the Kavanaughs, moved into the house in 1968. The pear tree and grape arbor remain.

Cultural Data: Architect Charles A. Haynes was born in Winona, Minnesota, in 1886 and came to Seattle in 1907. He established the architectural firm Haynes & Cantin and was also in practice with Charles E. Troutman of Aberdeen, Washington, ca. 1911. By 1912, Haynes had taken on a new partner, J. Merrill Brown, in Seattle. Notable projects include the Gee How Oak Tin Benevolent Society in Seattle (1908–09, altered), the Peoples National Bank Building (1907), the South Bend, Washington, Chamber of Commerce building in 1912, the Butterworth Mortuary in Seattle (1923), the Margaret Calvert residence at 1809 Tenth Ave E, and the Robert Greer residence (1910–11). In 1917, Haynes designed the second storey of the Colonial Revival house at 3008 Mt. St. Helens Pl., in the Mount Baker neighborhood for the Hunter Tract Improvement Company. Haynes opened a practice with Clarence W. George in Aberdeen ca. 1923. He designed several apartment houses and commercial buildings in both Seattle and Aberdeen.

Frank Helt ran the Pittsburg Luncheon, and his wife, Ora J. Helt, is shown as owner of this property in 1918, the year the house was built. Frank Helt appears in the 1919 Polk directory as vice-president of the Vernon A. Smith Motor Car Co. Inc. The Helts disappear from Seattle Polk directories after 1920.

Accessory Structure: Detached garage on northeast corner of lot
Built: 1919

Description: Historic Contributing.

Building Permit No. 175223, dated 1-20-1919, authorized owner, resident Ora J. Helt to have contractor Frank Dever, of 2115 Second Avenue West, build a 19 feet by 19 feet garage with a concrete floor and 8...
inch walls 18 inches into the ground, roof joists 2 by 12, 16 inches on center. The Volume 4 Sanborn map shows the garage on the northeast side of the property, and a terrace is on top of the garage.

Accessory Structure: Retaining wall
Built: 1928

Description: Building Permit No. 273415, dated 1-9-1928, authorized owner R. G. Stevenson to build a retaining wall next to the alley, all on private property, and also shows a sketch of the wall.

**Site ID #9 2715 Broadway Ave E (formerly 2713 Broadway Ave E)
Built: 1933**

Historic Name: Felger, W. W. and Vina C., House
Contemporary Name: Sykes, Colin M. and Wendy, House

Denny-Fuhrman Addition
Block 15 Lot 10
Legal: 1959700895

Style: California Monterey
Builder: S. H. Christianson
Architect:

Classification: Historic Contributing

Description: Building Permit No. 307322, dated 3-23-1933, authorized owner Mrs. Vina C. Felger, of 1065 East Prospect Street, to have contractor S. H. Christianson, of 6822 Thirty-fourth Avenue Northwest, build a single-family residence 26 feet 6 inches by 52 feet per plans filed. The street side of this two-storey house is entirely of white-washed brick. The rest of the house has a white-washed brick first floor and part of the second floor. Cedar siding clads the upper eight feet of the second floor. The narrow upper porch with decorative white railing is in classic Monterey style. A curved-top brick wall attached to the house at the front extends south to intersect with the driveway. The front door is on the side of the property and opens to a porte cochere across the driveway. The garage is in the back, at the end of the driveway. The house has a brick fireplace with a tile face.

Cultural Data: W. W. Felger was a lawyer. The Side Sewer Card for the 2700 block of Broadway Ave E shows Felger as owner when this house was built, in 1933. In the King County Real Property Assessment and Tax Rolls, his wife, Vina C. Felger, is shown as the owner when the house was built, and the Felgers were still there in 1951. By 1953, they had moved to 3331 St. Andrews Way East.

Accessory Structure: Garage at rear of lot, southwest corner
Built: 1933

Description: Historic Contributing.

Building Permit No. 397322 for the residence also authorized the building of a detached garage. The 12 feet by 20 feet garage appears on the Volume 4 Sanborn map and is of plastered brick with a concrete floor. It originally had a wood shingle roof, now composition.

61 Property Record Card.
Site ID #10 2716 Broadway Ave E Built 1912

Historic Name: Brown, C. Rogers and Harriet, House

Contemporary Name: Vedanta Society of Western Washington House

Denny-Fuhrman Addition Block 14 Lot 4

Style: Arts & Crafts

Builder: Gustav Olson

Classification: Historic Contributing

Description: Building Permit No. 110898, dated 5-21-1912, authorized applicant, owner, builder Gustav Olson to build a two-storey frame residence designed by architect W. E. Dwyer. The house has a cross gable roof and is clad in brick veneer on the first floor and stucco on the second floor. The gable roof has exposed rafter tails and decorative cut barge boards. The front door, centered on the façade is recessed, and a porch extends to the south. The porch was screened in the 1960s. The windows are a variety of multi-pane casement and double-hung sash.

Cultural Data: W. E. Dwyer also designed and/or built several houses in the district including two houses, at 2721 Tenth Ave E (1910, Site ID #80) and 2818 Broadway Ave E (1909, Site ID #20), for the Finleys, who owned many properties in the district. Dwyer was the builder for the house at 2722 Broadway Ave E (1910, Site ID #11) designed by Bertrand & Chamberlain. The design of the Fairmount Hotel (1914) has been attributed to W. E. Dwyer, and he also worked as an architect on some of builder Eric Almquist's house projects in the district, such as the Almquist-built, Dwyer-designed house at 812 E Shelby St (Site ID #54).

The original owner of this Dwyer-designed house was Gustav Olson, who was the builder. Olson lived with his family at 1212 E Harmin St just outside of the district. In 1918, when he registered for the draft, he listed his profession as a ship builder. By 1930, he appears in the U. S. Census as a contractor, carpenter. It’s not clear that he and his family ever lived in this house or at any of the other five properties with which he was involved in the Roanoke Park Historic District.

Julius W. Augustine, who paid the taxes in 1915, was the vice-president of Augustine and Kyer, a wholesale and retail grocer's, and lived in the neighborhood at 2731 Boylston Ave E. He disappears from records associated with the house after 1915.

In 1916, C. Rogers and Harriet Brown were the first owner-residents. According to the Polk directory of that year, Brown was a partner in “Brown Rogers & Co. Fish Oils, Vegetable Oils, Tallow & Fertilizers.”

Estella L. Blum owned the house from 1925 to 1935. John R. Blum, according to the 1930 U. S. Census, was born in Alaska and was president of an aviation service. His brother, Alan Blum, who also lived at the address, as did their sister, Elizabeth, was an aviation salesman—an interest no doubt stimulated by their Alaska background.

63 Crowley, National Trust Guide, Seattle, 88.

64 King County Real Property Assessment and Tax Rolls, Puget Sound Regional Archives.
In 1938, the house became the first part of an eventual two-house campus for the Hindu society formerly known as the Rama Krishna Vedanta Society. In 1941, the house was owned by Olive Loe, who also owned the house at 2626 Tenth Ave E from at least 1930 to at least 1941.65 Across the street, at 2725 Broadway Ave E, is the society's Vivekananda House (Site ID #12). The Society houses seminarians and holds services in the house at 2716, which is used as both parsonage and church.

Accessory Structure: Two-car garage. Built: 1919
Description: Historic Contributing.
Building Permit No. 187399, dated 11-28-1919, authorized owner, resident C. Rogers Brown to have contractor J. Wicks (or Wieks), build a concrete garage 19 feet by 20 feet for two cars, with 8 inch concrete walls, 16 inch footing, walls 8 feet high, 6 inches of dirt against the walls, with a wood roof and an alley entrance. The flat-roofed garage on the northeast corner of the lot is shown on the Volume 4 Sanborn map.

Site ID #11 2722 Broadway Ave E Built: 191066
Historic Name: Hayes, Samuel E. and Margaret H., House
Contemporary Name: Byers, Alice, House
Denny-Fuhrman Addition Block 14 Lot 3 Legal: 1959700775
Style: Elizabethan Tudor Revival Builder: W. E. Dwyer Architect: Bertrand & Chamberlin
Classification: Historic Contributing
Description: Building Permit No. 86765, dated 2-8-1910, authorized applicant W. E. Dwyer, of 725 Lakeview Avenue, to build a two-story, frame residence 32 feet by 41 feet designed by (E. C.) Bertrand & (Arthur Bishop) Chamberlin for owner Samuel E. Hayes, of 1523 Third Avenue. The result is a handsome gable-roofed house with two large gabled dormers. The first floor of the exterior is brick veneer, the second is stucco, and the gabled dormers have half-timbered stucco facades. The two gabled dormers feature double eight-light windows. A three-windowed bump-out is centered between and in front of the twin dormers, having three spaced, larger, fifteen-light windows flanked by triple fifteen-light casement windows. The first floor windows are larger still, double, with multiple lights. The entry is recessed in the center of the house under the central bump-out. The house interior has many Craftsman details. Current owner Alice Byers has recently restored the front porch, re-landscape, and added to the back of the house on the first and second floors.
Cultural Data: Although Arthur Bishop Chamberlain did practice in Seattle for a time, designing the two-room Denny-Fuhrman School (1894) with partner Carl Siebrand and the Collins Block on his own (1893),
he was practicing in his hometown, Minneapolis, when the partnership Bertrand & Chamberlin67 designed this handsome house for Samuel E. Hayes, who was also from Minnesota.

According to the 1910 U. S. Census, Samuel E. Hayes was 28 in 1910 when he and his wife, Margaret H. Hayes, who was from Indiana and also 28, had this substantial house designed and built for their two-children family and their live-in maid Emma Larson. Hayes was president of Hayes & Markham Lumber Buyers.

Accessory Structure: Single-car garage on northeast side of lot. **Built:** 1910

Description: Historic Contributing.

Building Permit No. 92030, dated 6-28-1910, authorized applicant, builder, architect W. E. Dwyer to build a “one-storey reinforced concrete garage 18 feet by 20 feet with a concrete floor and roof, for owner S. E. Hayes. The garage, shown on the Volume 4 Sanborn map, has a flat roof with a terrace on top and adjoins the garage next door, at 2736 Broadway Ave E.

Site ID #12 2725 Broadway Ave E Built: 1909

Historic Name: Soderberg, J. A. and Martha, House

Contemporary Name: Vivekananda House

Denny-Fuhrman Addition

Block: 15 N 25 feet of 11 & 12 & 13 **Legal:** 1959700900

Builder: Alvin L. Johnson **Architect:** Same

Classification: Historic Contributing

Description: Building Permit No. 74253, dated 7-3-1909, authorized Alvin L. Johnson to build a 25 feet by 43 feet one and a half-storey residence also designed by Johnson.68 Owner J. A. Soderberg had Johnson use gray granite from Soderberg’s Index Granite Works, a quarry in Index, Washington.69 The house has a hipped roof with projecting hip-roofed entry porch. Above, a large gable dormer provides access to a small balcony. An Art Nouveau–style window is in the front gable, and the address number is in raised relief in the entrance lintel. The walkway is a graceful half-circle curve.70 On the south side of the house, within a recessed rectangle, is the inscription “1909.” The stucco-like façade of the center front-gabled dormer and

68 Mark Peckham correctly surmised that the builder of this unique house might have been involved with a quarry.

69 MOHAI’s Leonard Garfield expressed a humorous appreciation of the monumental materials employed on such a humble style during a MOHAI-sponsored architectural walking tour of the Roanoke Park Historic District September 6, 2008.

70 All noted by Mark Peckham.
a side gable at the top is of a different, more modern, material. The roof, now composite, was originally tin-tile.

Cultural Data: Alvin Johnson is mentioned as the architect for this house in *Homes and Gardens of the Pacific Coast Volume 1 Seattle 1913,* and Alvin L. Johnson is shown as the architect and builder on the building permit for the house. Johnson also designed the house in Mt. Baker at 3008 Mt. St. Helens Pl. in 1913 and houses in West Seattle.

J. A. Soderberg also furnished and installed the granite curbing on downtown Seattle streets. The Vedanta Society of Western Washington bought the house in 1982, and the society continues to occupy the beautifully maintained house as its Vivekananda House. (See also Site ID #10 for the Vedanta Society's other house in the district, at 2716 Broadway Ave E, across the street from this one.)

Accessory Structure: Granite carriage house on northwest side of lot. **Built:** 1912

Description: Historic Contributing.

Building Permit No. 117217, dated 9-26-1912, authorized applicant, builder J. O. Olson to build a "one storey granite veneer garage 24 by 30" designed by the house's architect, Alvin L. Johnson. The sizeable garage also contains a residence. The Volume 4 Sanborn map shows the garage at the northwest corner of the lot.

Site ID #13

2736 Broadway Ave E

Built: 1899

Historic Name: Sullivan-Walker House

Contemporary Name: Silverberg, Steven M. and Elizabeth H., House

Denny-Fuhrman Addition

Block 14 Lots 1 and 2

Style: Neoclassical Revival

Classification: Historic Contributing

Description: This two and a half-storey Neoclassical Revival house sits on almost two lots on the southeast corner of Broadway Ave E and E Hamlin St. It has a composition hipped roof with two original gabled side dormers and a central front dormer with a hipped roof that features Ionic pillars and pilasters.
on the dormer facade. The circular-roofed porch sits below a central triple double-hung window and a left double-hung single window. In addition to Ionic columns holding up the front porch and decorating the facade by the second storey's triple window, clipped northwest corners on the first and second storeys create small roofed balconies recessed under the roof and supported each by another Ionic column standing on a baluster corner. The clipped second-storey corner features a stained glass window. The clipped first-storey corner features a door to the small balcony. A side porch on the south side, beneath a Palladian window and a single double-hung window, is reached through a gate in the picket fence that divides the front yard from the side yard. The house's cedar siding was painted in the 1930s.77

Cultural Data: This house built for Benjamin B. and Elizabeth C. Sullivan is the oldest house in the district, dated 1899, but it is only slightly older than the freestyle Queen Anne house two blocks away (north and then west) at the corner of E Shelby St and Harvard Ave E (1900, Site ID #53). The 1900 Polk directory shows B. B. Sullivan living at the corner of Broadway and Hamlin but alas doesn't say what his business or profession was. The Federal Census of 1910 lists his occupation as "Own income." The 1930 Federal Census shows his occupation as "Retired."

By 1905, the house was owned by and lived in by Alexander D. Walker, president of the Benton County Irrigation Co. and manager of the Massachusetts Mutual Life Ins. Co. Robert S. Walker, no doubt a son, who was in 1911 assistant cashier of the National Bank of Commerce and treasurer of the Benton County Irrigation Co., lived at the house at 2736 Broadway, too. Theirs was an important new business in the development of agricultural eastern Washington.78

Description: Non-Historic Non-Contributing

Building Permit No. 132717, dated 5-18-1914, authorized owner A. D. Walker to construct a garage 12 feet by 16 feet on the lot an unusual 87 feet by 110 feet at an "estimated cost $25."79 The Volume 4 Sanborn map shows the flat-roofed garage at the southeast corner of the lot. It is attached to the garage on its south. A replacement garage occupies the same position.

Accessory Structure: Tool shed. Built: 1910 (destroyed)

77 Property Record Card.
78 Mentioned by Leonard Garfield on the MOHAI-sponsored tour of the district, 9-6-2008.
79 With a few exceptions, the microfilm rolls of building permits at the City of Seattle's Department of Planning and Development begin in the year 1908, so that information on the construction, architects if any, and builders is unavailable for this oldest property in the district and others similarly old and grand, such as the second oldest house, the free-style Queen Anne house at 808 E Shelby St and other substantial houses built before 1908 (or during 1908 if the permits were applied for earlier). Searches in other, unindexed, sources are underway.
Description: Building Permit No. 94709, dated 9-7-1910, authorized applicant, builder, owner A. D. Walker to build a tool shed 8 feet by 12 feet and to put a window in the residence along with a roof over a sleeping porch.

2800 Block of Broadway Ave E

Site ID #14 2800 Broadway Ave E Built: 1909
Historic Name: Johanson, Dr. Nils and Katherine B., House
Contemporary Name: Anderson, Larry S. and Kristen M., House
Denny-Fuhrman Addition Block 25 Lot 8 Legal: 1959701740
Style: Swiss Chalet Builder:
Classification: Historic Contributing
Description: Building Permit No. 74300, dated 4-5-1909, the earliest found for the address, is for alterations to create a “dance hall” on the attic level. John Davis is shown as owner and builder. No architect is shown. Building Permit No. 120086, dated 2-4-1913, authorized applicant, builder, Nels Hedin, of 1708 Melrose, to build a sleeping porch 5 feet by 10 feet for owner N. A. Johanson. Again, no architect is shown. Neighborhood lore holds that while the house is very likely a Cutter & Malmgren design, there is no documentation to that effect. The design does appear similar to other Cutter and Malmgren projects. Locals call the house a “Swedish” chalet because the original owner, Nils Johanson, was from Sweden, and he was of course founding Swedish Hospital the year that house was built.80

The house has broad overhanging eaves, decorative exterior woodwork, a stucco first floor exterior, and a dark wood second storey exterior. The front-gabled, wide-eaved roof is supported by elaborate, substantial braces. Two small casement double windows, with six lights each, are centered under the apex of the gabled roof. Immediately underneath, a shed roof shelters a small, Scandinavian carved balcony accessed by means of French doors. Small four-light windows flank the French doors. Supported by substantial braces, the balcony shelters the centered front door. Double, double-hung, four-lights-over-12 windows (divided into six lights each) flank the balcony. On the first storey, double, double-hung windows of the same style but larger flank the doorway. A long, horizontally supported Wisteria runs along the front wall of the brick entry (entrance on the side, facing E Hamlin St).

Cultural Data: Nels Hedin (sometime Heiden) built several houses in the district. In addition to the sleeping porch for this house (and possibly the whole of this house built in the same year as the sleeping porch), he built the house at 2802 Tenth Ave E. Hedin also built the house at 2831 Harvard Ave E (1909)

--

80 Leonard Garfield, Executive Director of the Museum of History and Industry (MOHAI), has speculated that Architect Cutter humorously called it a Swedish Chalet because it was built for the Swedish founder of Swedish Hospital. Garfield has inquired of Cutter expert Henry Matthews whether Cutter did indeed design the house.
and owned it in 1923. That house had to make way for Interstate-5, and another house Hedin owned in
1923, at 2837 Harvard Ave E, suffered the same fate.

The chalet was built in 1909 for Dr. Nils A. Johanson, who founded Swedish Hospital in 1910, and
his wife, Katherine B. Johanson (who always appears in archived materials as Katherine B. “Johnson”—
she was an early and consistent adopter of the anglicized version of the name), who were married in 1908.
Dr. Johanson signed himself “Johanson” sometimes and “Johnson” sometimes. In later years, “Johanson”
came to predominate.

Two versions of the founding of Swedish Hospital exist. One version has Dr. Johanson initiating
the founding by taking up a collection among ten or so benefactors who contributed $1000 each. Among
these donors were neighbor and attorney Israel Nelson (Site ID #6) and neighbor J.A. Soderberg of the
Index Granite Quarry (site ID #12), who later fell on hard times. This account by Executive Director of
MOHAI Leonard Garfield would fund the hospital with a mere $11,000 or so unless, as seems likely,
Johanson found financing from additional sources. Historian Walt Crowley tells a similar, slightly fuller
story, that Dr. Johanson had tried to open a hospital at Belmont and Olive but had been “rebuffed by the
neighbors.” Around 1908, a Dr. E. M. Rininger had begun construction on a 40-bed hospital (“Summit
Hospital”) at the corner of Summit and Olive. Dr. Rininger was killed in a collision between his car and a
streetcar a month before the hospital was to open in 1910. Crowley goes on to say that “Dr. Johanson and
his Scandinavian-American backers quickly raised $91,000 to buy Summit and renamed it Swedish
Hospital; they didn’t even have to change the monograms on the linen.”

Accessory Structure: Concrete garage on northeast corner of lot. Built: 1909
Description: Historic Contributing.
Building Permit No. 82027, dated 9-29-1909, authorizes the construction of a one-storey frame and
concrete private garage 14 feet by 18 feet to accommodate one machine only. Nels Heden (probably Nels
Hedin or Heiden) is shown as the builder, and N.A. Johanson as the owner. No architect is shown. The
flat-roofed garage on the northeast corner is shown on the Volume 4 Sanborn map and has a landscaped
terrace on top.

Site ID #15 2801 Broadway Ave E (formerly 816 E Hamlin St) Built: 1909
Historic Name: Hunter, David and Nellie, House
Contemporary Name: Kindred, Jack D. and Keenan, Kathleen, House
Denny-Fuhrman Addition Block 24 Lots 9 & 10 Legal: 1959701665

81 During Walking Tour of the Roanoke Park district, Saturday, 9-6-2008.
82 Crowley, National Trust Guide, Seattle, 139.
83 A search for the original house building permit at alternative addresses for the corner property, 90[even number] E
Hamlin St, turned up no building permit for the house, either.
Style: Classical Revival
Builder: David Hunter
Architect: Frederick A. Sexton
Classification: Historic Contributing
Description: Building Permit No. 76403, dated 5-15-1909, authorized builder David Hunter to build a two and a half-storey frame residence, 30 feet by 55 feet, designed by architect Frederick A. Sexton.

This large white clapboard house fronts on E Hamlin St on the northwest corner of Broadway Ave E and E Hamlin St. The asymmetrical house has a hipped roof with a side-gabled wing, gabled side dormers, and four ionic-columned porches supporting balconies. A former balcony at the front of the house has been converted into a glazed sunroom. Deep cornice returns and multi-level cornice trim are highlighted by egg and dart detailing and large wooden quoins. Double-hung, six-over-one wood windows are surrounded by intricate moldings.

Cultural Data: This Classical Revival house was designed by English architect Frederick A. Sexton, who also designed the Saunders-Celio House at 2701 Tenth Ave E (1908, Site ID #73). Some of Sexton’s other known projects include the 1908 Colonial Revival Edward H. Bucklin residence, at 1620 East Prospect Street, and the 1909 third Georgetown City Hall. The Frederick S. Stimson summer house and weekend retreat that eventually became “the showpiece of Stimson’s Hollywood Farm near Woodinville” was “possibly” designed by Frederick Sexton.

In 1920, Rufus G. King, Jr., president of the Pioneer Lumber Co., briefly owned the house. By 1925 H. D. Taylor owned the house, again briefly, and the taxes were paid by R. N. Kent. Neighborhood historian Marilyn Kavanaugh has said that Mrs. Kent of the Kentworth Trucking family lived in the house for some time after the 1935–1941 that show her husband, Harry W. Kent, as the owner.

Accessory Structure: Garage
Built: ca. 1910
Description: Historic Contributing.
The one-car concrete garage on the west side of the lot appears on the Volume 4 Sanborn map. Its door appears to be original.

Site ID #16 2808 Broadway Ave E
Built: 1906
Historic Name: Pettitt, Elbert and Jennie, House
Contemporary Name: Taylor, Ed and Sue, House
Denny-Fuhrman Addition
Style: American Foursquare
Block 25 Lot 7
Legal: 1959701735
Builder: Architect:

84 Swope, 70, 79, 245, 253.
85 Crowley, National Trust Guide, Seattle, 217.
86 Kriesman and Mason, 195. The “enormous bungalow” is pictured on the following page.
87 Marilyn Kavanaugh in conversation during the MOHAI-sponsored walking tour of the district, Saturday, 9-6-2008 and Leonard Garfield during MOHAI-sponsored walking tour of the Roanoke Park district Saturday, 9-6-2008
National Register of Historic Places
Continuation Sheet -

ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 7 Page 31 of 121

Classification: Historic Contributing
Description: Building Permits issued in 1905-1907 are for the most part not available in the Department of Planning and Development's Microfilm Library. This two and a half-storey house is entered by means of street-facing steps to the porch on the south side of the house. The hipped roof has a hip-roofed dormer centered on the street side and another on the rear. The exterior is clapboard and appears to be the original cedar. Between floors, dentils above a wide string course outline the house all the way around including the porch on the south side and matching first floor bump-outs on the front and rear facades. The bump-out windows have had their glass replaced. The other windows, including two first floor triple windows north and south with curved eyebrow arches outlined in dentils over the center parts, appear to be original. Two wide, single, double-hung windows, both one-over-one, are symmetrically positioned on the second floor. The dormers have double one-over-one windows.

Cultural Data: Jennie Pettitt was the first owner-resident of this handsome Foursquare house and paid the taxes, too. She and her husband, Elbert Pettitt, lived in the house with their four children Bertie (17), twins Percy and Elmer (13), and Leslie (7). According to the 1910 Federal Census, Elbert Pettitt was a lumber merchant. Son Bertie Pettitt was 21 in 1910 and a house carpenter. By the time of the 1930 census he was a construction superintendent with a family and a residence of his own.

Accessory Structure: Garage on northeast side of lot
Built: 1917
Description: Historic Contributing.
Building Permit No. 156419, dated 3-14-1917, authorized owner C. Meldrum to have contractor H. S. Cook build a garage 12 feet by 20 feet with concrete walls on two sides, walls to extend 18 inches into the ground, a concrete floor, doors to open on own lot, 30 feet from the nearest house. The flat-roofed garage with parapet on the north and south sides is shown on the Volume 4 Sanborn map. Its door is gone. Claude Meldrum (wife Dora M.) was a conductor and passenger agent with James J. Hill's Great Northern Railway.

Accessory Structure: Playhouse
Built: 1929
Description: Historic Contributing.
Building Permit No. 286933, dated 7-5-1929, authorized then owner James R. Brewster to have contractor Charles H. White, of 1514 Henry, build a 6 feet by 9 feet playhouse. The playhouse was undoubtedly built for James R. and Margaret M. Brewster's five-year-old daughter, Margaret C. Brewster (b. 1924), who appears with her parents at this address in the 1930 U. S. Census. Brewster owned and operated a number of cigar stores. The well-maintained clapboard-clad playhouse with a side-gabled roof, "its funny little door" set in the gabled front, and windows on three sides with windows boxes is intact and has been
moved from a site closer to the house to occupy the northeast corner of a latticed structure built atop the two parapets of the flat-roofed garage, approximately two feet above the flat roof.88

Site ID #17 2812 Broadway Ave E Built: 1909

Historic Name: Clericus-Mulvehill House
Contemporary Name: Frank, Steven B., House
Denny-Fuhrman Addition Block 25 Lot 6 Legal: 1959701730
Style: Craftsman Builder: Architect:
Classification: Historic Contributing
Description: The two-storey house has a side-gabled roof with a double-gabled dormer in the front, a full-width porch, and Craftsman details. The first floor exterior is wide clapboards, and the second floor exterior has narrower clapboards. Gabled eaves are set in the north side of the main gable, and a shed roof is over the windows on the north side. A small double, multiple-paned casement window is on the left of the front door, and a large triple, multiple-paned window is on the right.
Cultural Data: Emily Clericus owned this house from 1910 through 1920 and paid the taxes on the property until 1920. Her husband, Max, was a druggist from Germany and had died by 1911 according to the 1911 Polk directory. Emily Clericus lived on in the house with their daughters, Lillian R. and Louise E. Clericus, who were students. In 1920 Emily applied for a passport, and the taxes on the property were paid by attorney J. D. Mulvihill, who was born in Minnesota. He and his wife, Anne, were the owners for many years after that.
Accessory Structure: Garage on northeast side of lot. Built: 1916
Description: Historic Contributing.
Building Permit No. 151585, dated 8-15-1916, authorized owner, resident Mrs. E. Clericus to have contractor (H. C.) Smith & Guenther, of 1205 North Forty-seventh St, build a garage with four walls and a concrete floor, 12 feet by 20 feet, 20 feet from any residence, with the doors opening on private property. The garage is shown on the Volume 4 Sanborn map and still exists. Its door is gone.

Site ID #18 2813 Broadway Ave E Built: 1910

Historic Name: Wilson-Franklin House
Contemporary Name: Bryant-Williams House
Denny-Fuhrman Addition Block 24 Lot 11 Legal: 1959701675
Style: American Foursquare Builder: C. L. Martin Architect: Same
Classification: Historic Contributing

88 Conversation with present owner Sue Taylor, Saturday, February 14, 2009.
Description: Building Permit No. 83977, dated 11-12-1909, authorized applicant, owner, designer, and builder C. L. Martin to build a two-storey frame residence 27 feet by 46 feet. C. Lewis Martin had already been (1909) the designer, builder, and owner of the house at 2829 Tenth Ave E (Site ID #96). Building Permit No. 132474, dated 6-9-1914, authorized owner Flora M. Wilson to finish the interior of the attic storey and cut in a dormer over the hallway by means of Day Labor.

The American Foursquare house has a full-width hipped-roof porch supported by large square columns resting on a solid banister. The wide boxed-in eaves have simple modillions. Cottage style windows boast leaded glass upper sashes. The first floor of the house is clad in horizontal weather board, and the second floor is stucco-clad. The front door and sidelights are on the north side of the front porch. The present use of the house is as a duplex, but the building permit indicates that it was constructed as a single-family residence.

Cultural Data: C. Lewis Martin, a carpenter who lived at 711 East John Street in 1911, most likely built the house on speculation. The first known resident is Lester S. Wilson, who was a lawyer at the Henry Building in 1910. He owned the house and lived in it with his wife, Flora M. Wilson, as early as 1912. By 1916, he had disappeared from the Polk directories, and Flora M. Wilson was listed as a feather worker residing at 2-1511 Boylston Ave E.

Since at least the 1920 Federal Census, the house has been owned by the Franklin family and their descendants. John Eddy Franklin, president of the American Necropolis Co. (Washelli Cemetery), and his wife, Emma, lived in the house along with John's brother, J. Gilbert Franklin, a mechanic, and his wife, Mabel, until 1935. That year John and Emma's daughter Alice Franklin Bryant began to live there with her husband and family. Their daughter, Imogene Williams, now lives there. Both Imogene Williams and her mother, Alice Franklin Bryant, are noted for their active civic life. Alice "was a leader in the Pacifist movement and an officer of the Women's International League for Peace and Freedom." She was active in the Democratic Party and ran for Congress from the 1st Congressional District, Seattle, and for the U.S. Senate. Alice Franklin Bryant's estate bequeathed her papers to the University of Washington Special Collections 1-12-1977.89

Accessory Structure: Garage on northwest corner of lot. Built: ca. 1909

Description: Historic Contributing.
The flat-roofed garage is shown on the Volume 4 Sanborn map. It has a cement foundation and a clapboard exterior. The garage door is gone.

Site ID #19

2817 Broadway Ave E
Built: 1907

Historic Name: Cooper, William L. and Grace M., House
Contemporary Name: Shepard, John J. III and Carveth, Christine, House

Denny-Fuhrman Addition
Block 24 Lot 12
Legal: 1959701680

Style: American Foursquare
Builder:
Architect:

Classification: Historic Contributing

Description: A two and a half-storey duplex with 13 bedrooms. Building Permit 70265, dated 12-19-1908, authorized Mrs. R. E (or A. E.) Kenny of Hillman City to install wainscoting in the house. Whether the house, presently a duplex, was built as a duplex, isn't clear. The house has hip-roofed dormers on all four sides of the hipped roof and a hip-roofed porch. The dormer windows have multiple lights over one. The exterior is shingled as are the dormers and the porch. The full-width porch, supported by square columns, supports a railed balcony accessible from a door centered in the front of the second storey. The second storey windows have curved mullions over one pane and flank the central door, which has a diamond-paned window. The two entry doors are on the left side of the porch. The large window to the right of the doors is a single pane of glass but appears not to have changed in size.

Cultural Data: C. T. Conover, vice-president of Crawford and Conover, owned the lot in 1905 and might have had something to do with the construction of the house in 1907. He lived at 1620 Sixteenth Ave at the time.

According to the 1910 Polk directory, W. L. Cooper, who lived in the house at 2817 Broadway Ave E with his wife, Grace May Cooper, and their son, William Cooper, who was 2 years old at the time, was in that year a linotype operator at Q. C. Typesetting Co. By the 1920 Polk directory, he was manager of the Seattle Typesetting Co. and still listed at 2817 Broadway Ave E. In the U. S. Census for that year, however, Grace May Cooper is listed as a widow living with her son, her mother, a cousin who was a City civil engineer, and a boarder brother who was a shipyards worker in the house at 2817 Broadway Ave E.

90 With two exceptions in this district, the City of Seattle's Department of Planning and Development's microfilm library of building permits begins in 1908. The original building permits for this and most other houses built before, and building permits applied for before, 1908 are not available in the Department's microfilm library. Search activity in other sources that unfortunately don't have indexes is ongoing.

91 Jessie Kenny of Hillman City, which was named after Clarence D. Hillman, whose wife, Bessie Kenny, was the source for the name Kennydale, which Hillman also developed, owned the Kenny Presbyterian Home in West Seattle and a house on Harvard Ave E in the district. See the cultural data fn 20 for more on Jessie Kenny's likely relative by marriage, Clarence Dayton Hillman. Samuel and Jessie Kenny and the Kenny Presbyterian Home are shown as the owners from 1931 to at least 1941 of the Stokes, Harry C. and Emma J., House at 2722 Harvard Ave E (1906, Site ID #42), as well. Mrs. R. E (or A. E.) Kenny of Hillman City who had permission to install wainscoting in this house might be another relative of the Hillman-Kennys.

92 See fn 99 for an account of C. T. Conover and his real estate partner and fellow journalist Samuel L. Crawford, who was a resident of the Roanoke Park district. For more on Crawford and Conover, see 906 E Shelby St (Site ID #59).
By the time of the 1930 Polk directory, William L. Cooper is shown as president of the Seattle Typesetting Co., living at 4527 Sixth Avenue Northeast with (new) wife Nellie E. Cooper. Also in 1930, William and Grace’s son, William M. Cooper, according to Polk and the U. S. Census for that year was living at the 2817 Broadway Ave E address with his wife, Bonnie Virginia Cooper. By the 1935 Polk, William is still living at the 2817 Broadway Ave E address with his mother and wife, and he has become a linotype operator at his father’s Seattle Typesetting Co. He and his wife are shown in a home of their own at 9102 Seventeenth Avenue Northeast in 1937, and by 1939 Grace M. Cooper had downsized to 703 Bellevue Ave E, Apartment E22, and was working as a stenographer.

The house had become a duplex during the Cooper residency or during the residency of the Carrel A. Brose family and their boarders (per the U.C. Census), the Harry C. Wisemans. Both the Brose family and the Wiseman family were involved in publishing one of the city directories.

Accessory Structure: Garage on northwest side of lot. Built: 1912
Description: Historic Contributing.
Building Permit No. 115173, dated 7-24-1912, authorized owner W. L. Cooper to build lofts in a garage 12 feet by 18 feet. The garage is shown on the Volume 4 Sanborn map. The garage has a flat roof, and the original double doors are intact. Some of the original exterior has been replaced by plywood.

Site ID #20 2818 Broadway Ave E Built: 1910
Historic Name: Marcus, Max and Frieda, House
Contemporary Name: Parthasarathi, Mukhopadhya House
Denny-Fuhrman Addition Block 25 Lot 5 Legal: 1959701725
Style: Craftsman
Builder: F. B. Finley
Architect: W. E. Dwyer
Classification: Historic Contributing
Description: Building Permit No. 85315, dated 12-24-1909, authorized applicant F. B. Finley to build a two-storey frame residence 39 feet 2 inches by 32 feet 2 inches designed by W. E. Dwyer. The house has a shingled first floor and a spatter-dash stucco second floor. The porch in front, approached from steps on its south side, is clinker brick in black and red. Leaded glass windows are intact.
Cultural Data: W. E. Dwyer was also the architect for the Gustav Olson–built house at 2716 Broadway Ave E (1912, Site ID #10) and was sometimes solely a builder as well. See the house at 2722 Broadway Ave E (1910, Site ID #11) designed by Bertrand & Chamberlain, for an example of a Dwyer-built house. He was also the architect for the Fairmount Hotel (1914) on the northwest corner of Stewart Street and First Avenue.

93 Crowley, National Trust Guide, Seattle, 88.
In 1905, T. F. Quirk, who owned at least two properties in the district during that era (2715 Tenth Ave E, Site ID #77 is another), owned Block 25, Lot 5, at 2818 Broadway Ave E. Elizabeth C. and F. B. Finley had the clapboard house with brick porch built in 1909.

Thomas Francis Quirk and his brother John owned Quirk Bros., a tea and coffee importing company. In 1900, they lived at E Howell near Fifteenth Ave. Later, Thomas F. Quirk (wife Carrie A.) lived in the neighborhood at 2617 Boylston Ave E along with John and another brother, Claude J. Quirk, who was a salesman for the company. John Quirk also had an interest in the property at 2715 Tenth Ave E (Site ID #77). See the Accessory Structure section of that inventory entry.

According to the 1911 and 1912 Polk directories, Francis B. Finley (wife Elizabeth C. Finley) was an appraiser with the Washington Savings & Loan Association. He and Elizabeth did not live in this house. The Finleys owned various properties in the neighborhood, this one from at least 1910 to 1920. Their residence in the neighborhood was at 2731 Tenth Ave E (Site ID #85). By 1920, they had sold 2818 Broadway to Max and Frieda Marcus, who owned the property until approximately 1935. Max Marcus was a manufacturer's agent doing business at 810 1/2 First Avenue.

Accessory Structure: Garage on northeast corner of lot. **Built:** 1911

Description: Historic Non-contributing.

Building Permit No. 103896, dated 6-14-1911, authorized applicant W. L. Hennesey (?) to have builder F. Borland, of 1116 Eleventh Ave, build a garage 12 feet by 16 feet for owner Dr. Wood. None of the records found so far for this property show these names except this building permit for a garage. The garage is shown on the Volume 4 Sanborn map. It has newer vertical siding and a new roll-up door, although the original old cement foundation and original windows are intact.

Site ID #21 2822 Broadway Ave E **Built:** 1908

Historic Name: Gaunce, Harold S. and Maude I., House

Contemporary Name: Chao House

Denny-Fuhrman Addition
Block 25 Lot 4
Style: Craftsman
Builder:
Legal: 1959701720

Classification: Historic Contributing

Description: A one and a half-storey Craftsman house with a bay window and a clinker brick chimney. Gabled dormers are on the north and south sides. The entrance is by means of steps leading to a porch attached to the south side of the house. Both storeys of the exterior are shingled. The original diamond-panes-over-one windows are intact in both storeys. The front gable contains a triple diamond-panes-over-one window flanked by two tiny, square, diamond-paned casement windows. The eaves are supported by knee braces that also support a crosstie with three vertical attachments to the front gable end. The shed-roofed bay window on the south side of the streetside façade has three diamond-panes-over-one sections. A single double diamond-panes-over-one window is in the north side of the street side façade.
Cultural Data: According to the 1911 Polk directory, Harold S. Gaunce (wife Maude L.) owned and lived in the house at 2822 Broadway Ave E from 1910 to at least 1916. He was a creditman with A. Hambach Co., which dealt in "Steam & Plumbing Supplies, Sheet Metals, Radiators & Heating Boilers, Wrought Iron Pipe and Fittings." They had a son, Harold W., in 1908. By 1916, still a creditman, Gaunce was with J. T. Hardeman Hat Co. and still lived at 2822 Broadway Ave E. On 9-12-1918, at the age of 42, Harold Seabury Gaunce, living at 2009 Franklin Ave E, credit manager at J. T. Hardeman Hat Co., and married to Maude L. Gaunce of the same address, registered for the draft. By 1920, the war over, Harold and Maude Gaunce were renting a place to live elsewhere.

Accessory Structure: Two-car garage.
Description: Non-Historic Non-Contributing.
A garage on the southeast corner of the lot is shown on the Volume 4 Sanborn map. That garage appears to have been replaced by two parts of a newer flat-roofed six-car cement garage that has been added to the Lilly garage to the north, on the northeast part of the property. Both bays of the garage have old swing-up doors.

Site ID #22 2823 Broadway Ave E Built: 1913
Historic Name: Guthman, Otto and Hilda L., House
Contemporary Name: Simpkins, James F. and Eileen L., House
Denny-Fuhrman Addition Block 24 Lot 13 Legal: 1959701685
Style: Arts & Crafts Builder: J. M. Barnes Architect: Same
Classification: Historic Contributing
Description: Building Permit No. 116879, dated 2-16-1912, authorized applicant and designer-builder, J. M. Barnes, doing business at the Arcade [Building] Annex, to build a two and a half-storied residence for owner J. F. Blackaller (probably a misspelling for J. F. Blackwell). The side-gabled roof has a pair of prominent gable dormers on the main facade. Projecting from the center is a two-storied flat-roofed porch. The second story supports a glazed sleeping porch with a large post and lintel frame. The first storey has a full-width front porch and recessed center entry. The house has leaded glass windows and sidelights. The first storey is clad in brick, and the second storey exterior is stucco with half timbering.
Cultural Data: By 1913, the lot had its house, probably built as an investment for J. F. Blackwell, who is listed as owner 10-26-12 on the Side Sewer Card for the block. It's not clear whether Blackwell lived in the house.

64 The writer has found no reference to J. M. Barnes in the literature on architects of the time. Barnes is likely one of the many builders who also designed.
65 Side Sewer Card 3553,
By 1915 R. G. Parsons owned the house, but he didn't live there. He, too, seems to have bought the house as an investment, and the taxes were paid by his father-in-law's Bemis Bag Co., for which he had established and run the Seattle branch.

According to the Polk Directories Otto and Hilda L. Guthman owned and resided at the house from 1916 to 1944. Otto was a Sales Manager for the National Grocery Co. The Guthmans had three daughters and a son. The son, who was born in 1919 and grew up in the district, was Edwin Otto Guthman, the \textit{Seattle Times} reporter who won a Pulitzer Prize for a series of articles that cleared liberal Professor Melvin Rader and other University of Washington faculty members of being members of the Communist Party and therefore of conspiracy after the Canwell Committee's defamation of Rader and the other academics. Ed Guthman was later press secretary for Attorney General Robert Kennedy, about whom he wrote several books; a WWII recipient of the Silver Star and a Purple Heart; and taught at the USC Annenberg School of Journalism. Ed Guthman died August 31, 2008, in Los Angeles.

Accessory Structure: None.

Description:

<table>
<thead>
<tr>
<th>Site ID #23</th>
<th>2827 Broadway Ave E</th>
<th>Built: 1909</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Name: Ritchie-Klock House</td>
<td>Contemporary Name: Nelson, Richard Bradford, House</td>
<td></td>
</tr>
<tr>
<td>Denny-Fuhrman Addition</td>
<td>Block 24 Lot 14</td>
<td>Legal: 1959701690</td>
</tr>
<tr>
<td>Style: American Foursquare</td>
<td>Builder: Herman Austin</td>
<td>Architect: Same</td>
</tr>
<tr>
<td>Classification: Historic Contributing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The American Foursquare style house has a two-storey arched portico, whose materials echo the house exterior materials. The first floor is brick veneer, and the second storey, separated from the first by a dentilated stringcourse, is stucco. On this house, the double stucco upper storey portico features a gothic-arched, cut-out railing and the lower storey exterior and double portico, including the portico railing, is Flemish-bonded brick. Above the house's hipped roof is a centered, hip-roofed dormer with six narrow casement windows. Wide boxed-in eaves have triple-modillion ornaments. Double doors lead out to the upper storey portico. The front door is almost centered on the full-width portico, and wide windows on the first storey with leaded glass are intact.
Cultural Data: James M. Ritchie, a retired banker (48), and his wife, Grace, were the first owner-residents and lived in the house with their daughter, Helen Ritchie, who was one year old. Grace disappeared from the Polk directories after 1916, and Ritchie disappears altogether from the Polk directories after 1917.

By 1920, the house had been sold to Harvey L. and Winnifred Klock, who owned and lived in the house with their family of three children for many years. Harvey L. Klock was president and treasurer of Klock Produce Co. and secretary of W. H. Hendrix Co., a wholesaler of butter, eggs, and cheese. By 1930 he is listed in the U.S. Census as a butter & eggs broker.

Accessory Structure: Detached Garage
Description: Historic Contributing.
A frame two-car garage on cement foundation with no doors.

Site ID #24 2826–2828 Broadway Ave E Built: 1908
Historic Name: Dr. Johnson, Smith & Emma, House
Contemporary Name: Emrich, Thomas D. and Jeanne R., House
Denny-Fuhrman Addition Block 25 Lot 3 Legal: 1959701715
Style: Neoclassical Revival Builder:
Classification: Historic Contributing
Description: Building Permit No. 67039, dated 9-30-1908, authorized Dr. Smith S. Johnson to build a two-storey frame residence 36 feet by 50 feet. The date on this record doesn’t match the city of Seattle Parcel Data or the King County Tax Assessment Rolls, which record a build date of 1902. If indeed it was built in 1902, this handsome Neo-Classical Revival duplex is the third oldest building in the district. The house is a duplex now. Whether it was originally a duplex is not clear.

The clapboard house features a side gable dominated by a large cross gable porch. Four two-storey Corinthian columns support the porch, and two pilasters rose through the two storeys. The porches total 600 square feet. The pediment is outlined with deep rows of dentils, which highlight an oval window. A brick chimney is on the north side of the house. Three French doors with multiple lights lead out to the second storey of the porch, whose wrought-iron railing echoes the oval theme of the principal gable's window.

Cultural Data: Dr. Smith S. Johnson and his wife Emma had the home built. According to census records, by 1920 Emma (who was a teacher of dramatic arts) had become a widow. J. A. Orchard, a stonemason who lived at 2718 Franklin Ave E, paid the taxes.

96 King County Assessor Real Property [online] Report.
From at least 1920 James H. Lilly owned the house, and he is shown living in the house from 1930 to 1941. He was a partner (with Morris A. Lundquist and Robert A. Lilly), in Lundquist & Lilly clothing store. The three were managers of "advertising specialties." And the Lundquist-Lilly Hour was a popular radio show that helped to advertise the clothing store.

Accessory Structure: Garage
Description: Non-Historic Non-Contributing
Built: 1920

Building Permit No. 194799, dated 8-26-1920, authorized owner, resident James H. Lilly to have contractor M. Hoard & Co. erect a private garage for 4 cars, published in Journal of Commerce Aug 12 to 16 1920 and published in Daily Star Aug 12 to 16 1920. No other garage on lot, entrance from alley. The 20 feet by 45 feet garage was designed by architect George W. Lawton. Lawton, with his partner Herman A. Moldenhour, also designed the garage at 2626 Tenth Ave E (1928, Site ID #69). The original four-car garage with flat roof has grown to a new cement six-car, flat-roofed edifice, two bays of which now serve the house next door to the south, at 2822 Broadway Ave E. All six bays have old-style swing-up doors.

Site ID #25
2832 Broadway Ave E
Built: 1911

Historic Name: Tucker, Wilmon and Lillian, House
Contemporary Name: Baker, Abner B., House
Denny-Fuhrman Addition
Block 25 Lot 2
Legal: 1959701710
Builder: Architect:

Style: Craftsman
Classification: Historic Contributing
Description: The double-"stepped"-gabled house is two and a half storeys with a clapboard lower exterior and a stucco and half-timbered upper. The plane attached to the more recessive gable on the south side of the facade has a new glass door centered over the front door and new single-paned windows. The three original windows at the top of the gables are intact, as are the larger windows at the base of the gables. The shed-roofed porch supported by square pillars runs across the south side of the house front—about two-thirds of the house width—where its roof intersects with the front of the more forward, north gable. The porch ceiling has undergone a recent restoration with new bead-boarding. The wide steps to the porch are on the left. The door on the left side of the porch has a cut-glass window, and the flanking sidelights are of cut glass, too. The first-floor cut-glass-over-one windows are intact.

Cultural Data: Building Permit No. A-9975, dated 9-12-1901, one of the district’s two pre-1908 building permits indexed by the City of Seattle’s Department of Planning and Development, was for building a frame shed, 6 feet by 6 feet, at an estimated cost of $10.00, on the property. The F. M. Jordan Co. was the builder, and W. W. Kellog & Son agreed "to remove all rubbish from street and walks each Saturday.
before 6 o'clock p. m. Minnie E. Bradley, a teacher at Longfellow School, boarded at 1014 Fifteenth Ave E when she was the owner of record, in 1910. Neither she nor Oscar Johnson, who paid the taxes that year, was the owner in 1911, and Johnson, who was the builder at several lots in the neighborhood, probably built the house. Neither Bradley nor Johnson ever lived in the house. The building permit for the house itself has not been found.

Long-time resident Dave Storm remembers that attorney Wilmon Tucker of Tucker & Hyland, whose practice was located in the Lowman Building, lived at 2832 Broadway Ave E. Tucker lived there with his wife, Lillian, and family from at least 1914. After his neighbor Hugh Caldwell, at 2717 Tenth Ave E (Site ID #79), was elected mayor (1920), Caldwell appointed Tucker's law firm to investigate the street railway sale negotiations for evidence of fraud and bribery. Tucker's law partner, Ivan Hyland, was among a regular foursome on the golf course that included Otto Rupp, H. J. Ramsey, and C. T. Conover.

Accessory Structure: Garage on northeast corner of lot. Built: 1914
Description: Historic Contributing.
Building Permit No. 130702, dated 3-12-1914, authorized owner Wilmon Tucker to have builder Hans Pederson build a garage 13 feet by 16 feet, 6 feet from buildings on adjoining lots with concrete walls 10 inches at the base and 6 inches at the top at an estimated cost of $250. The flat-roofed garage appears on the Volume 4 Sanborn map. The old double doors are intact. Hans Pederson had been the builder in 1908 of the Victor W. Voorhees-designed Washington Hall, originally a Danish fraternal lodge building.

Site ID #26
2833 Broadway Ave E
Built: 1909
Historic Name: Sands, Magnus and Olga, House
Contemporary Name: Stowell, Kent and Russell, Francia, House
Denny-Fuhrman Addition Block 24 Lot 15
Legal: 1959701695
Style: Craftsman
Builder: Architect:
Classification: Historic Contributing
Description: The side-gable-roofed house is one and a half storeys with a centered gabled dormer. The gable is shingled, with dentil detailing, and has a double, double-hung window and a shingled balcony.

97 Interestingly, a W. W. Kellogg is mentioned in Lawrence Kreisman and Glenn Mason’s book as “Seattle’s premier tile distributor [who] exhibited 2000 pieces of pottery in its commercial studio in 1911-1912,” 84.
98 Side Sewer Card 3553 Oscar Johnson 4-4-11.
99 Berner, Volume 1, 320.
100 Conover, 248.
railing. The rest of the exterior is clapboard. The entrance is on the right side of the house, inside a recessed porch. On the first storey, two narrow, double-hung windows with four lights over one flank a wider window with twelve lights of the same size as the narrow windows' over one. Building Permit No. 226296, dated 8-20-1923, authorized Magnus. S. Sands to build 2 rooms onto the residence.

Cultural Data: Magnus Sands (or Sando) and his wife, Olga, owned the house from 1910 through 1941 and raised their six children there. Magnus was from Norway and according to the 1920 census was a builder. He was a partner in Sylliassen & Sands building company. From 1935 through 1941, the Sands's oldest daughter, Myrtle Sands, was the owner of record. In the 1920 U. S. Census, their son Oscar Sands appears as an automobile mechanic. Their son Clarence Sands appears in the 1930 U. S. Census as a grocery truck driver, and their daughter Hilda Sands appears in that census as a department store sales lady.

Accessory Structure: Garage on southwest corner. **Built:** 1912

Description: Historic Contributing.

Building Permit No. 111322, dated 3-8-1912, authorized applicant, owner, builder M. Sands to build a one-storey frame garage 12 feet by 18 feet. The flat-roofed, clapboard single-car garage with an old swing-up door appears on the Volume 4 Sanborn map.

Site ID #27

2838 Broadway Ave E, House

Built: 1910

Historic Name: Denny, Emily Inez, House

Contemporary Name: Zamudio, Gregory and Pagalialuan, Tisha, House

Denny-Fuhrman Addition

Block 25 Lot 1

Legal: 1959701705

Builder: J. A. Blom

Architect: Same

Classification: Historic Contributing

Description: Building Permit No. 86411, dated 1-28-1910, authorized designer-builder J. A. Blom to build a two-storey frame residence 29 feet by 58 feet for owner Blom & Oscar Johnson. (See 804 E Hamlin St, Site ID #30, for another substantial brick house, the Stephens House, in which designer-builder Blom had a sole interest in 1913.) The house, which sits on the southeast corner of E Shelby St and Broadway Ave E, is a two and a half-storey, Arts & Crafts-inspired dwelling. The first floor is clad in Flemish-bond red and cream brick, and the second storey is spatter-dash stucco with half-timbering. The side-gabled roof is topped by a double-gabled dormer, also spatter-dash stucco with half-timbering. The chimney is on the west side with Flemish-bond brickwork on the lower part. Centered on the main façade is a flat-roofed front porch with square brick pillars topped by spatter-dash stucco arches. The stairs approach the front porch from the side. The house front faces E Shelby St. All of the windows feature cut glass transom lights above a set of casement sashes.

Cultural Data: In 1910, the ubiquitous owner Oscar Johnson and Emily Inez Denny each paid part of the taxes on the property. By 1915, Emily Inez Denny was the sole owner the property, which by that time had
been improved with the construction of the large house on the site. By 1916, the year she died, Louisa Boren Denny, widow of David T. Denny, was living at the house with her daughter Emily Inez and her youngest son, Victor W. S. Denny. Earlier, after David's death in 1903, Louisa had moved from their Licton Springs Farm to live up the hill at 2326 Broadway Ave E with Victor and Emily Inez. Emily Inez had written most of *Blazing the Way* by 1899 but no doubt added much of the eulogizing material about David T. Denny while living at that house with her mother. *Blazing the Way* was published in 1909. Emily Inez Denny died in 1918, of Bright's disease.

Victor W. S. Denny became an assayer and miner whose vocation reflects the last interest and vocation of his father. He variously identified himself over the years as Victor Winfield Scott Denny—his real name—Victor U. S. Denny, V. W. S. Denny, and once, while a student, Victor "West Side" Denny. He owned the house at 2838 Broadway by 1920. He was married to Lillie (or Lily) Franklin, with whom he had a daughter, Madge Decatur Denny, and a son, Victor W. Denny.

Accessory Structure: None.

Description:

800 Block of E Edgar St

Site ID #28

Historic Name: St. Patrick's Church

Contemporary Name: St. Patrick's Church

Denny-Fuhrman Addition

Style: Modern

Builder: Architect: Klontz & Wrede

Legal: 1959700455

Built: 1960–61

Classification: Non-Historic Non-Contributing

Description: A newer, one-story, masonry church replacing the old Garrett-Erickson Mansion. The rectangular church has a side-gabled roof, clerestory windows that run along the fascia board under the eaves of the roof, and plain, colored-glass windows along the east and west sides, which catch the morning sun during Mass and the setting sun for evening services. The rectangular church has extensive basement facilities.

The full-width, flat-roofed entry porch supported by tapered square pillars is on the north side of the church, and the altar is on the south side of the church. The porch extends beyond the church footprint on the northeast for wheelchair entry. The "steeple" set on the northeast side of the porch roof is an abstract sculpture topped by a gold-colored cross, and a redundant identical cross tops the north end of the gable.

A large tile mural flanked by strips of rectangular colored glass that echo the pane organization of the colored windows on the east and west and on either side of the church doors in the front façade below is set into the front, north gable. It depicts Jesus Christ in green vestments standing on a stylized globe while treading on a huge-headed, arrow-tailed serpent and a field of shamrocks. A radiant staff is to the
right of the Christ figure. Three black birds or bats with three pronged tails are in downward flight, and a
flame burning on logs is to the right of the Christ figure. A red orb is tucked into the upper-right corner
and sends out multiple rays of yellow, orange and red, and a light ray in the opposite upper corner,
obviously coming from far above, features three descending ghostly doves and probably represents the
father deity’s regard for the earthly Christ. Stylized blue waves at the bottom represent the seas.

Cultural Data: James M. Klontz studied architecture at the University of Washington and formed a
partnership with George E. Wrede in 1956. Their primary focus was on religious facilities—in addition to
St. Patrick’s Church, they designed the Bellevue Methodist Church (1956), Our Lady of Fatima Church in
Seattle’s Magnolia district (1968), a convent for St. Benedict’s Church in Seattle’s Wallingford
neighborhood, and a facility for St. Monica’s Parish on Mercer Island in Lake Washington. On
March 5, 1959, in anticipation of losing its church, rectory, and elementary school farther up
the Tenth Ave E hill at East Lynn Street to Interstate-5, St. Patrick’s Parish bought the Garrett−Erickson
Mansion at 815 E Edgar St, on the southwest corner of E Edgar St and Broadway Ave E, and four other
lots. The church tore down the Garrett−Erickson Mansion.

Accessory Structure: None.

Description:

Site ID #29 818 E Edgar St (formerly 2701 Broadway Ave E) Built: 1939

Historic Name: Milligan, Dr E.L. & Edith, House
Contemporary Name: Ferguson, Keith R. and Deborah W., House

Denny-Fuhrman Addition Block 15 Lot 8

Classification: Historic Contributing

Description: Building Permit No. 329848, dated 10-27-1938, authorized owner Dr. E. L. Milligan,
address c/o architect, to have contractor Lovell Construction Co., of 2533 E Ninety-fourth St, build a one-
family dwelling 27 feet 10 inches by 41 feet 8 inches designed by architect T. F. Bellamy. The first storey
is brick veneer, and the second storey, which overhangs the first, was shingles, and is now siding.
“Remarks: Well-built standard [type] 4. Good hardware and treads up, good fir down, some walls
‘Kalsomined.’”103 The house had a wood-shingled hipped roof that is now composition. Wooden pendants
traditional in the Colonia Revival Garrison subtype decorate the lower corners, calling attention to the
overhang of the second storey.
Cultural Data: Tennys Bellamy, who designed this house, graduated from the University of Washington architecture program in 1928 and went on to earn a B.A. in Fine Arts from Yale. Then he worked for a number of architectural firms in Boston. After returning to Seattle, he worked for Ellsworth Story and for Schack, Young & Myers as well as for Grainger & Thomas. He received his architectural license in 1934, just four years before he designed this Garrison-style house.194

Dr. Milligan owned the property in 1938, when the house was built on the south 44 feet of Lot 8. By 1941, his wife, Edith L. Milligan, a saleswoman at Burt’s Jewelry Co., was the owner of record.

Accessory Structure: Detached garage
Description: Historic Contributing.
Building Permit No. 329848 for the residence, dated 1-15-1938, also authorized the building of a two-car garage at the rear of the lot. It is now a two-car, plastered brick veneer 22 feet by 22 feet garage with a concrete floor. The roof was originally wood shingle and is now composition shingle. The garage appears on the northwest side of the property on the Volume 4 Sanborn map.

800 Block of E Hamlin St

Site ID #30 804 E Hamlin St Built: 1913
Historic Name: Stephens, Dr. Lorenzo L. and Maude B., House
Contemporary Name: Gibbs, Bruce C., House
Denny-Fuhrman Addition Block 24 Lot 8
Style: Craftsman
Builder: John A. Blom
Classification: Historic Contributing
Description: Building Permit No. 126738, dated 9-25-1913, authorized designer, builder, owner John A. Blom (or Bloom), of 927 Northern Building, to build a two-story residence 31 feet by 48 feet at 804 E Hamlin St for an estimated cost of $10,000. (See 2838 Broadway Av E, Site ID #27, for another substantial brick house for which J. A. Bloom was the designer-builder—for that house in a joint ownership with builder Oscar Johnson.) At the northeast corner of E Hamlin St and Harvard Ave E, this large, two and a half-story brick house is mostly hidden by mature landscaping and is mostly unaltered. The house has a hipped roof with centered gabled dormers east and west and two gabled dormers each on the north and south side of the roof. The first floor exterior is brick, and the second floor is stucco.

brick-pillared entry porch on the south is approached by steps on its west side. A balcony with a stucco-clad rail is above the porch. A wide brick chimney is on the north side of the house, and a smaller, square brick chimney is in the center of the house. Cut-glass windows over one pane are intact.

Building Permit No. 274869, dated 3-18-1928, authorized owner Dr. L. L. Stephens to add a sunroom to the residence, on the east side, so that the building would be 30 feet by 62 feet. The sunroom wing is set slightly to the south of ("bumps out" from) the house proper in order to avoid eliminating a back porch on the north of the east side of the house. Another balcony with a stucco-clad rail is above the sunroom addition.

Cultural Data: Lot 8 went through several hands until the house was built in 1913. The first owner-resident appears to have been Lorenzo L. and Maude B. Stephens and family, who by 1920 had moved into the house from a former residence at 1246 Summit Ave. Lorenzo Stephens was a physician. Their son, L. Don Stephens, was born in 1909. They lived in the house until at least 1941

Accessory Structure: Brick garage on east side of lot. Built: 1916

Description: Historic Contributing.

Building Permit No. 148642, dated 4-12-1916, authorized owner Dalk & Lindberg, of 1603 Ewing Street, to have contractor A. J. Carr, of 2717 Third Ave N, build a concrete-floored garage with walls to extend 18 inches into the ground 20 feet from any residence, with doors that would open on own land for a garage to be 14 feet by 20 feet. The garage appears on the Volume 4 Sanborn map. It is set back from E Hamlin St. and the sunroom wing, next to the sunroom wing.

Site ID #31 817 E Hamlin St Built: 1926

Historic Name: Jacobs–Silver House

Contemporary Name: Hongladarom, Thawom and Gail, House

Denny-Fuhrman Addition Block 15 Lots 13 & 14 Legal: 1959700920

Style: French Norman Revival Builder: Architec t: Ivey & Ayer

Classification: Historic Contributing

105 According to owner Gail Hongladarom, no less a landscape architectural historian than Duane A. Dietz told her years ago that Ayer had designed the garden for the house. (Gail Hongladarom in an e-mail to Erin O'Connor.) In response to subsequent recent inquiries performed by University of Washington Associate Professor of Landscape Architecture Thaisa Way, Dietz said that there was no documentation of Ayer's involvement in the garden design but that it was a possibility given the few numbers of trained landscape architects in the area in the period, who were mostly doing estate work. Professor Way reported that landscape architecture historian David Streatfield responded with a simple "No" to the possibility. David Rash, who wrote the entry on Elizabeth Ayer for Jeffrey Ochsner's Shaping Seattle Architecture, responded more fully that some projects for Ayer & Lamping, Ayer's later partnership, feature work on "swimming pools and subsidiary structures that suggest an involvement in landscape design." Rash cites Ayer's ten-year tenure on the Planning Commission as a suggestion that Ayer had "an interest in environmental design beyond simply individual buildings." Summarizing E-mail from Thaisa Way to Erin O'Connor, 2-13-2009.
Description: The frame, stucco-on-lath, one and a half-storey house has a side gable roof, with a two-storey tower capped by a conical roof. Several hip-roofed dormers appear on either side of the tower, which has stepped, diamond-paned, leaded-glass casement windows. Decorative herringbone brick panels are set into the stucco. The house fronts on E Hamlin St on the southwest corner of E Hamlin St and Broadway Ave E. A courtyard contains the only Ernest Batchelder fountain (designed and built by Batchelder) still in existence, with a picture tile and other tiles from his studio in Pasadena. The landscaping around the house and in its curb beds has recently been renovated with drought-resistant plants. The “Potting Palace” (“No potting shed for this great house,” said Gail.) has appeared in many national magazines, and in 1997, Better Homes and Gardens sold plans for the structure. Both the Potting Palace and the Batchelder fountain are shown in the book Outside the Bungalow.

Cultural Data: In the 1920s, Edwin J. Ivey was a leading Seattle residential architect. He was familiar with the eclectic residential work of Philadelphia residential designers, who in turn had been influenced by English architect Sir Edwin Lutyens. Elizabeth Ayer was the first woman graduate of the University of Washington School of Architecture. If indeed Elizabeth Ayer served as landscape architect for the garden at 817 Hamlin St and elsewhere for houses in the region, the relationship of Ivey and Ayer would be somewhat reminiscent of the many collaborations between Lutyens and garden designer Gertrude Jekyll. Edwin Ivey, Architect, and Elizabeth Ayer, Associate, also designed the Albert Schafer Castle in Hood Canal with its Norman details. Ivey was the architect, and Ayer did the drawings for what she called the “French Colonial” Langdon C. Henry residence in The Highlands (1927-28). According to S. Sian Robert & Mary Shaughnessy, Ivey’s or Ivey’s and Ayer’s versatility is further demonstrated by the “Modern Colonial” Aubrey Naef residence in Seattle (1935-36). They say that the Seattle Children’s Home (1930-31, destroyed) was one of the few institutional buildings the firm designed and was to Ayer “a career highlight.” Edwin Ivey had also designed the Twelves House in the Roanoke Park Historic District, at 817 E Shelby St (1923, Site ID #56).

According to the present owners, Gail and Thai Hongladarom, the house was built for Murray and Odessa Jacobs. Murray Jacobs was a stock broker. An unverified romantic story about the medieval-looking house is that it was built by a married man to house his left-handed mistress. Although this story might be apocryphal, it would account for the house’s reverse hinging. By 1933, the Max Silver family, who were furriers, were the owner-residents.

Accessory Structures: “Potting Palace” Built: 1995

106 Gail Hongladarom in an e-mail to Erin O’Connor Sunday, April 13, 2008.
110 Property Record Card.
Description: Non-Historic Non-Contributing.

900 Block of E Hamlin St

Site ID #32

918 E Hamlin St Built: 1910

Historic Name: Wentworth-Elliott House

Contemporary Name: Christothoulou, George and Nooney, Rachel S., House

Denny-Fuhrman Addition

Block 25 Lot 9 and S 10' of 10 Legal: 1959701745

Style: Arts & Crafts

Builder: P. E. Wentworth Architect: Merritt, Hall & Merritt

Classification: Historic Contributing

Description: Building Permit No. 83933, dated 11-11-1909, authorized applicant, owner, builder P. E. Wentworth, of 1212 Twenty-first Avenue, to build a two-storey frame residence 28 feet by 44 feet designed by Merritt, Hall & Merritt. The handsome, double-gabled Arts & Crafts house on the northeast corner of E Hamlin St and Tenth Ave E, fronts on E Hamlin St. Two gables emerge from a side-gabled roof and flank a small shed-roofed dormer. The wide eaves are supported by Craftsman knee braces. The barge boards of the gables feature a simple cut-out at each end. Small nine-light windows thematically unite the apexes of the gables with the dormer. Two bigger double-hung windows, 21 lights over one, are at the bottom of the stuccoed gables and are outlined in half-timbering, which continues up to and through the sections of the smaller double windows at the tops of the gables. Vertical half timbering continues across the plane between the gables to embellish a triple window centered over a shallow hipped roof on the porch. The triple window, which features a 24-light center casement window flanked by two double-hung, nine-light-over-one windows, breaks the division between the stucco of the upper storey and the siding of the lower. Large versions of the two lower double-hung gable windows flank the porch with 24 lights over one. In the rear, a shed-roofed bump-out sits over an enclosed porch. The recently sold house has undergone a recent remodeling, including copper gutters and downspouts and new paint.

Building Permit No. 212115, dated 4-18-1922, authorized owner, builder Grant Elliott to extend a room 7 feet by 13 feet on the second floor over the porch.

Cultural Data: Edward L. Merritt, of Merritt, Hall & Merritt, was an associate of Bungalow Magazine owner-publisher Jud Yoho. In the magazine, Yoho published both his own and Ed Merritt’s designs, and they went on to publish a plan book. From 1911 to 1924, Yoho & Merritt designed several bungalows in Wallingford, Ravenna, Green Lake, the University District, and Northgate.111

111 Dennis A. Andersen & Katheryn Hills Krafft, “Pattern Books, Plan Books, Periodicals,” in Ochsner, 70, and Katheryn Hills Krafft, “Yoho, Jud” entry in “Additional Significant Seattle Architects,” in Ochsner. 354. For more about Merritt’s partner Virgil Hall, who was also an associate of Yoho’s, see the entry for 2716 Harvard Ave E (Site ID #41), in this inventory.
Paul E. Wentworth, the owner of record 11-23-09, was from Maine and lived in the house at 918 E Hamlin St with spouse Jane W. and children Blanche (19), Florence (16), and Raymond Wentworth (10) in 1910, the year the house was built. Servant Frank Norikio was there, too. A builder-contractor, P. E. Wentworth owned and built and might have lived briefly in other houses he built in the neighborhood in addition to this one. See 2808 Tenth Ave E (Site ID #87), 2809 Tenth Ave E (Site ID #88), 2833 Tenth Ave E (Site ID #98), and 2837 Tenth Ave E (Site ID #100). Wentworth is mentioned in *The Arts and Crafts Movement in the Pacific Northwest* as the owner of a house featured in a 1914 issue of *Bungalow Magazine*: “In October, the magazine featured the Japanese-inspired P. E. Wentworth bungalow in the Phinney Ridge neighborhood by [Jud Yoho's] Craftsman Bungalow Company, with its prominent river rock foundation and chimney.”

Wentworth and his family did not stay long in the house at 918 E Hamlin St. James G. (or James E.) Elliott, his wife, Minnie, and their three daughters moved into the house in 1910 as well. James G. Elliott was in real estate. The Elliotts owned the house until at least 1935. A family named Owner (a source of confusion as far as records are concerned) owned and had moved into the house by 1941.

Accessory Structure: Garage on west side of lot. **Built:** 1910

Description: Historic Contributing.

Building Permit No. 9738, dated 11-16-1910, authorized applicant, owner A. Lavely (as on the tax assessment rolls) or A. Laney (as on the building permit) to build a one-storey frame and stucco garage 12 feet by 20 feet as per the application. The garage is shown on the Volume 4 Sanborn map on the northwest side of the property. The old double doors on the north end of the garage have been closed off, and the garage entrance is now on the south end of the garage.

2600 Block of Harvard Ave E

Site ID #33 2600 Harvard Ave E **Built:** 1991

Historic Name: Thomas, Cheryl K. and Lane, Theodore, House

Denny-Fuhrman Addition Block 8 Lot 8 **Legal:** 1959700425

Style: Contemporary **Builder:** Greg McGar Construction, Inc. **Architect:** David Hineline (1991), Tony Case

Classification: Non-Historic Non-Contributing

Description: A newer, gray stucco contemporary house on the corner of Harvard Ave E and E Roanoke St. The crenellated roof was recently replaced by straighter lines, and the two-storey house was expanded to the west and the east by an addition to the first and second storeys and a new gallery around the outside.

112 Lawrence Kreisman and Glenn Mason, 163.
of the southeast corner. Deck flooring on the east side and on the roof was replaced, and a new “green” roof garden was installed.

Cultural Data: This house and the house next door are built on the site of a former Standard Oil gas station, which occupied Lots 7 and 8 starting in 1937. The streamlined, deco-inspired gas station was still on the two properties in 1972. After the gas station was torn down (sometime in the 1970s, after 1972 and before the 1979 Gopal House was built on Lot 7), the Flower Lady had a stall on the corner. She wanted to build a business structure there, but the neighborhood fought off the plan, not wanting to see another commercial building in the neighborhood of predominantly single-family residences. The two single-family residences were constructed on the two-lot site in 1979 and 1991.

Cheryl Thomas and her husband, Ted Lane, both economists, are active in community affairs. Ted is a respected member of groups searching for solutions to freeway noise and negotiating a design acceptable to many neighborhoods for the replacement of the SR-520 bridge across Lake Washington. Cheryl Thomas is a community facilitator of note, having led the renovation of Roanoke Park over a ten-year period and seen to the planting of 100 new trees in the park and some 500 new street trees in the neighborhood. She recently served on the board of YouthCare. She has won many grants for neighborhood improvement and an award for her civic work from the Seattle Garden Club and another from Seattle Fire Station 22. She is currently working with University of Washington Professor Emeritus of Landscape Architecture Robert Buchanan and design firm Parametrix on the designs for lids to flank the E Roanoke St Bridge over Interstate-5 and the Tenth Ave E and Delmar Dr E bridges over SR-520.

Accessory Structure: None

Description:

- **Site ID #34** 2606 Harvard Ave E
- **Built:** 1979
- **Historic Name:** Gounder, Raj Gopal, House
- **Denny-Fuhrman Addition** Block 8 Lot 7
- **Legal:** 1959700424
- **Style:**
- **Builder:**
- **Architect:**

Classification: Non-Historic Non-Contributing

Description: A one-storey residence with a stucco enclosed courtyard in the rear. The gable-roofed, one-storey front wing is topped by a perpendicular side-gable-roofed, two-storey wing to the rear. Both gables are relatively shallow, and their ends are filled with vertical wood siding. Flat eaves extend beyond the gable ends so that the gables appear to rest in a flat roof. The lower exterior on the front façade is brick. Both stories of the wing to the rear are clad in vertical siding. The brick chimney is on the south side of the house.

(113 Property Record Card.)
Cultural Data: The residence occupies the second lot of the former Standard Oil gas station. The Gopal family from Fiji has occupied the single-family dwelling since it was built, in 1979.

Accessory Structure: None.

Description:

Site ID #35 2612 Harvard Ave E Built: 1910
Historic Name: Clemmer, John Q. and Sybil, House
Contemporary Name: Holdridge, Albert and Barbara, House
Denny-Fuhrman Addition Block 8 Lot 6 Legal: 1959700420
Style: Mission Revival Builder: Herman Austin Architect: Same
Classification: Historic Contributing

Description: Building Permit No. 86619, dated 2-3-1910, authorized owner, builder, designer Herman Austin, of 2015 Third Ave, to build a two-storey residence. The stucco house has a parged concrete foundation and a projecting flat roof of tar and gravel and metal tile. The Property Record Card for this unaltered Mission Revival House with an Arts and Crafts interior describes the following “Extra features: 3 bay windows on first storey; 3 beam boxed ceiling; 2 overhang.”114 The house is essentially an American Foursquare design with projecting corner windows and Spanish/Mission detailing such as its curved parapets. It has a full-width front porch with an offset entry door. The flat roof/balcony is hidden by a shaped low parapet wall. The interior is in the Arts and Crafts mode. Inside, the original fixtures, wainscoting, boxed-beam ceilings, and ribbon floor inlays are intact. An unusual cornice runs around the living room ceiling. The design of the original fixtures along the borders of the living room ceiling might have been influenced by first owner John Q. Clemmer's connection with theater building and management.115 Seattle's municipal archives contain both an exterior photo and an interior photo.

Cultural Data: The designer-builder Herman Austin also designed and built the King House, one door to the north of this one at 2616 Harvard Ave E (1910, Site ID #36), the Ritchie-Klock House at 2827 Broadway Ave E (1909, Site ID #23), and the Gleason House at 2728 Harvard Ave E (1909, Site ID #44). He was the builder for the Bertram Dudley Stuart-designed Nelson House at 2706 Broadway Ave E (1921, Site ID #6), as well.

Original owner John Q. Clemmer was a premier impresario of Vaudeville and film in his day, in 1932 beating out 200 other west coast managers in the Fox Theater chain's contest for "the most popular manager in the West." It's said that he managed every theater of note in Seattle and neighboring Tacoma:

114 Property Record Card.
115 Observation of architectural historian Allan Seidenverg during a visit to the house on the occasion of the second MOHAI-sponsored walking tour of the district, Saturday, 9-6-2008.
in Seattle, the Fifth Avenue,116 the Winter Garden, the Music Box,117 the Blue Mouse, the Music Hall, the Paramount,118 and the Orpheum.119 Clemmer owned at least two theaters in Seattle: first the Dream Theater on the first floor of his Kenneth Hotel building at First and Cherry, where Clemmer and his wife, having come from Spokane, also made their first home in Seattle. The Dream was the first theater in the country to feature a pipe organ. In 1912, Clemmer sold the Dream and built the Clemmer Theater, at 1414 Second Avenue, which he billed as “the nation’s first grand theater devoted exclusively to photoplays”—that is, movies. James Q. Clemmer died in 1942 and was memorialized by John Hamrick, who owned the Fifth Avenue, as “the best theater manager I ever knew.”120

\textbf{Accessory Structure: None} \textbf{Built: By 1917 (destroyed)}

\textbf{Description: A garage is shown on the southeast side of the lot on the Sanford map in Volume 4, 1917–1950, Sheet 445.}

\textbf{Site ID #36} \textbf{2616 Harvard Ave E} \textbf{Built: 1910}

\textbf{Historic Name: King–Friedman House}
\textbf{Contemporary Name: Mesher, Shirley Ann, House}

\textbf{Denny–Fuhrman Addition} \textbf{Block 8 Lots 4–5} \textbf{Legal: 1959700415}

\textbf{Style: American Foursquare} \textbf{Builder: Herman Austin} \textbf{Architect: Same}

\textbf{Classification: Historic Contributing}

\textbf{Description: Building Permit No. 86618, dated 2-3-1910, authorized owner, builder, designer Herman Austin, of 2015 Third Avenue, to build a two-storey frame residence 32 feet by 37 feet. The American Foursquare King–Friedman House has a brick first floor and a spatter-dash stucco-clad second floor. Hip-roofed gables are on all sides of the hipped roof. The foundation is parged brick. The two-storey portico echoes the brick and stucco materials of the house exterior. The house retains its original leaded glass casement windows. The south side of the house is partly visible in the archival photo of the Clemmer House exterior. The house is featured in \textit{Homes and Gardens of the Pacific Coast Volume 1 Seattle 1913}, where it is praised for “a skillful use of design in the brick work” and for its “massive porch of brick and stucco” lending “an air of dignity and ample hospitality to the approach.” Finally, its chimney’s breaking through the overhang of the roof and then the dormer roof is called “a pleasant surprise.”121 A charming

119 Sutermeister, in Ochsner, 182.
120 Paul Dorpat, “91 Clemmer’s Dream,” \textit{Seattle Now and Then}. Volume 1 2d ed. (Seattle 1984), no page numbers.
121 Calvert, ed., no page numbers.
note on the Property Record Card for this house observes that seven of its walls were papered and two of its walls featured Japanese grass cloth.

Cultural Data: Herman Austin, a designer-builder, also designed and built the Clemmer House one door to the south of this one (1910, Site ID #35), the Gleason-Mitchell House at 2728 Harvard Ave E (1909, Site ID #44), and the Ritchie-Klock House at 2827 Broadway Ave E (1909, Site ID #23), which has a similar, but double two-storey portico. Herman Austin also built the handsome brick Georgian house at 2706 Broadway Ave E (Site ID #6), but it was designed by architect Bertram Dudley Stuart.

First owner Thomas J. King appears in the 1900 Polk directory as partner with Charles R. Reed and doing business at 316 1/2 Railroad Ave. In 1910, he was a partner with Albert M. Winge in Codfish Co. By 1911 he was a partner with Albert M. Winge, of King & Winge, and his residence at 2616 Harvard Ave E was noted. King & Winge by then were “Machinists, Shipwrights, Boat Builders, Caulkers, & Sparmakers.” “Marine Ways, Barges, and Scows” were offered for rent, along with “All Kinds of Winches for Halibut Boats.” They did business at 1030 Alki Avenue. William H. King, also listed at the 2616 address, was a ship carpenter. A ship called the King & Winge was among the ships involved in the attempted rescue refused by its captain of the *Princess Sophia* hung up on Vancouver Reef. The ship went down with all on board, and liability in the tragic event was determined in King neighbor Jeremiah Neterer’s court.

By 1920, the house belonged to Abe and Josepohine G. Friedman. Abe Friedman dealt in wholesale meats. Their daughter Bernice Stern was a highly regarded Seattle City Council member, King County Councilmember, and eventual Washington State Secretary of Transportation. Early in her marriage she lived at 818 E Edgar St. (Site ID #29)

Accessory Structure: Garage on southeast side of lot. **Built:** ca. 1910

Description: Historic Contributing.

Two-car frame garage. No building permit found. The Volume 4 Sanborn map shows the large garage.

Site ID #37 2632 Harvard Ave E **Built:** 1946

Historic Name: Pierce-Thibaudeau House

Contemporary Name: Pierce-Thibaudeau House

Denny-Fuhrman Addition **Block 8 Lots 1-2** **Legal:** 1959700388

Style: WWII-era Cottage **Builder:** Robert O. Mylroie **Architect:**

Classification: Non-historic Non-contributing
National Register of Historic Places

Continuation Sheet -

ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Description: A one-storey brick, hipped-roof, post World War II cottage.\(^{122}\) The exterior brick is inlaid with patterns of doubled Roman brick. The front porch is set back from the living room wing on the north side of the façade.

Cultural Data: Builder Robert Oliver Mylroie was the oldest son of Alfred Wright Mylroie and Lillian Olive Mylroie and grew up in the neighborhood in the Italian Renaissance house at 900 E Shelby St built by his father. He is shown as the owner of record for two houses acquired by St. Patrick’s Church that were demolished. He later built two brick cottages on the sites, including this one.

Accessory Structure: Garage.
Description: Non-historic Non-contributing.
Hipped-roof, brick garage on east side of lot.

Site ID #38
2636 Harvard Ave E
Built: 1945

Historic Name: Pierce, Gerald W., House
Contemporary Name: Pierce, Gerald W., House
Denny-Fuhrman Addition: Block 8 Lot 1 N 43.5'
Legal: 1959700387
Style: WWII-era Cottage
Builder: Robert O. Mylroie
Architect:
Classification: Non-historic Non-contributing

Description: A one-storey brick cottage\(^{123}\) with a hipped roof, companion to the one next door on the south built the following year. This house, of a more complex design than its companion to the south, features a series of setbacks along its north side. Its exterior brick, too, is inlaid with doubled Roman bricks in a repeating pattern.

Cultural Data: Builder Robert O. Mylroie grew up in the neighborhood in the Italian Renaissance house at 900 E Shelby St built by his father. He is shown as the owner of record for two houses acquired by St. Patrick’s Church that were demolished. He later built two brick cottages on the sites, including this one.

Accessory Structure: Garage
Description: Non-Historic Non-Contributing.
Two-car brick garage on southeast side of lot.

\(^{122}\) King County Assessor Real Property [online] Report.
\(^{123}\) King County Assessor Real Property [online] Report.
2700 Block of Harvard Ave E

Site ID #39 2706 Harvard Ave E (formerly 2700 Harvard Ave E) Built: 1903–1909
Historic Name: Duhamel-Parsons House
Contemporary Name: Foley, Robert M. and Linda A., House
Denny-Fuhrman Addition Block 15 Lots 6–7 Legal: 1959700875
Style: Neoclassical Revival Builder: Edward J. Duhamel Architect: Same
Classification: Individual listing on NR
Description: A two and a half-storey Neoclassical Revival frame clapboard house. The roof was originally shingle and is now composition. Modillions outline the house roofline and the roof of the front porch. A square porch is supported by four Corinthian columns that rise to the second storey, as do pilasters on either side of the centered front door. A balcony on the square porch roof is reached from a door in the centered front gabled dormer. Gabled dormers are on the sides as well. The original cut glass windows are intact or have been restored. A terrazzo-floored conservatory takes up more than half the width of the house on the east side. The kitchen and the attic were remodeled in 1965.

Building Permit No. 88130, dated 3-19-1910, authorized Stell & Co. to build a porch 8 feet by 60 feet on three sides of the house for owner Ella R. Parsons. A finely turned balustrade extends around the wraparound first-storey porch. A wraparound walkway that roofs the first-storey porch extends around the second storey and is supported by one-storey Ionic pillars that also serve as posts for the first-storey porch balustrade. The rail of the second-storey walkway features plainer square posts as does the rail around the balcony.

Cultural Data: Architect and later builder Edward J. Duhamel designed, built, and resided in this Classical Revival mansion, built over time from 1903 to 1909. It sits on the northeast corner of Harvard Ave E and E Edgar St and is known locally as the Harvard Mansion.¹²⁴ The state's 1910 census records show Edward John Duhamel during his second residency in the Pacific Northwest. Although trained as an architect at the behest of his contractor-builder father in Chicago, Duhamel seemed to prefer contracting and building. He first arrived in Seattle in 1890 from Wisconsin and after sojourns in Galveston and El Paso. He built the Squire Latimer Building and a large schoolhouse in Port Townsend. Then he decamped for Tacoma. Growing impatient over the changes of location and plans for the Tacoma City Hall, he went back to Chicago, where he built a number of churches. Coming back to the Pacific Northwest, he settled in Seattle in 1897, where he formed the partnership Crible & Duhamel, which eventually became Duhamel and Megrath. His notable commercial and institutional projects include the Snoqualmie Falls building, the

¹²⁴ Swope, 252.
Hamlock building, the Smith building, the car barns at Fifth Ave and Pine St, the Seattle Electric Company power plant building, Green Lake School, and the Pacific Coast Syrup Company Factory.\footnote{Various compilers, \textit{A Volume of Memoirs and Genealogy of Representative Citizens of the City of Seattle and County of King, Washington} (New York & Chicago: Lewis Publishing Co., 1903), 481.}

Duhamel sold the house to William H. and Ella R. Parsons in 1909. William H. Parsons founded one of the first banks in the Alaska interior, the Washington-Alaska Bank of Fairbanks, personally carrying $100,000 currency north via dogsled to start the bank. Later, he was vice-president and then president of the Dexter Horton National Bank.\footnote{Swope, \textit{Classic Houses of Seattle}, 90.} The 1911 Polk directory lists Parsons as vice-president of the Washington Trust & Savings Bank as well. Parsons remained with the Horton banks through their merger with First National Bank and Seattle National Bank. He lived in the house until his death at 74 in 1935.\footnote{Swope, 252.}

Accessory Structure: Detached Garage
Description: Historic Contributing.
Frame garage on northeast corner of lot. The Volume 4 Sanborn map, 1917–1950, indicates that the garage existed by 1917.

Site ID #40 2712 Harvard Ave E (formerly 2706 Harvard Ave E) Built: 1908
Historic Name: Chisholm, William J. and Mary A., House
Contemporary Name: Triplett, Derrel L. and Carroll, Michael J., House
Denny-Fuhrman Addition Block 15 Lot 5 Build: 1908
Style: American Foursquare
Classification: Historic Non-Contributing
Description: A two-storey, American Foursquare house with a hipped roof and a hip-roofed center dormer. Square pillars support the full-width porch-balcony. The balcony is enclosed by a simple railing. Original, narrow ten-light casement windows flank the second storey door, which is of a later period. The house entrance is on the left side of the full-width porch. Most of the original exterior and interior are intact, but some front windows and window openings have been altered.
Cultural Data: The 1916 Polk directory shows Wm. J. Chisholm (wife Mary A.), the owner in 1920, as vice-president of Merrill and King Logging Co.

Accessory Structure: Detached garage on northeast side of lot.
Built: 1912
Description: Historic Contributing.
Building Permit No. 113950, dated 6-5-1912, authorized applicant R. J. Barter, according to the 1910 census a house contractor, to build a one-storey frame garage 12 feet by 18 feet for owner W. J. Chisholm. The Volume 4 Sanborn map shows the garage. See also 2832 Harvard Ave E (Site ID #49), where Barter and his family lived for a short time.

Site ID #41 2716 Harvard Ave E Built: 1921

Historic Name: Hall-Sheppard House
Contemporary Name: Lambert, Clifford C., House
Denny-Fuhrman Addition
Block: 15
Lot: 4
Style: Colonial Revival
Classification: Historic Non-Contributing
Description: A one-storey house with a clipped side-gable composition roof and a clipped-gable-roofed bump-out on the north side of the front facade. Two pillars on each side support the small porch on the south side of the front facade. The porch has a clipped gable roof with neoclassical returns. The exterior was originally shingle and is now clapboard. The original eight-over-one double-hung windows in the front bump-out are intact as is the original triple window to the north of the porch. The triple window features a ten-light-over-one center section flanked by narrow four-lights-over-one sections. A hipped-roof bump-out is on the south rear of the house.

Cultural Data: In 1922, Virgil Hall was the owner. In 1912, according to the Seattle Post-Intelligencer, Hall was “connected with [Jud Yoho’s] Craftsman Bungalow Company” and an associate of Edward L. Merritt, and had just “returned from five weeks sojourn throughout California.” One is encouraged to speculate that by 1922, when this house was built, Virgil Hall might have been an associate of Gardner Gwinn, another prolific builder of bungalows and who in fact owned a house at 2703 Harvard Ave E (destroyed, along with several others on the west side of Harvard Ave E with which Gwinn was associated, to make way for I-5). Building Permit No. 82956, dated 10-20-1909, records architects Merritt & Hall for the design of a one and a half-storey residence 26 feet x 38 feet at 2817 Harvard Ave E (destroyed) as well.

By 1925, Eva H. Sheppard owned and was living in the house with her two student daughters. Eva was the manager of an employment agency. One speculates that it was probably one of the new agencies that were specializing in the employment of women, the philosophy apparently that women’s work was so different from men’s that they would need their own kind of employment experts in fields appropriate only for women. It was nevertheless an opportunity for many women to begin to become self sufficient. A letter to the mayor arguing that significantly fewer women than men would be employed and therefore fee

income would be considerably less for women's agencies petitioned the mayor successfully for a reduction of the $100 licensing fee charged agencies that placed men to $20 for agencies that placed women.129

Accessory Structure: Detached Garage
Description: Historic Contributing.
Frame garage on southeast corner of lot. The garage is shown on the Volume 4 Sanborn map.

Site ID #42
2722 Harvard Ave E
Built: 1906

Historic Name: Stokes, Harry C. and Emma J., House
Contemporary Name: Espling, Erik S. and Emilie M., House
Denny-Fuhrman Addition: Block 15
Lot 3
Legal: 1959700860
Style: American Foursquare
Builder:
Architect:
Classification: Historic Contributing

Description: The two and a half-storey American Foursquare house has a hipped roof with exposed decorative cut rafter tails and 2-inch exposure clapboard siding. A large hip-roofed porch centered on the main façade is supported by square pillars. The first and second storeys contain original one-over-one, double-hung wood windows. Above the porch is a Palladian style window. A large hip-roofed dormer on the main elevation has a replacement metal sliding window.

Cultural Data: The building permit for this house does not appear in the Department of Planning and Development Microfilm Library street index, which shows building permits dating from 1908 to 1938. Four years after the house at 2722 Harvard had been built, the 1916 Polk directory lists Harry C. Stokes (or Stokos, as the 1910 census suggests), who was from Canada and owned Lots 3–4 in 1910, as the owner-resident. Stokes and his wife, Emma J. Stokes, still owned and lived in the house at 2722 in 1930, although he died that year. He was the president of The Stokes Co., and Lewis P. Stokes (not a son, perhaps a brother, wife Margaret) was the treasurer. They manufactured candy and ice cream and also ran Stokes Confectionary & Lunch Parlors. The Stokes had architect Kirtland Kelsey Cutter design a Tea Room in the Empire Building (undated).130 Harry and Emma Stokes lived at 2722 Harvard Ave E until he died.

Accessory Structure: None.
Built:
Description:

Site ID #43

2726 Harvard Ave E
Built: 1908

Historic Name: Agnew-Kahle House

Contemporary Name: Gagnon, Rosalie, House

Denny-Fuhrman Addition
Block 15 Lot 2
Legal: 1959700855

Style: Craftsman
Builder:

Classification: Historic Non-contributing

Description: A two-storey house.
Building Permit No. 131257, dated 3-31-1914, authorized owner C. D. Kahle to have builder C. Dietrich construct a sleeping porch at 2726 Harvard Ave E at a cost of $150. The original house building permit has not been found.

The Craftsman house with a side-gabled composition roof has a large side-facing gable roof with inset full-width porch. The porch is supported by pairs of square posts anchored by crosspieces resting on a solid balustrade. Craftsman knee braces support the wide eaves. A large front-facing gable dormer has been supplemented by two newer small bay dormers. The first storey of the house is clapboard, and the second storey is stucco with half-timbering. A small rectangular bay window is on the south façade. Several second floor windows have been replaced, but the first floor one-over-one windows remain mostly intact.

Cultural Data:

James P. and Elizabeth E. Agnew, who owned the house at 2726 Harvard Ave E in 1910, two years after it had been built, had lived close by at 2727 Boylston Ave E with children Anne E. Agnew and James W. Agnew. James P. Agnew was a deputy city comptroller. By 1914, he is listed in the Polk directory as Chief Clerk City Comptroller. By then his son, James W., was an accountant, and Iza M. Agnew, a daughter-in-law also lived in the house.

In 1915, the Clay and Belle Kahle owned and had moved into the house. The 1916 Polk directory notes that Clay Kahle was “with” Crescent Manufacturing Co. John W. Kahle was president of Crescent, and Wm. J. Kahle was secretary-treasurer. Crescent at that time dealt in teas, coffees, spices, baking powder, extracts, and Mapleine. Crescent Spices was started in 1883 here in Seattle, and according to a Seattle Post-Intelligencer article had changed its name and location a couple of times. The brand is still in business, a Safeway product now. E-Bay vendors advertise as collector’s items baking powder cook books published by Crescent and other spice and baking powder companies in the 1920s.

Accessory Structure: Detached garage
Built: ca. 1955

Description: Non-Historic Non-Contributing.

131 King County Assessor Real Property [online] Report.

132 John Owen, "The Intermediate Eater: The streets are alive, with the smell of Seattle" Wednesday, 1-2-2002, an article that waxes nostalgic over the smell of spices as one drove from Bellevue into Seattle.
The one and a half-car garage is 20 feet by 20 feet, with a half concrete exterior and floor and a composition roof. A garage is shown on the Volume 4 Sanborn map on the southeast corner of the lot. The garage has an old swing-up door.

Site ID #44 2728 Harvard Ave E (formerly 805 E Hamlin St) **Built: 1909**

Historic Name: Gleason, James P. and Nellie D., House

Contemporary Name: Mitchell, David D. and Mary Jo, House

Denny-Fuhrman Addition

Block 15 Lot 1 and N 6' of 2

Legal: 1959700845

Style: Arts & Crafts

Builder: Herman Austin

Architect: Same

Classification: Historic Contributing

Description: Building Permit No. 69894, dated 12-9-1908, permitted O. E. Engstrom (or Engstrand) to build a two-storey frame residence 28 feet by 40 feet at 805 E Hamlin St. The owner by 10-23-1909 was Herman Austin, built several dwellings in the neighborhood including the Clemmer House (2612 Harvard Ave E, Site ID #35), the King-Friedman House (2616 Harvard Ave E, Site ID #36), the Ritchie-Klock House (2827 Broadway Ave E, Site ID #23), and the Nelson House designed by Bretram Dudley Stuart (2706 Broadway Ave E, Site ID #6).

This two-storey Art & Crafts style rests on a clinker brick foundation. The first floor is clad with spatter-dash stucco while the second floor is horizontal T&G siding, and the gable ends are half timbered. Decorative details include a two storey porch on the main façade. The top half of the two-storey sleeping porch has been glazed. The lower porch level can be approached by steps on either side. The west façade boasts a large bow window. Other features include as the dentils in the gable ends, window planter boxes and decorative porch balustrade. The original wood shingle roof has been replaced by composition. Some of the original windows are protected by storm windows, and all of the original windows feature multiple lights. According to the Property Record Card for the house, it has a brick and tile fireplace.

Cultural Data: The 1916 Polk directory shows James P. Gleason (wife Nellie D.) as the president and manager of the American Savings Bank and Trust Co. He was born in Ireland and started out in the late 1880s as a real estate broker and furniture dealer on Front Street. By 1890, he had two locations for Queen City Furniture. By 1910, he and Nellie lived in the house at 2728 Harvard Ave E, and he was a bank president. By 1930, Gleason was a bank chairman of the board. They lived in this house until 1944. That year, Robert J. Gleason, who might have been a brother or a nephew—the Gleasons had no children—owned the house.

Accessory Structure: Detached garage on east side of lot.

Built: 1909

Description: Historic contributing.

An almost illegible Building Permit No. 79611, dated 7-31-1909, authorized C. G. Engstrom to build a one-storey frame private garage "to accommodate one machine only." The front-gable-roofed garage has a
stucco exterior with concrete floor and shingle roof. The old double doors are intact. The Volume 4 Sanborn map shows the garage on the southeast corner of the lot.

2800 Block of Harvard Ave E

Site ID #45 2812 Harvard Ave E Built: 1903

Historic Name: Taylor-Frater House
Contemporary Name: Gorringe, James S., House
Denny-Fuhrman Addition: Block 24 Lot 6
Style: American Foursquare
Builder:
Classification: Historic Non-Contributing

Description: A two-storey house significantly altered in a 1976 renovation. The Seattle Department of Planning and Development microfilm rolls begin with building permits issued in 1908—too late for the original house building permit. Building Permit No. 114153, dated 6-11-12, authorized applicant N. P. Olsen to repair the front steps and door and also the wood shed for owner J. N. (or M.) Frater. At present, the shingled, flat- or shallow-hip-roofed square house has double aluminum windows on all sides with no dormers or porches.

Cultural Data: Joseph M. Taylor, who owned the property when the house was built and resided at the address, is mentioned in Clarence Bagley's *History of King County* during Bagley's discussion of the University of Washington: "Prof. J. M. Taylor also deserves more than passing mention. He occupied the chair of higher mathematics and was a profound scholar in his chosen branch." Bagley also mentions that upon his retirement, Taylor published a magazine on Freemasonry, and Taylor is shown in the 1900 Polk directory as the Editor and Proprietor of *The Pacific Mason*, a magazine devoted to Freemasonry and advertised as having national distribution. His wife, Alicc M. Taylor, who was the owner of the house from 1905 through 1910, was Associate Editor. Bagley also describes Professor Taylor as grand master of the Masonic Order of Washington who laid the cornerstone of the first University of Washington building on the present campus on July 4, 1894 (noting that grand master Rev. Daniel Bagley had laid the original cornerstone, the first in the territory, in 1861 on the downtown university site). This first building on the present University of Washington campus was the "main," "Administration Building," later called Denny Hall. Taylor also started the Department of Astronomy at the University of Washington and personally built the platform for the telescope he selected for the (extant) Observatory, staying up all night many a night to complete the construction and then showing up to teach in the morning. For a long time, Taylor

133 Bagley, 209-12.
was the only faculty member of the Astronomy Department. The Taylors also owned the property at 808 E Shelby St (Site ID #53) before the house there was built.

In 1915, the Taylors sold this house to John T. (or M.) Frater. The 1916 Polk directory lists John T. Frater (wife Julie A. V.) as deputy county clerk.

Accessory Structure: Shed
Description: Historic Contributing
Building Permit No. 84397, dated 11-24-1909, authorized J. M. Taylor to raise a 12 feet by 14 feet shed four feet to put in a new floor. The Estate of Alice M. Taylor is shown as the owner. The shed and one other building, probably a garage, are shown on the Volume 4 Sanborn map. The shed and a garage are still at the back of the property.

Site ID #46 2816 Harvard Ave E Built 1909
Historic Name: Hoehm, Bernard and Evelyn, House
Contemporary Name: Bassingthwaighte, Sarah. House
Denny-Fuhrman Addition Block 24 Lot 5 Legal: 1959701645
Style: American Foursquare Builder: Alex R. Manson Architect:
Classification: Historic Non-Contributing
Description: Building Permit No. 70156, dated 12-16-1908, shows A. R. Manson as the applicant for building a two-storey frame dwelling 27 feet x 36 feet. The house has a hipped roof with a centered shed-roofed dormer. The first floor is clapboard, and the second is stucco. The foundation and front steps to the porch are brick. The hip-roofed porch runs across the southern two-thirds of the façade. The front door has multiple lights and is on the right. Most of the house's narrow, multiple-lights-over-one windows appear to be intact, although the dormer has new single-pane casement windows.
Cultural Data: The house at 2816 Harvard Ave E went for a long time without an owner-resident and might have been built strictly as an investment. Alex R. and Sarah M. Manson owned Lot 5 when the house was built. He was a building contractor residing at 5538 Thirtieth Avenue Northeast. Lee R. Hudgens (wife Maybelle) was in real estate and lived at 2537 Ninth Avenue West in 1916. Although he owned the house from 1915 to 1925, the 1921 Polk directory shows his address at 10510 Greenwood Avenue.

Bernard Hoehm, a tire salesman, owned the house next, by 1930. He and his wife, Evelyn, who was a stenographer at a retail hardware store, owned and lived in the house until 1935, when it was taken over by Provident Mutual Life Insurance Co.
Accessory Structure: Garage Built: ca. 1909
Description: Historic Contributing
Frame garage on southeast corner of lot. The clapboard clad garage has a gabled parapet on the east side.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet -

ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 7 Page 63 of 121

<table>
<thead>
<tr>
<th>Site ID #47</th>
<th>2822 Harvard Ave E</th>
<th>Built: 1922</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Name: Stack, J. H., House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contemporary Name: Smith, Robert W., House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denny-Fuhrman Addition: Block 24 Lot 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style: Colonial Revival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification: Historic Non-Contributing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description: The building permit for this house does not appear in the street index for the Department of Planning and Development Microfilm Library. The rectangular, front-gabled, one and a half-storey house has a balloon frame structure with an altered clapboard, shingle, and roman brick exterior. The front gable contains trapezoid windows, and the windows in the front first storey on either side of the central entry have been significantly altered. The flat-roofed porch is supported by pairs of thin columns and in turn supports a balcony. The south side has a bump-out. A brick chimney is on the north side of the house.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Data: Cecil W. Martin (wife Mertie), who lived at 2227 Boylston Ave E, was the owner of the lot in 1920. He is listed in the 1917 Polk directory as the local manager of the Washington Advertising Brokerage Co. Side Sewer Card 4416 shows J. H. Stack as the owner when the side sewer was installed, and the Tax Assessor rolls indicate that Stack owned the house from 1925 through 1941. Stack was a plumber doing business at 106 Jackson Street.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessory Structure: Garage. Built: ca. 1922</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description: Historic Non-Contributing. No garage is shown on the Volume 4 Sanborn map. A gabled garage with horizontal siding in the gable and vertical siding on the walls is at the south side of the rear of the property. Some of the siding might have been installed more recently. The garage door appears to be either original or second generation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site ID #48</th>
<th>2826 Harvard Ave E</th>
<th>Built: 1925</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Name: Schaefer, Ned A. and Anne E., House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contemporary Name: Frumin, Dan Y., House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denny-Fuhrman Addition: Block 24 Lot 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Style: Colonial Revival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classification: Historic Non-Contributing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

134 Michael Houser in review of first draft of this document, which had followed Tom Quackenbush's lead in using the term "Vernacular" to describe the style of this house.

135 Some details of the house description and a conclusion that the house is an example of "a vernacular house of the early 20th century with compromised integrity" come from Tom Quackenbush, Historic Property Report for 2822 Harvard Ave E, undated, although accompanying photos are dated 7-5-2006. The report was furnished by State Architectural Historian Michael Houser.
Description: The building permit for this house was not discovered in a legible part of the street index for the Department of Planning and Development Microfilm Library's building permits. The one-storey clapboard house has a side-gabled roof with a gable-roofed porch on the west, front, facade. The porch is supported by Tuscan pillars and approached by side steps on the south. The porch has been glazed with what appears to be multiple-pane leaded glass. A small, gable-roofed bump-out at the rear of the south side of the house appears to be an enclosed side porch and has a door on its west side. Windows on the front façade appear to have been replaced by single panes, but the window size seems to be unaltered.

Cultural Data: In 1925, the year that the house was built, G. P. Simmons (or Simmons) was the owner of the lot. Ned A. Schaefer, listed in the 1930 U. S. Census as a rancher, fruit grower, owned the property from 1930 to at least 1941 and lived there with his sister, Anne E. Schaefer.

Accessory Structure: Detached garage
Description: Non-historic Non-contributing.
A relatively new cement block and clapboard garage with a shed roof is on the northwest side of the property.

Site ID #49 2832 Harvard Ave E
Built: 1908

Historic Name: Barter-Devers House
Contemporary Name: Seinfeld, Keith and Roberts, Elisabeth R., House
Denny-Fuhrman Addition Block 24 Lot 2
Style: American Foursquare
Builder:
Classification: Historic Contributing

Description: The building permit for this house, no doubt having been issued before 1908, does not appear in the Department of Planning and Development Microfilm Library street index. The two-storey clapboard house has a hipped roof with a shed-roofed dormer that contains one multiple-paned window. The full-width porch is supported by square pillars. A centered balcony rests on the flat porch roof. The door on the north side of the porch is flanked by sidelights. Projections at the second-storey corners of the house contain cut-glass-over-one windows.

Cultural Data: Robert J. Barter owned the house in 1910, two years after it was built, and he appears as owner in the Tax Assessor's rolls in 1915. According to the 1910 U. S. Census, Barter was a house contractor. He lived in the house with his wife, Elmira (or Elvina), and their three daughters and one son.

Robert A. Devers, who owned the house in 1920, is listed in the 1916 Polk directory as a lawyer whose practice was housed in the New York Building and who lived at 8857 76th Avenue Southwest. By the time of the 1920 U. S. Census, he and his wife, Izora M., and their four daughters were living in the house at 2832 Harvard Ave E. By the 1930 U. S. Census, their eldest daughter, Ida, was a high school teacher. The Devers owned the house until at least 1941.
Accessory Structure: None

Built:

Description: Building Permit No. 160575, dated 9-26-1917, authorized owner, resident Robert A. Devers to have “Day Work” construct a 12 feet by 18 feet garage with a cement floor on a 6 inches concrete foundation wall 18 inches into the ground, the doors to swing over private property, the garage to be 6 feet from the nearest building, at 2832 Harvard Ave E. The garage is shown on the Volume 4 Sanborn map on the southeast corner of the lot, but it is no longer there.

Site ID #50 2836 Harvard Ave E Built: 1907

Historic Name: Dawson, Mamie C., House

Contemporary Name: Baird, Janice D., House

Denny-Fuhrman Addition Block 24 Lot 1 Legal: 1959701625

Style: American Foursquare Builder: Architect:

Classification: Historic Contributing

Description: The building permit for this two and a half-storey house with a fine, original front door cannot be found in the Microfilm Library of building permits that begin in 1908 and end in 1938. The house has a hipped roof with large hip-roofed dormers on all sides. The north side of the house has a bump-out with a Craftsman-detailed roof and a quadruple double-hung window. Above the bump-out, a small mock-railing adds interest. All roofs, with generous eaves, have long modillions. The dormers have well-spaced, double-hung four windows each. A brick chimney with a blind arch goes through the house roof and the north dormer roof. The first floor is stretcher-header alternating Flemish-bond brick. The second story is spatter-dash stucco. A string band of brick dentils separates the first and second stories. The full-width brick front porch with tapered wood columns on brick stands has a small gable at the entry steps. The columns beside the stairs are double. The original windows are intact. The front door appears to be the original, and a brick arch tops it.

Cultural Data: From 1910, three years after the house was built, to at least 1951, a divorcee variously known to the tax assessor as Mamie C. Dawson, Minnie O. Dawson, and Minnie C. Dawson owned and lived in house with her children, Lewis M. Dawson, Jr. (b. ca. 1891), a student at the University of Washington, and Ralph C. Dawson (b. ca. 1892). Lewis M. Dawson, a lawyer in the Henry Building, is shown in the Polk directory residing at 2836 Harvard Ave E as well, and he is probably Lewis M. Dawson, Sr. Mamie C. Dawson was the granddaughter of pioneer William N. Bell.

Accessory Structure: None.

Built:

Description: No garage is shown on the Volume 4 Sanborn map.

137 Emily Inez Denny, Blazing the Way, 265–66.
900 Block of E Roanoke St

Site ID #50-S 900 E Roanoke St Designed and Planted 1908

Historic Name: Roanoke Park
Denny-Fuhrman Addition All of Block 9 Legal: 1959700460

Builder: Seattle Parks Department
Classification: Historic Contributing

Description: A 2.2 acre park at the south end of the Roanoke Park Historic District. The park is on the north side of E Roanoke St, with the 2600 block of Broadway Ave E on its west side, the 900 block of E Edgar St on the north, and the 2600 block of Tenth Ave E on the east.

The park contains 79 varieties of mature and maturing trees. It received 100 new trees and thousands of new shrubs and perennials, new attractively curving paths, a central meeting place, new benches, and an updated playground during a recent ten-year renovation project led by University of Washington Professor Emeritus of Landscape Architecture and resident Robert Buchanan (of 2632 Tenth Ave E, Site ID #70) and implemented by neighborhood volunteers in cooperation with the Seattle Parks Department and the Department of Neighborhoods. Neighborhood volunteers, the Parks Department, and the Fire Department jointly care for the park.

Thirteen mature elms in the interior of the park proper and along the south side of the 900 block of E Edgar St are cared for by the Parks Department, and the Roanoke Neighborhood Elms Fund sees to prophylactic pruning and injections to lessen the risk of Dutch elm disease to the twelve street elms on neighborhood property. A “Heritage Elm” is in the center of the west lawn of the park.

Cultural Data: Following an Olmsted recommendation that a park be sited there, the City of Seattle held the 2.2-acre Block 9 out of the 1895 sheriff’s sale of David Denny properties and handed Block 9 over to H. G. Brace of the Parks Department in 1908. Block 9 has never been developed as other than a park and was intended to be a part of one of the largest Olmsted-designed park and boulevard systems in the nation.138

When the Fire Department wanted to site a new fire station on Block 9 in the early 1960s, the Soroptomist Society, a women’s service group, mounted a successful campaign to prevent it from happening. In 1964, the fire station, No. 22, was sited on the south side of E Roanoke St, at 901–911 E Roanoke St, instead.140 There is no truth to the story that David T. Denny donated the park to the neighborhood and that if the City were to try to site a building on it, the block would revert to the Denny heirs.

138 Lawrence Kreisman and Glenn Mason, 123.
139 Side Sewer Card 3551 shows the 901–911 address. A State of Washington right of way, also maintained by neighborhood volunteers, runs along the rest of the south side of E Roanoke St.
140 Field Recorder C. Wickwire, on a state Historic Property Inventory Form 11-06-2000.
Accessory Structure: Tool shed
Description: Non-Historic Non-Contributing
A small tool shed painted green is in the northeast corner of the park. Neighborhood volunteers and the Parks Department store gardening tools, hoses, and other watering equipment in the shed.

1000 Block of E Roanoke St

Site ID #51 1004 E Roanoke St Built: 1907

Historic Name: Booth, Dr. William G., House
Contemporary Name: Margarones, Joseph and Leslie, House

Denny-Fuhrman Addition Block 10 Lot 8 Legal: 1959700515
Style: Foursquare Craftsman Builder:
Classification: Historic Contributing
Description: Rumors that the house had been moved to its present location might be reinforced by Building Permit No. 78703, dated 7-6-1909, which authorized a builder, applicant with the initials L. K., to move a two-storey frame residence and build a one and a half-storey frame addition to same 9 feet by 12 feet for owner Wm. G. Booth. Next door neighbor Larry Stokkø believes that the house was moved from up on the hill in the Seattle Prep neighborhood to its present site. The building permit however indicates that the house at 1004 E Roanoke St was moved only a bit on its lot to make room for an addition.

The house and porch have brick foundations. The wraparound porch (two sides) has a hip-roofed configuration, and the second storey has a hipped roof. The southwest corner of the second storey has a projecting window. Many of the leaded glass windows are intact, although some on the second floor have been replaced. According to the Property Record Card, at least one room has a box-beam ceiling. The Margarones have restored many of the Craftsman details and built-ins and have restored the living room floor, which had been removed by an earlier resident to display a two-storey painting.

In the 1990s, the Margarones had an addition built onto the (east side) back of the house that does not detract from the house's street-side integrity. The Margarones installed a new, double-car garage under their recent addition to the back of the house. A notable feature of the curb beds around this corner house, following the configuration of the wraparound porch, are the six mature Horse Chestnut trees and the single Hedge Maple at the southeast corner or Tenth Ave E and E Roanoke St.

142 The Booths were no strangers to house moving. They had recently moved their earlier residence to the lot next door to make room for their new Booth Building at the southeast corner of Broadway Ave and E Pine St. Dotty, Decoster, "The Booth Building gets a 100th Birthday Present," Capitol Hill News, 3-10-2007, and conversation with Dotty Decoster 1-7-2009.
Cultural Data: Dr. John R. Booth and then his brother Dr. William G. Booth, owned the lot and house from 1910 to 1935. William Gilman Booth appears in Clarence Bagley’s History of King County on the roster of the King County Medical Society in 1929. John R. Booth, who paid taxes on the property in some of the years that it was owned by William G. Booth, is shown among the society’s vice presidents in 1900 but not on the society’s roster for 1929. The admirable brothers had taken turns working and sending each other to four-year medical schools. John R. Booth later moved with his family to California, where he had studied medicine while his brother supported him by working at a silver mine in Colorado, and William G. Booth assumed ownership of the house.

Accessory Structure: None
Description: Single-car garage, 10 feet by 14 feet.

Accessory Structure: None
Description: Double-car Garage, 20 feet by 20 feet. No garage is shown on Volume 4, 1917-1950 Sheet 446 of the Volume 4 Sanborn maps.

Site ID #52 1018 E Roanoke St Built: 1909
Historic Name: Gates-Bass Mansion
Contemporary Name: Millington, Charles W. and Charlotte J., Mansion
Denny-Fuhrman Addition Block 10 Lot 9, 10, & N ¼ of 11 Legal: 1959700520
Classification: Historic Contributing
Description: Building Permit No. 77833, dated 5-15-1909, permitted Andrew A. Nelson, of 809 Second Avenue, to build a two and a half-storey frame residence designed by architect Elmer Ellsworth Green for owner B. L. Gates. The house is stucco with a hipped roof and hip-roofed dormers on all sides. The front features an almost full-width arched portico, and a porte cochere is on the west side of the house. Building Permit No. 127589, dated 10-27-1913, authorized A. A. Nelson, now of 1208 E Shelby St, close by, to build an addition 4 feet by 20 feet at a cost of $150 for owner B. L. Gates. This is most likely the tiled floor conservatory on the east side of the house, reached by steps from the outside and also accessible from the living room.

In the 1970s, a lap pool and a Jacuzzi were added to the rear of the house. The Millingtons, who bought the house in 2005, have done foundation work, plumbing work, and electrical work, and they have expanded the kitchen in the back. A beautiful original billiards room with a river stone fireplace is in the

143 Bagley, 570.
144 Bagley 568.
145 Conversation with Sally Hurd Sylliasen, who is Dr. Booth’s granddaughter and lived at the house with her mother, Elizabeth Booth Hurd, 10-9-2008.
basement, and servant bedrooms with hardwood floors and a bath are on the attic level. A butler’s pantry is between the kitchen and the dining room, and a breakfast room is off the east side of the kitchen and the west side of the living room.

Cultural Data: Although the houses at 2601 and 2609 Broadway Ave E might have come from Elmer Ellsworth Green’s Practical Pattern Book (1912), and although Green advertised that his Plan Book showed interior and exterior plans for “bungalows and two-storey houses ranging in price from one thousand to ten thousand dollars,” it seems likely that this house was a custom design. Green also designed the Captain David Gilmore House across E Roanoke St at 903 E Roanoke St (destroyed to make way for SR-520).

The house was built for Benjamin L. and Bertha L. Gates, who owned Lots 9 and 10. Gates was a jeweler and diamond merchant according to the Polk directory. He sold “diamonds, watches, clocks, cut glass, and optical goods,” with “an experienced optician in charge.” The business was at 809 Second Avenue in 1910 and at 1326 Second Avenue in 1914.

Although the house is known locally as the Denny Mansion, research indicates that no one with the last name Denny ever lived there. From 1925, Sophie Frye Bass, a granddaughter of Arthur A. Denny, and her husband, Daniel Waldo Bass, lived in the house. The library at the Museum of History and Industry (MOHAI) is named after Sophie in appreciation of both her authorship of two histories of Seattle and the donation of her archival collection, which has been called “one of the finest and most complete private collections of Pacific Northwest History to be found anywhere.”

Daniel W. Bass (1864–1936) was the son of Captain Samuel Bass (1831–1902) and Avarilla Waldo (1834–1885). In his long and diverse career, so typical of the first and second generations of the pioneers, he ran a general store and then Sophie’s father’s Frye Hotel. After logging a site in Snohomish, he built a barn and turned the logging camp into a dairy farm. Bass, who attended Willamette University in Salem, the University of Oregon in Eugene, and the Willamette University Law School, also served as a deputy prosecuting attorney and worked in private practice with several law firms.

146 Ronald Todd, Senior Librarian, University of Washington, Smith 164
147 Daniel Waldo Bass was named after his mother’s father, Daniel Waldo. The Waldos were a well-known family in the Territory and settled in Oregon originally in an area known later as the Waldo Hills. Avarilla’s brothers were the Hon. Wm. Waldo and Chief Justice J. B. Waldo. Avarilla Waldo Bass Obituary in the Weekly Oregon Statesman 4-17-1885, 3:2. Online 2-12-2008 at www.open.org/pioneer/pg03.html.
148 Clarence Bagley, History of Seattle from the Earliest Settlement to the Present Time (Seattle: S. J. Clark Publishing, 1916), 841–42. Daniel Waldo Bass came by his versatility honestly. Captain Samuel Bass seems to have been, as so many men in the territory had to be, a man of many talents with an ability to strike out for new places. A short item in Whatcom County’s Daily Reveille of 1895 talks about the Captain and three of his six brothers: “Captain BASS and brethren arrived per boat from Seattle yesterday morning, and are commodiously located in the captain’s block, under the excellent care of Mrs. BASS. The quartet are Charles, Alexander, T. J., and Samuel, each six feet high, each 200 lbs. weight and each over 60 years of age. Alexander is a San...
kind man, in 1936, the year of his death, deeding the dairy farm he had owned since 1908 to Kamezo Nakashima, who had run the farm for him. Alas, in the uproar after Pearl Harbor and facing internment, Nakashima sold the farm for $10 an acre.149

After Daniel died in 1936, Sophie continued to live in the house and was later joined by her widowed sister Roberta Frye Watt, who wrote Four Wagons West: The Story of Seattle (Portland, Ore.: Binsford & Mort, 1931). A year after Daniel died, Sophie published Pigtail Days in Old Seattle (Portland, Ore.: Binford & Mort, 1937). In 1947, the year she died, Sophie published When Seattle Was a Village (Seattle: Lowman & Hanford, 1947).

Accessory Structure: Detached garage.
Built: ca. 1909

Description: Historic Contributing.
An otherwise illegible Building Permit No. 80137, probably from late 1909 to judge from the preceding and following permit numbers’ dates, probably authorized the building of the two-car stucco garage at the back of the property. Its crenellation echoes that of the stucco house, although the garage has a flat roof. The garage is shown on Sheet 446 of Sanborn Volume 4, 1917–1950.

800 Block of E Shelby St

Site ID #53: 808 E Shelby St (formerly 800 E Shelby St) Built: 1900

Historic Name: Brady-Alexander House
Contemporary Name: O’Donnell, Mathew and Catherine, House
Denny-Fuhrman Add Supl Block C Lot 2
Style: Queen Anne Free Classic
Builder:
Classification: Historic Contributing
Description: The second oldest house in the Roanoke Park Historic District, this two and a half-storey asymmetrical yellow house has a ship-lapped first storey and a clapboard second storey. The larger of two gables has decorative shingle work at its apex and on a narrow roof that overhangs the first floor windows.

Domingo planter, and has been in the West Indies 43 years. He shipped 24,000,000 lbs. of sugar last season. T. J. lives in San Francisco, and is president of the BASS-HUNTER Paint Co. Charles lives in New York and has retired from business, while the captain needs no introduction. The captain has seen none of these brothers in 40 years, and is as proud of them as of his grandchildren.” Article available online 2/6/2008 at www.rootsweb.com/-wawhatco/newspapers/reveille1895.htm. All came from Mt. Holly New Jersey and Pottsville, Pennsylvania. The three other brothers were William, Thomas, and Benjamin. 149 Daniel Waldo Bass might have just indicated to Sophie Frye Bass that he wanted the Nakashima family to have the farm. A HistoryLink.org Essay 8509 by Tracy Tallman says that the Nakashima family bought the farm from Sophie Frye Bass. The article includes a rare photo of Daniel Waldo and Sophie Frye Bass, standing with Miye and Kamezo Nakashima, and several photographs of the farm and the beautiful barn, still standing. The farm is now a Snohomish County park.
That gable also has a small Palladian window at the top with a curved overhang above the window. The smaller, projecting adjoining gable is finished in clapboard. The second-storey windows in the two front gables are identical nine-lights-over-one, three in the smaller gable and two in the larger gable. The smaller gable has two more nine-lights-over-one windows, one each on its projecting west and east sides. The two windows in the second story of the larger gable have decorative diamond work above them with another carved feature that runs between the windows and up through the diamond work. The smaller gable’s three more closely spaced second-storey windows fill its front. A side gable is on the west side. A clipped corner on the southwest corner of the house contains a window and is overhung by the shingle-worked roof below the windows of the larger gable. The classically columned front porch with fanlight and sidelights surrounding the door is on the right side of the house and recessed under the larger gable.

Cultural Data: Edward & Leota Brady were the owner of record in 1900, when the house was built. Ed Brady is mentioned in Clarence Bagley’s History of King County as an attorney in practice in 1891, and Bagley mentions him again among the 13 attorneys who practiced in Seattle in 1891 who were still living in Seattle in 1929, when Bagley’s book was published.150

Brady didn’t stay long, if at all, in the house, though. In 1900, the taxes were paid by D. Y. Alexander, who owned the house in 1905, when the taxes were paid by Henry Fuhrman. Fuhrman didn’t hang on to the property for long, or else D. Y. Alexander didn’t, and soon it had been sold to a Mike Georg or George. (Neither spelling produced a find in the Polk directories. Nor were many of the other previous owners listed.) The house passed through at least five or six more owners over the years.

Accessory Structure: None. Built: ca. 1900 (destroyed)
Description: A two-car, concrete garage with a concrete floor and a tar paper roof. The garage does not appear on the Volume 4 Sanborn map, and all that remains is the foundation, which also serves as a retaining wall for the steep hill on which the house is sited.
the 1950s. The stone façade is shown in the photograph on the Property Record Card for the house, dated 9-20-57. The stone façade has since been painted gray, and above it the spatter-dash stucco on the second storey has been painted gray, too. The original cut-glass windows are intact.

Cultural Data: The lot was owned by builder Eric Almquist in 1909, when the house was built. Eric Almquist was also the builder of the Storm house at 2611 Broadway Ave E (Site ID #3) designed by McClelland & Pimneh. The property had passed through various owners including H.P. Noland in 1913 and Aaron Frederick Anderson in 1915, who lived in the house next door at 816 E Shelby St (Site ID #55), before Emmett R. Mifflin (wife Mary R.) settled into the house in 1937 and stayed for a while. He was a lawyer with Mifflin (Gordon J.) Mifflin & (Ardron) Mifflin.

Accessory Structure: Detached garage

Description: Historic Contributing.

Building Permit No. 126335, dated 10-12-1913, authorized owner H. P. Noland to build a 12 feet by 16 feet garage, the doors not to swing over the alley. The two-car garage of solid construction with a concrete floor and roof sits on the much lower-level alley. The garage has two separate single-car doors. It is shown on the north side of the lot on the Volume 4 Sanborn map.

Site ID #55 816 E Shelby St (formerly 812 E Shelby St) Built: 1910

Historic Name: Anderson, Aaron F., House

Contemporary Name: Neuzil, Daniel F. and Kathleen M., House

Denny-Fuhrman Add Supl Block C Lot 4

Style: Craftsman

Builder: E. Almquist

Architect: Elmer E. Green

Legal: 1962200310

Classification: Historic Contributing

Description: Building Permit No. 84239, dated 11-19-1909, authorized applicant, owner, builder Eric Almquist, of Apt 19 North Holland Avenue, to build a two and a half-storey frame residence 32 feet by 38 feet designed by E. E. Green. A notation that the plans were returned 5-18-1910 signed by E. E. Green personally might suggest that the design for this house was not a plan from his Practical Plan Book (1912).

The front-gabled house has a clapboard exterior on the first storey and stucco on the second. Wide overhangs with decorative cut barge boards are supported by Craftsman knee joints. The two double-hung ten-over-one windows in the second storey are framed by tapered Craftsman frames featuring pegs, as is the smaller center, diamond-paned casement window above the apex of the off-center porch gable. Two more small diamond-paned casement windows flank two one-over-one double-hung windows, double the height of the flanking windows, at the half-storey top of the gable. The first storey has a triple window to...
the east of the gabled, off-center porch, which has stucco and half timbering in the gable. Each section of the double-hung triple window features multiple lights over one. To the west of the porch is a single eight-over-one double-hung window. The gabled roof of the house is intersected by another gable on the west side that creates a two and a half-storey bump-out. A red door on the front, narrow side of the bump-out seems odd, as if it replaces a window.

Cultural Data: Builder Eric Almquist owned this property in 1910, the year its house was built. Almquist also built the house next door at 812 E Shelby St (1909, Site ID #54)) and fourteen years later the Storm House at 2611 Broadway Ave E (1924, Site ID #3) designed by McClelland & Pinneh. Peter J. Adamson (wife Bertha) owned the house in 1912. He was vice-president and by 1917 president-treasurer of the Washington Printing Co. at 416 East Roy St. It's not clear that the Adamsons lived in the house. In the 1917 Polk directory, the Adamsons are shown living at 2528 Howard Avenue.

Widower Aaron F. Anderson lived in the house with two of his daughters from some time after attending the Alaska-Yukon-Pacific Exposition (1909) until 1925. The family had driven west from Michigan for the Alaska-Yukon-Pacific Exposition and liked the northwest so much they decided to move to Seattle. During the exposition, Esther Anderson, one of Anderson's daughters, met Adolph Linden and eventually married him. Anderson moved to Seattle with two of his other daughters, including Dorothy, Dave Storm's mother.

Accessory Structure: Garage on north side of lot. Built: c. 2006

Description: Non-Historic Non-Contributing.

Replaced by a recent two-car garage of concrete with a concrete floor and wood roof. The first garage is not shown on the Sanborn Volume 4, 1917–1950, Sheet 444 map. Like all of the garages for houses up on the plateau of E Shelby St, this one is down below the plateau, on the alley between E Shelby St and E Gwinn St.

Site ID #56 817 E Shelby St (formerly 2837 N Broadway) Built: 1923

Historic Name: Twelves, C. M. and Ruby, House

Contemporary Name: Kenagy, John J., House

Denny-Fuhrman Addition Block 24 Lot 16 Legal: 1959701700:

Style: Colonial Revival Builder: Larry Hamilton Architect: Edwin J. Ivey

Classification: Historic Contributing

Description: Building Permit No. 227395, dated 9-26-1923, authorized owner W. W. Hamilton to have builder Larry Hamilton build a 35 feet by 41 feet residence per plans designed by E. J. Ivey and an 18 feet by 20 feet garage with an alley entrance and doors opening on the property.

This two and a half-storey house fronts on E Shelby St at the southwest corner of E Shelby St and Broadway Ave E. The Colonial Revival house has a large broken-pediment front-door frame. In a recent
remodel, the windows were replaced and the new ones have vinyl mullions. The house has a side facing gable roof with boxed eaves. Full two-storey pilasters divide the façade into three bays.

Cultural Data: In 1926, Edwin J. Ivey would design the French Norman Revival Jacobs–Silver House at 817 E Hamlin St (Site ID #31) in the Roanoke Park Historic District. Both Ivey as architect and Elizabeth Ayer as associate are credited with the similar design and siting of the Winston W. Chambers Colonial Revival residence in Laurelhurst, at 3033 East Laurelhurst Drive Northeast (1937).[152]

David and Nellie Hunter, who owned and lived in another property in the district, are the owners of record for this house when it was built. David Hunter was a press man for the Times Printing Co. He and Nellie lived outside the district, at 411 Harvard Ave E, for many years while they developed two properties in the Roanoke Park Historic District. They finally built and moved into one of the grander houses in the neighborhood, the Frederick A. Sexton–designed house at 2801 Broadway Ave E (Site ID #15), in 1909. Their daughter, Eva Hunter, is listed as a student in the 1900 Polk directory for Seattle. It’s not clear that the Hunters ever lived in this house on E Shelby St, but they owned the property when the house was built in 1923 and for at least two years after that. By 1930, C. M. Twelves owned the house and held onto it until at least 1941. C. M. Twelves, a telephone engineer, and his wife, Ruby, did live in the house, with Charles M. Twelves, Jr., an engineer at PT&T Co. (Pacific Telephone and Telegraph Co.), Charles’s wife, Irene B. Twelves, and William M. Twelves, a student.

Accessory Structure: Detached garage Built: ca. 1923

Description: Historic Non-contributing.

No accessory structure is shown on the Volume 4 Sanborn map, but a gable-roofed, clapboard garage on a cement foundation is on the southwest corner of the property. It has a new, roll-up door.

Site ID #57

| Historic Name: Chavelle, Edward H. and Maud (Gray), House |
| Contemporary Name: Martin, Dale and Anne, House |
| Denny-Fuhrman Add Supl | Block C Lot 5 |
| Style: American Foursquare |
| Classification: Historic Contributing |

Description: The building permit is not available. This American Foursquare house has a hipped roof with a centered hip-roofed dormer. The dormer contains a double, single-paned casement window. In the front of the coarse-shingled second storey, two large casement windows, cut glass over a divided lower pane, are at each end. In the center are two smaller double-hung one-over-one windows. The full-width, shallow-
hip-roofed porch extends to the west into "a true porte cochere."153 The lower floor has an unusual horizontal board and batten treatment on the front façade and clapboard on the side.

\textbf{Cultural Data:} C. D. Kahle, of Crescent Manufacturing Co., owned this property in 1910, two years after the house was built, but he and his family lived elsewhere in the district, at 2726 Harvard Ave E (Site ID #43). The house changed hands many times over the years, and the Edward H. and Maud Gray Chavelles appear to have lived in the house the longest in its early years, from 1915 through 1925. Edward H. Chavelle was a lawyer and is listed as such in the 1923 Polk directory. The Chavelles lived in the house with their two sons, Cornelius C. (b. ca. 1912) and Kenneth C. (b. ca.1913).

\textbf{Accessory Structure:} Garage on northwest side of lot. Built: 1911

\textbf{Description:} Historic Contributing.

Building Permit No. 103463, dated 5-29-1911, authorized applicant, owner, builder C. D. Kahle, of 822 E Shelby St, to build a garage 14 feet by 16 feet.

\begin{tabular}{ll}
\textbf{Site ID \#58} & 900 E Shelby St \\
\textbf{Historic Name:} Mylroie, Alfred Wright and Lillian Olive, House & Built: 1922 \\
\textbf{Contemporary Name:} Groothuizen, Johan M. and Denise R., House & \\
\textbf{Denny-Fuhrman Add Sup} & Block C Lots 6 & 7 \\
\textbf{Style:} Italian Renaissance & \\
\textbf{Classification:} Historic Contributing & \\
\textbf{Description:} Building Permit No. 214705, dated 7-12-1922, authorized owner, contractor A. W. Mylroie, of 5502 Fifteenth Ave NE, to build a two-storey, 48 feet by 28 feet residence, with no part of the building to be nearer than 1 foot 6 inches to any adjoining lot line. This large house that sits on two lots, 100 feet by 120 feet, originally had a cream-colored "pony brick" veneer façade and sides; the back of the house exterior is clapboard siding. The brick was recently painted a toasty brown color that suits the Italian theme. The house is symmetrical, with two wide twelve-over-one, double-hung windows flanking a triple window on the second storey. The first storey has two arched windows with a circle detail embedded at the apex of the arch, on each side of a square flat-roofed porch with square columns. The hipped red-orange tile roof has wide overhanging eaves with modillions. A building permit dated 6-9-1922, whose number is obscured, authorized owner, contractor, architect Alfred W. Mylroie to build a retaining wall on the alley (north) side of the property to be 8 feet high and 100 feet long, all on private property. The wall would have been well below the house, down a steep slope to the alley that runs behind the houses on the north side of E Shelby St and the bungalows on.

153 State Architectural Historian Michael Houser during a tour of the neighborhood, 5-14-2008.
the south side of E Gwinn St. It might have served as the south wall of the garage that was also built in 1922.

Cultural Data: Alfred W. Mylroie was a plumber and building contractor who lived (in 1916) at 5502 Fifteenth Avenue Northeast. In the 1917 Polk directory, he is listed simply as "builder." He and Lillian owned this house from 1922 until 1937. By the time of the 1922 Polk directory, Mylroie is shown as president-treasurer of the Ellis Mylroie Lumber Co., and son Robert O. Mylroie is shown as a salesman for the company. In the 1927 Polk directory, A. W. Mylroie is listed as a broker.

The Mylroies owned several properties in the neighborhood including a house that gave way to St. Patrick’s Church in 1961 and a house on the west side of Harvard Ave E, that was demolished for the construction of Interstate-5. Mylroie’s son, Robert O. Mylroie, had a hand in the two brick postwar cottages at 2632 and 2636 Harvard Ave E, built in 1946 and 1945, respectively.

Accessory Structure: None

Built: 1922 (destroyed)

Description: Building Permit No. 214705, dated 7-12-1922, for the residence also authorized owner A. W. Mylroie to build a private 18 feet by 20 feet garage, with no other garage on the lot and over 3 feet from other buildings. It was a two-car garage with wood floor and tar paper roof. All that is left is the foundation, which serves as a retaining wall. The garage is not shown on the Volume 4 Sanborn map.
Cultural Data: Samuel Leroy Crawford owned and lived in this house from 1915 to his death in 1923. He was a well-known, respected, and popular newspaper man and realtor. When Chief Sealth died in 1866, Crawford, along with pioneers Arthur A. Denny and Hillory Butler, saw to the erection of a monument to their friend over his grave at Suquamish on the Port Madison Reservation. Along with E. C. Kilbourne and Byron Phelps, Crawford was an incorporator of the Seattle General Hospital in 1894.

Crawford with Thomas Prosch was part owner of the Daily Intelligencer until its merger with the Post. He stayed on as the Post-Intelligencer news editor. Later, Crawford was a partner with C. T. Conover, another newspaperman, in their real estate firm, Crawford & Conover. During the 1889 Great Fire, Crawford personally and singly rescued the Post-Intelligencer files. Samuel L. Crawford owned a few properties outside the Roanoke Park Historic District but close by, down the hill to the east, from at least 1915 to at least 1920 and possibly until his death in 1922, eight adjacent lots (1-4 and 13-16) at the north end of Block 27 on the south side of E Shelby St on Eleventh Ave E and Boyer Ave E. But for Lot 16, those lots were unimproved through 1920.

Although he and his wife, Clara M. Crawford, raised their sons, Clayton Crawford (b. 1880, Clara’s son by a former marriage, adopted by S. L. Crawford) and Samuel L. Crawford (b. 1890), elsewhere, by 1914 Crawford’s owned and lived in the house at 906 E Shelby St. After Samuel’s death Clara remained in the house with her son, Clayton, until 1930. By then Clayton had become secretary of Crawford & Conover.

Currently, John Owen, who took an active part in the renovation of Roanoke Park, resides in the house with his mother, Eleanor Owen. Active in politics, Eleanor is a past president of the Portage Bay/Roanoke Park Community Council and was also the founder and chair of the Washington Advocates for the Mentally Ill (WAMI). She was recently a speaker in a televised celebration of her good friend and neighbor state Sen. Pat Thibaudeau’s long career. Eleanor Owen ran in a recent Democratic primary against State House Speaker Frank Chopp in order to draw attention to an issue she felt was important.

Accessory Structure: None
Description: Open side and ends. Concrete floor and composition roof. The garage is not shown on the Volume 4, 1917–1950 Volume 4 Sanborn map.

Site ID #60 908 E Shelby St
Historic Name: Falknor, Alonzo J. and Lola, House
Contemporary Name: Furlong, Richard M. and Xynthia K., House
Denny-Fuhrman Add Supl

Built: 1908
Legal: 1962200335

155 Sketches of Washingtonians.
156 Roberta Frye Watt, 347.
Style: American Foursquare
Builder:
Architect:

Classification: Historic Contributing

Description: A two-storey house with a hip-roofed dormer. Clapboard on lower exterior and stucco with half-timbering on the upper. The dormer has a triple, six-lights-over-one, window. Two wide, 24-lights-over-one windows are in the second storey front. Building Permit No. 111700, dated 3-21-1912, authorized applicant Wm. Goke, of Byrne Goke & Roescger, doing business at 2308 Dane N, to finish off an attic using joists 2 feet by 8 feet, 16 inches on center, for owner A. J. Falknor at 809 E Shelby St (probably a transposition of 908 since this is the only address on E Shelby St associated with the Falknors and there was no 809 E Shelby St).

Cultural Data: The original owners were Alonzo J. and Lola F. Falknor. Alonzo J. was a partner in the law firm (Charles K.) Poe & (A. J.) Falknor. His elder son, Judson F. Falknor (b. 1898), who also lived at 908 E Shelby St, was a lawyer, too.

As so many of the jurists and politicians in the neighborhood were, A. J. Falknor was caught up in the Neterer court along with the neighborhood's mayors and attorneys in the street railway and public power dispute. The Falknors were one of the longtime families to reside in the Roanoke Park Historic District, from 1908 through at least 1944.

Accessory Structure: Detached garage.
Description: Historic Contributing
Built: 1936

Frame structure with concrete floor.

Site ID #61
912 E Shelby St (formerly 914 E Shelby St)
Built: 1909

Historic Name: Prosser-Dowling House

Contemporary Name: Mayeno, James M. and Mary M., House

Denny-Fuhrman Add Supl
Block C Lot 10

Style: Craftsman
Builder: Holt & Jones

Legal: 1962200340
Architect: Holt & Jones

Classification: Historic Contributing

Description: Building Permit 74572, dated 4-9-1909, authorized owner, builder, designer Holt & Jones to build a two and a half-storey frame residence 32 feet by 30 feet. Twin gabled dormers whose barge boards connect meet in the front center of this house with a side-gabled roof. The exterior is clad in 2-inch exposure clapboard siding. A full-width porch with simple square-post supports and a shed roof helps support a rectangular bay window the east front gable. Windows are one-over-one double hung with simple surrounds. The porch is inset on the SW corner.

Cultural Data: William Thornton Prosser Jr. and his wife, Genevieve, were the first owner-residents of the house. William was the son of Colonel William Farrand and Flora Prosser. The colonel fought on the Union side in the Civil War and served in the U. S. Congress as a representative for Tennessee. The town of Prosser, Washington, was named in his honor. He was president of the Washington Historical Society
and editor of the monthly *Washington Historian*. Emily Inez Denny quotes his brief eulogy for David T. Denny in *Blazing the Way*.157 A many-gabled William F. Prosser house designed by David J. Myers, of Graham & Myers, is shown in 1913's *Homes and Gardens of the Pacific Coast*.158

According the 1910 U.S. Census, William was the city editor of a newspaper. This is corroborated in A Volume of Memoirs and Genealogy of Representative Citizens of the City of Seattle and the County of King, in which his father, the colonel, is featured in a sketch. The author notes in 1903 that the colonel's son is a reporter for the *Post-Intelligencer*.159 Later, Prosser was a partner in Strang & Prosser, an early advertising agency.

Dr. George A. Dowling and his wife, Hilda H. Dowling, owned the house from 1925 to 1941. Dowling appears in Clarence Bagley's *History of King County* as a vice president of the King County Medical Society in 1924 and among the members in the 1929 roster of the society.160 He and Hilda Dowling had two sons, George A. (b. 1922) and James T. (b. 1926). James also became a physician. George A. Dowling, Sr.'s older brother, J. T. Dowling, also a physician, lived in the district at 2716 Tenth Ave E (Site ID #78) from 1915 through at least 1935.

Accessory Structure: None
Built: 1909 (destroyed)
Building Permit No. 76846, dated 5-25-1909, authorized an applicant, owner, builder whose name is illegible to build a 4 feet by 18 feet tent platform 6 feet from any building.

Accessory Structure: Detached garage.
Built: 1930
Description: Historic Contributing.
A gable-roofed, single-car, frame garage with concrete floor and shingle roof, with a tripartite door. The garage is not shown on the Volume 4 Volume 4 Sanborn map.

Site ID #62
920 E Shelby St
Built 1910
Historic Name: Slater, John C. and Carrie M., House
Contemporary Name: Moore, James R. F. and Lauren A. F., House
Denny-Fuhrman Add Supl Block C Lot 11
Style: Colonial Revival
Builder: Gustav Olson
Classification: Historic Contributing
Legal: 1962200345
Architect: Gustav Olson

Description: Building Permit No. 92631, dated 7-16-1910, authorized applicant, owner, designer, builder Gustav Olson, of 2007 Federal Avenue, to build a two-storey frame residence 34 feet by 36 feet. The result is a shingled, side-gabled house with a gabled dormer centered on the roof and a centered gabled porch.

157 Emily Inez Denny, 231.
158 Calvert, ed., no page numbers.
160 Bagley, 569, 571.
below. The dormer gable returns seem to be connected by a narrower board that shelters the dormer window. The porch returns are more standard. All of the house’s surfaces are shingled, including the gabled dormer. The small porch or portico is supported by two simple Doric columns. The door is surrounded by a transom with a row of six lights and side lights that are each a column of single lights. The dormer has a double window each half of which has fifteen lights. A small double window is directly centered above the porch gable. It is flanked by larger double, double-hung windows that have 12 lights over one. Similar symmetries govern the fenestration on the house’s sides. The brick chimney is on the east side of the house. The first storey has taller quadrupled windows on either side of the porch. In each, two narrow sections are flanked by even narrower sections that seem to echo the single-pane column theme of the sidelights. A small addition is attached to the front of the west wall of the house.

Cultural Data: John C. and Carrie M. Slater lived in the house at 920 E Shelby St from 1915 to at least 1930. He was a stocks and bonds broker. According to the 1929 Polk directory, he was president-executive secretary of the Bureau of Business Information.

Accessory Structure: Detached garage. Built: 1950

Description: Non-Historic Non-Contributing.

A two-car frame structure with concrete floor and composition shingle roof on the northeast side of the lot. No garage is shown on the Volume 4 Sanborn map.

Site ID #63 926 E Shelby St Built: 1912

Historic Name: Ross, Bart C. and Ethel H., House
Contemporary Name: Clark, Kenneth R. and Tiffany, House

Denny-Fuhrman Add Supl Block C Lot 12 Legal: 1962200350
Style: English Arts and Crafts Builder: Gustav Olson Architect: Same
Classification: Historic Contributing

Description: Building Permit No. 113718, dated 5-27-1912, authorized applicant, builder, designer Gustav Olson, of 2812 Twelfth Ave E nearby, to erect a two-storey residence 40 feet by 27 feet for owner J. W. Childs, of 532 Belmont Ave E. A large vertically rectangular front window breaks the line between the two stories. The lower exterior is shingled, and the upper is stucco. The recessed porch is on the right side.

Cultural Data: Gustav Olson, who lived on Twelfth Ave E, built four of the houses up on the plateau. This is one of two on E Shelby St for which he claimed to be the designer. It’s not clear that J. W. Childs, of 532 Belmont Avenue, who was instrumental in getting the side sewer for the house installed 8-23-1912,
ever lived there. He is shown as the owner of this property in 1912 and as the owner of record on the side sewer card for the property at 822 E Shelby St as well, on 8-23-1912.161

By 1925, J. L. McKeever owned the house. In 1930, Bart C. Ross paid the taxes, and the Rosses lived in the house into the next generation until 2007. Bart C. Ross (wife Ethel H.) was a partner in the law firm Patterson & Ross. By 1930, the Rosses had two children, Richard H. Ross (b. 1917) and Jean H. Ross (b. 1921). Jean H. Ross lived in the house until 2007. She was the first female engineer to work for Boeing.

Accessory Structure: None
Description: Detached concrete structure with composition roof. The garage is shown on the Volume 4 Sanborn map but is gone now. Only the concrete foundation remains, functioning as a retaining wall.

Site ID #64 1000 E Shelby St
Built: 1909

Historic Name: Dart, Frank V. and Nora A., House
Contemporary Name: McKinley, Todd, House
Denny-Fuhrman Add Supl Block C Lot 13

Style: Craftsman
Classification: Historic Contributing
Description: Building Permit No. 80182, dated 9-?-1909, authorized applicant F. V. Dart to have built a two-storey house. The writing on most of the building permit film is too faint to be legible. The sideshaped roof has a centered gabled dormer. Double, double hung windows, six lights over one in each half, flank a smaller triple, multiple-light window over the centered, gabled, enclosed porch. The porch is flanked by multiple-light triple first-floor windows. A shed-roofed bump-out is centered on the west wall of the house. What appears to be the original cedar siding over the entire house is intact.

Cultural Data: Frank V. and Nora A. Dart were the first owners of the house. Frank V. Dart was a conductor on the Northern Pacific Railway. The Darts lived in the house until 1925.

Accessory Structure: Detached garage.
Description: Non-Historic Non-Contributing.
Frame structure with concrete floor and shake roof.

161 Side Sewer Card 5609.
2600 Block of Tenth Ave E

Site ID #65

Historic Name: Dalley, A. Harry and Olive W., House

Contemporary Name: Stokke, Larry E. and Diane R., House

Denny-Fuhrman Addition Block 10 Lot 7

Style: Colonial Revival

Builder: J. C. Crosby

Architect: Huntington & Gould

Classification: Historic Contributing

Description: Building Permit No. 86747, dated 2-7-1910, authorized owner A. H. Dalley, of 430 Twelfth (or Seventeenth) Ave E, to have applicant, builder J. C. Crosby, of 2421 E Aloha St, build a two-storey frame residence, 26 feet by 42 feet, designed by architect Daniel R. Huntington. The house faces the north side of the property and has a side-gabled roof with deep cornice returns. On the north facade is a flat-roofed entry porch approached by steps on the street-facing, west side. The exterior of the Colonial Revival house is shingled, and the back of the house, on the east side, has a two-storey sunroom. Trellises on the north, west, and south protect the house shingles from ivy and wisteria kept trim. Many of the multiple-light windows, including all of the sunroom windows, have window boxes. The west, street-facing side of the house has a range of six multiple-light casement windows for the living room. The north, rear side of the house has the same feature for the dining room. The living room has a cozy inglenook with fireplace.

Cultural Data: Daniel R. Huntington, rather than "Huntington & Gould," is shown as the architect on the building permit for this house designed and built in 1910 for A. Harry Dalley. Current owner Larry Stokke has the plans for the house, which are signed by Carl F. Gould, who at the time was in a new associate's relationship with Huntington and apparently served as draftsman on this project. Gould's first job in Seattle had been a brief stint as a draftsman for Everett & Baker. He had recently left to become an associated architect in Huntington's office. Booth, T. William and William H. Wilson, 38.

Huntington partnered with several architects over his long career in Seattle. Early projects include the First Methodist Episcopal Church (1908-9), the Delamar Apartments on West Olympic in Queen Anne (1908-9), the old Arctic Club (now the Hotel Morrison), and the City Light Steam Plant (1911). In a two-year partnership with Arthur Loveless (1912-14), he collaborated in the design of several apartment houses and single-family residences. He was City Architect from late 1912 through late 1921, designing several fire stations, the Lake Union Water Power Auxiliary Plant (1912), the Lake Union Auxiliary Steam Electric Plant (1914), the Fremont branch of the Seattle Public Library, and six structures of the Firland Sanatorium including the Administration Building (now the Salvation Army's Evangeline Young Women's Home). His concrete piers for the University Bridge won an American Institute of Architects (AIA) Honor Award in 1922. After leaving the City Architect's job, he taught briefly at the

162 Gould's first job in Seattle had been a brief stint as a draftsman for Everett & Baker. He had recently left to become an associated architect in Huntington's office. Booth, T. William and William H. Wilson, 38.

University of Washington and designed the Rainier Chapter of the Daughters of the American Revolution Building in the Broadway business district modeled as a miniature Mount Vernon. He was president of the local chapter of the AIA in 1918–19 and in 1925. He designed the Northcliffe Apartments (1924–25) and, with partner Archibald Torbitt, the Piedmont Apartments (1927) and the Seventh Street Theater in Hoquiam (1927–28). With Torbitt and associate Edwin St. John Griffith, he went on to design the Hoquiam City Hall (1928–29).

A. Harry Dalley, was a merchandise broker. He and his wife, Olive W., were succeeded in ownership by their son and his wife, Ruth Willets Dalley. The Dalleys lived in the house until the Stokkes bought the house in 1983.

Accessory Structure: Playhouse
Built: 1983

Description: Non-Historic Non-Contributing.
The little playhouse, approximately 10 feet by 10 feet and 10 feet tall at the peak, echoes the house design and materials and contributes to the charm of the place. The shed does not appear on the Volume 4 Sanborn map, Sheet 446. Present owner Larry Stokke built the playhouse in 1983. The side-gabled roof is composition shingles, and the exterior, like the house's, is clad in wood shingles. The door in the south gabled end and the double casement windows on the two sides have multiple lights.

Site ID #66 2612 Tenth Ave E
Built: 1924

Historic Name: Gifford, Charles and Elizabeth F., House
Contemporary Name: O'Connor, Erin P., House
Denny-Fuhrman Addition Block 10 Lot 6
Style: Colonial Revival
Builder: A. D. Johns

Legal: 1959700505
grouping in the center. Four wide windows on the first floor (two in the front, flanking the porch, two on the north side, flanking the chimney) feature each a single row of six panes over one pane. The two wide front windows are topped by blind arches. The centered, gabled front porch, rebuilt in 2007, is supported by two sets of round and square columns with square pilasters behind. Inside, the fireplace surround is made of Ernest Batchelder tiles. A central picture tile depicts jousting knights riding out of their respective castles with a rising sun background that echoes the front door fanlight. Tile pilasters rise to a rare tile mantel.

Cultural Data: Charles and Elizabeth Gifford lived in the house with their daughter, Marjorie (b. 1911), from 1925 until 1941. Charles Gifford was a partner in Kerr, Gifford & Co., a grain exporting company.

Accessory Structure: Detached garage

Built: 1924

Description: Historic Contributing.
The stucco, one-car garage has a flat roof with parapets on the north and south sides and a concrete floor. The building permit for the house includes a description of the garage to be built as well. No garage appears on the Volume 4 Sanborn map, Sheet 446.

Site ID #67 2616 Tenth Ave E

Built: 1922

Historic Name: Fish, Elmer H. and Charlotte, House

Contemporary Name: Wurgler, Chris J., House

Denny-Fuhrman Addition

Block 10 Lot 5

Legal: 1959700500

Style: Dutch Colonial Revival

Builder: Gardner Gwinn

Classification: Historic Contributing

Description: Building Permit No. 214539, dated 7-7-1922, authorized owner Elmer H. Fish, of 1703 Hoge Building, to have builder Gardner Gwinn, also of the Hoge Building, build a residence per plans for a 35 feet by 26 feet, one-storey house with a full basement. The original cedar siding has been replaced by cedar shingles, and the front windows have been replaced with single-pane windows although their size has not been changed. The first story of the house is otherwise much as it was in Elmer Fish’s day. The house still has its original eyebrow-roofed porch. The wood roof shingles have been replaced by composition shingles.

Cultural Data: Fronting on the east side of Roanoke Park, the one-storey Dutch cottage at 2616 Tenth Ave E on Block 10, Lot 5, of the Denny-Fuhrman Addition was originally owned and occupied by Elmer H. Fish (or Fisch), the Fee Owner of Record 12-26-1923. Elmer Fish was the proprietor of a cigar store and lived at 3935 Woodlawn Ave while the house was being built. He and his wife, Charlotte, lived in the house until they sold it to current owner Chris Wurgler, who owns and operates Chris’s Collective hair salon up Tenth Ave E on East Miller Street.

Accessory Structure: Three-storey “tower”

Built: 1994
Description: Non-Historic Non-Contributing
Three-storey shingled building built on original garage footprint. No garage is shown on the Volume 4 Sanborn map, Sheet 446.

Site ID #68 2622 Tenth Ave E Built: 1923

Historic Name: Jenner-Bogue House
Contemporary Name: Alvarez, Michel J. and Thyron, Marie-Noelle, House
Denny-Fuhrman Addition Block 10 Lot 4 Legal: 1959700495
Style: Dutch Colonial Revival Builder: Gardner Gwinn Architect:
Classification: Historic Contributing

Description: A one and a half-storey house with an eyebrow-roofed bump-out entrance. The exterior is clapboard, and the roof is composition shingle. The first-floor windows, including those in a rectangular bay on the north side of the façade, are sheltered by the gambrel roof and an extension of the gambrel roof. The bay on the first floor contains two pairs of six-light casement windows. The house proper contains three casement windows on the first floor, each with nine lights. A wide shed-roofed dormer set into the gambrel roof contains two centered double-hung, six-over-one windows and single windows of the same description further out on each side. The chimney is on the south side of the house. The front door is flanked by sidelights, and an attractive tiled entrance-way shields the inner front door from the elements. A raised stair landing can be accessed from both the kitchen and the living room. It once held a chair that traveled up the stairs, no doubt for Virgil Bogue, who was 91 in 1941, when he and Elizabeth Frye Bogue moved into the house. Inside, the house features an Ernest Batchelder fireplace with a wood mantel.

Cultural Data: Contractor Gardner Gwinn built many houses in the district, including several on the west side of Harvard Ave E lost to the construction of Interstate-5. He developed an entire street of modest Craftsman bungalows on E Gwinn St, just north of and below the district plateau.

This house was owned by Theodore and Frances F. Jenner from 1933 to 1941. Theodore Jenner was the vice-president of a mortgage loan company.

Virgil and Elizabeth Bogue bought the house in 1941. Virgil Bogue, by then retired, was an internationally famous champion of the City Beautiful movement and one of Seattle’s early urban planners. After working with the Olmsted Brothers on their proposal for an extensive system of parks and boulevards for the city, Bogue developed his 1911 comprehensive Plan for Seattle that covered 150 square miles and included “harbor and port facilities, railroads, streetcar lines, highways, roads and streets, parks and other recreational facilities.” The heart of the ambitious Bogue Plan was a new civic center north of

166 Ochsner, xxii.
downtown. The plan was never funded. Much of the Olmsted plan, including the siting of Roanoke Park, was realized.

Elizabeth Frye Bogue, of course, was another of the district's Arthur A. and Mary Ann Boren Denny grandchildren. She was the youngest sister of Sophie Frye Bass and Roberta Frye Watt.

Accessory Structure: Attached garage
Description: Historic Contributing.

Building Permit No. 251057, dated 11-4-1925, authorized owner-resident F. M. Jenner to have contractor Gardiner J. Gwinn, of the Hoge Building, extend the original garage toward the rear of the lot 10 feet by 14 feet, the area of the lot 5500 square feet, the area of the garage to be 310 square feet. The garage appears on the Volume 4 Sanborn map, Sheet 446.

Site ID #69 2626 Tenth Ave E
Built: 1928

Historic Name: Loe, Adolph and Olive W., House
Contemporary Name: Krauser House
Denny-Fuhrman Addition
Style: Colonial Revival
Classification: Historic Non-contributing

Building Permit No. 68190, dated 11-28-1908, authorized a Miss Coulton, Lessee, to have the porch at 2626 Tenth Ave E repaired. Perhaps an older structure once stood on the lot. The "1908" year designation on the building permit is unlikely to stand for 1918 or 1928 as the building permit number is so low, meaning that the permit was applied for much earlier than in either 1918 or 1928.

The Colonial Revival shingled house built in 1928 and fronting on the west has been considerably altered in the entry vicinity. The front-gabled composition shingle roof has a wide, shed-rooted dormer centered on the south side containing the original narrow-three-lights-over-one casement windows. The north eave of the front gable has been truncated to permit the erection of a glass shed roof over the part of the house that rests on the attached garage. The hipped-roof stair tower on the north side of the front facade contains the original sets of double casement windows, one centered over the other, with three narrow panes over one each. Behind the stair tower, a gable intersects the roof. Two storeys of balconies

167 Ochsner, 355.

168 Interestingly, in his 1929 History of King County Clarence Bagley mentions the famous Virgil N. Bogue only once, as the husband of Louisa C. Denny Frye and George Frederick Frye's youngest child, Elizabeth. She was featured in her big sister Sophie's Pig-Tail Days in Old Seattle never as Elizabeth but always as "Baby Sister" or "Littlest Sister" or "Little Sister." It was the Littlest Sister's asking how the streets of Seattle got their names that prompted Sophie's second book, Pig-Tail Days in Old Seattle.
are on the east side of the house. The entry, which no doubt at one time featured a porch, is now a shallow recess containing a modern door with a circle stained glass window and a trapezoid window beside it.

The building permit for the garage for this house (see below) is dated 10-31-1928 and shows B. Erskine as the contractor and Lawton & Moldenhour as the architects for that project. It seems likely, then, that they were the architects for the 1928 house, whose building permit has not been found.

Cultural Data: George Willis Lawton had worked as a draftsman for Saunders & Houghton, and Saunders formed a partnership with Lawton in 1898 that lasted until 1915. The two designed a great variety of buildings, ranging from the Lincoln Apartments (1899–1900, destroyed), an early Bon Marche store (1900, 1901–2, destroyed), a number of schools (1901–4), the Lumber Exchange (1902–3, destroyed), the Fire Department’s headquarters (1902–4, destroyed), and a great many residences. They also worked in a variety of styles—with “Shingle Style, Romanesque Revival, Sullivanesque, Tudor Revival, and Colonial Revival” influences.169

When their partnership dissolved, each worked on his own for a while. Later, in 1922, Lawton formed his partnership with Herman A. Moldenhour, who had been an office boy for Saunders & Lawton. The partnership lasted until Lawton’s death in 1928, the year this house was built. Together they had designed “apartment buildings, office buildings, institutional structures,” including the Franklin Apartments (1918, before the partnership was formed), Melbourne House (1927, later the Republic Building), the Fourth and Pike Building (1926–7), and many residences.170 Moldenhour practiced alone after Lawton’s death. He was supervising architect for the original Seattle-Tacoma Airport Administration Building (1948–49, altered).171

For a while the house at 2626 Tenth Ave E was rented out for $75 per month.172 Adolph O. and Olive J. Loe (variously spelled Vee and Lee on records over the years) owned the property in 1928, the year the house was built, but it seems to have been an investment for them. It’s doubtful that they ever lived in the house. Adolph O. Loe, a surgeon, was a prominent member of the King County Medical Society, serving as its president in 1917. He is listed on the roster of the Society in 1929.173 Their son, Ralph J. Loe, was a physician as well. They lived in a large residence in Washington Park.174 The Loes also owned the Vedanta House at 2716 Broadway Ave E (Site ID #11).

170 Terra-Cotta Seattle, 65, 66, 67. The Castle Apartments (1918) are attributed to E. W. Lawton in this book (68), the initials most likely a typographical error. The Access Seattle writer celebrates the survival “relatively intact” of the lobby of the Fourth & Pike Building and points out that the building was one of the last commercial high rises built in Seattle before the onset of the Great Depression (38).

172 Property Record Card.

173 Bagley, 568, 572.

174 A photo of the Washington Park house appears in Swope, 89.
Accessory Structure: Garage now topped by awninged sunroom. Built: 1928

Description: Historic Contributing.

Building Permit No. 281688, dated 11-2-1928, the year the house was built, authorized owner O. W. Lee (Loc) to have Contractor B. Erskine build a garage next to (actually attached to) the residence and to make repairs and alterations per plan designed by Lawton & Moldenhaur. The attached garage is shown on the Volume 4 Sanborn map, Sheet 446.

Site ID #70 2632 Tenth Ave E Built: 1917

Historic Name: Bloxom, Frederick C. and Elizabeth, House
Contemporary Name: Buchanan, Robert T. and Odile, House
Denny-Fuhrman Addition: Block 10 Lot 2
Style: Colonial Revival
Builder:
Classification: Historic Contributing

Description: The building permit for this house has not been found. The Colonial Revival-style house has a side facing gable roof with two hip-roofed dormers. Dentils run along the eaves. Shuttered, double-hung, ten-over-one windows are on both the first and the second storeys. The brick chimney is on the south side of the house. French doors lead to a railed balcony on the front porch roof. The porch, centered on the main facade is supported by square pillars and pilasters.

Cultural Data: In 1917, Lilian H. owned the parcel, but she lived at 900 Eighteenth Ave E and then later at 2205 Twenty-second Ave E. The first known resident-owners were Frederick and Elizabeth Bloxom, who owned and lived in the house from 1925 to 1954. Frederick Clinton Bloxom was the oldest of ten children and from Virginia. According to his WWI draft registration card, he was 38 and living at 322 Eighteenth Avenue East 9-12-1918. At that time, he was with Crenshaw & Bloxom, a wholesale fruit and produce company. He was later secretary-treasurer of J. W. Godwin & Co. and also associated with the Smith & Bloxom Investment Co. He and his wife, Elizabeth, lived in this house with their three sons: Robert, William, and Frederick C. Bloxom.

Accessory Structure: Attached garage
Built: 1917

Description: Historic Non-Contributing.

The former garage, shown on the Volume 4 Sanborn map, Sheet 446, has been converted to a study.
Site ID #71 2636 Tenth Ave E Built: 1925

Historic Name: Horner, W. H. and Margaret K., House
Contemporary Name: Conley, Gerald R. and Fran, House
Denny-Fuhrman Addition Block 10 Lot 1 Legal: 1959700480
Style: Colonial Revival Builder: Beck & Rasmussen Architect:
Classification: Historic Contributing

Description: Building Permit No. 246956, dated 7-13-1925, authorized owner W. H. Horner, of 2347 Broadway Ave E, to have Contractor (Emil) Beck & Rasmussen, of 945 Emerson, build a frame residence 40 feet by 40 feet with a connected garage per plans filed. The Colonial Revival house facing E Edgar St on the southeast corner of Tenth Ave E and E Edgar St is clad in cream-colored “pony brick.” The house has a hipped roof with broad overhangs supported by simple paired modillions. The entry is highlighted by a curved copper-roofed canopy on the north side of the house. The windows of the second story begin directly below the eave line. All of the house’s windows are called out in a darker color of brick. The house has “hardwood floors, cut glass upper windows on the first floor and second floors, and mahogany interior doors and some fancy moldings.” One brick chimney is on the east side of the house and has a large Ernest Batchelder fireplace with a wooden mantel inside. A smaller brick chimney is on the north side of the house.

Cultural Data: The first owner resided here were William H. and Margaret K. Horner (9-3-1925). William Horner was Salmon cannery inspector and later superintendent. The Homers were associated with the house until at least 1941.

Accessory Structure: None Built: 1925 (altered)
Description: Building Permit No. 246956 also authorized Beck & Rasmussen to construct a “garage in connection.” The garage has been converted to a sitting room. Present owner Gerry Conley has described the original: “The garage was built inside the house structure along the south side of the house. The construction of the garage addressed the natural concern about fires that might start in the garage and spread to the house. The garage walls were made with solid 2 x 4 studs, meaning no gap between the studs, just solid wood. Thus if there were a fire it would take a long time to do structural damage.” The garage is shown on the Volume 4 Sanborn map, Sheet 446.

Footnotes:
175 Present owner Gerry Conley in an e-mail to Allan Seidenverg, Friday, 1-11-2008, 5:30 P.M. Leonard Garfield of the Museum of History and Industry and Allan Seidenverg revived the popular architectural walking tour of the Roanoke Park Historic District in August and September, 2008.
176 Gerry Conley e-mail to Allan Seidenverg Friday, 1-11-2008.
Site ID #72 2700 Tenth Ave E (formerly 1002 E Edgar St) Built: 1910
Historic Name: Beckwick, D.V. and Julia, House
Contemporary Name: Owens, Angela P., House
Denny-Fuhrman Addition Block 13 Lot 7
Style: Craftsman
Builder: John Haller
Classification: Historic Contributing
Legal: 1959700755
Architect: Same

Description: Building Permit No. 86365, dated 1-27-1910, authorized designer-builder John Haller to construct a two-storey frame residence 30 feet by 41 feet at 1002 E Edgar St (the address then) for attorney Fred H. Peterson, whose offices were in the Mutual Life Building. This substantial two and a half-storey Craftsman-style house faces E Edgar St. The roof is side-gabled, with a large shed dormer on the main facade. The roof has exposed rafter tails and large knee braces in the gable ends. The west side of the house, on Tenth Ave E, features a gabled bump-out on the north side. The first floor's front windows are in a set of four grouped, nine-over-one double-hung windows. The front entrance is a small gabled, covered stoop. The clinker brick chimney is on the east side of the front door.

Cultural Data: Fred H. Peterson and his wife, Ella W. Peterson, who owned Lots 6 and 7 both in 1910, owned the house from 1910 to 1915. That year D. V. Beckwith (or Beckwick or Backwick), the manager of a ships chandlery (provisioner), bought the house. According to the 1920 Federal Census, D. V. Beckwith was from New York and his wife Julia K. Beckwith was from Vermont. They had two sons, S. V. (b. 1900) and Brainerd K. (b. 1903).

It’s not clear that the Petersons ever lived in the house. In the 1900 U. S. Census, they are shown living in a household composed of 100 members in Ward 4—no doubt a hotel. In the 1910 U. S. Census, they are shown living in Ward 5 in a household composed of a relatively mere 18 members—again, probably a hotel—and Peterson appears in the 1912 Polk directory as a lawyer with the firm Peterson & MacBride, residing at the Hotel Kennedy. In Clarence Bagley’s History of King County, in a section called “Attorneys Who Make Money,” Bagley quotes practically an entire article of that title. The author says, midway through a long list of attorneys who made money: “Fred Peterson has one of the most lucrative practices in Seattle.”177

Later, Mabel Denny Thompson, another Arthur and May Ann Boren Denny grandchild, one of two daughters of their son Orion Orville, owned the house and lived there as a widow with her daughter, Mary Elizabeth “Lassie” Thompson Ostrander and her husband, Talcott Ostrander.

177 Bagley, 587. The title came from the Christmas 1891 issue of the Spectator Bagley received from an “oldtimer” in 1925. The article was apparently inspired by someone’s observation that there were so many lawyers in Seattle that few of them could be making much money.
Accessory Structure: Detached Garage
Built: ca. 1910

Description: Historic Contributing.
Two-car garage, 10 feet by 17 feet, with plank floor and shake roof. The garage is shown on the Volume 4 Sanborn map, Sheet 446.

Site ID #73 2701 Tenth Ave E (formerly 916 E Edgar St) Built: 1908
Historic Name: Saunders, Robert C. and Mansy, House
Contemporary Name: Celio, David L. and Mary Beth, House
Denny-Fuhrman Addition Block 14 Lot 8 Legal: 1959700805
Style: Colonial Revival Builder: Architect: Frederick A. Sexton
Classification: Historic Contributing

Description: English-born architect Frederick A. Sexton designed the three-storey Exotic residence at the northwest corner of Tenth Ave E and E Edgar St. The rectangular, cross-gabled Colonial Revival house was built over time from 1906 to 1908. The broad eaves, which continue on the gable sides of the house, have large modillions. Centered on the main façade is a large two-storey entry porch supported by paired columns joined by "Moorish" horseshoe arches." The house has a cement block foundation, with blocks cast to look like stone. The exterior is cedar siding. Each of the four gables has a Palladian style window. A bow window is on the east side of the first storey. The house appears in Homes and Gardens of the Pacific Coast, Volume 1 Seattle, 1913.

Cultural Data: Frederick A. Sexton was nine years old when he came to the United States. Where he studied architecture isn't known. He practiced in Tacoma from 1887 to 1891, in Everett in 1891, and in Seattle beginning in 1900. In the Seattle area, he designed the Bay View (later Webster) School in Ballard (1907), the Mueller Wholesale Block (1910) in Pioneer Square, and the Georgetown City Hall (1909). His residential work includes the Parker-Fersen House (1909), the C. L. Roy House (1907), the Henry McBride House (1905), and the E. B. Palmer House (1905). Sexton died in Pierce County in 1930.

The house was designed for Robert C. Saunders, an attorney with Saunders and Nelson. Saunders' law partner, Israel Nelson, lived cater-corner across the alley at 2706 Broadway Ave E (Site ID...
#6). The state’s 1910 Census records show a Robert C. Saunders who was 45 at the time and had come from Virginia. His wife, Mansy (or Mary) Saunders was 36 at the time and had come from Maine. They had seven children.

Saunders served as United States Attorney in Seattle and was involved in the brief shutdown of the *Union Record* newspaper after the Centralia Massacre. During the Maritime Strike of 1921, Saunders obtained a temporary injunction against picketing from the Federal Court. His neighbor the Hon. Jeremiah Neterer of the Superior Court (Site ID #5) "rebuked" him for trying to blame the unions for violence and lifted the injunction, agreeing with defense attorney George Turner that unions could not be enjoined because they were not corporations.

Accessory Structure: Garage
Built: ca. 1908
Description: Historic Contributing.
Detached stucco, flat-roofed, two-car concrete structure with concrete floor on west side of lot. The garage is shown on the Volume 4 Sanborn map, Sheet 444.

Site ID #74 2706 Tenth Ave E
Built: 1911
Historic Name: Parshall, Louis A. and Martha I., House
Contemporary Name: Todaro, Thomas Matthew, House
Denny-Fuhrman Addition
Block 13 Lot 6
Style: Arts and Crafts
Builder: W. R. Dickson
Legal: 1959700750
Architect: Thomas L. West
Classification: Historic Contributing
Description: Building Permit No. 100169, dated 2-27-1911, authorized builder W. R. Dickson, of 567 Empire Building, to build a two-storey residence 30 feet by 40 feet designed by T. L. West for applicant L. A. Parshall and owner Martha I. Parshall. The result is an attractive two and a half-storey, front-gabled Arts and Crafts house. The house appears to be made up of three layers, each one projecting further out from the next. On the bottom level, a small entry porch with Craftsman details is inset on the SW corner, and a bow containing five eight-over-one double-hung windows is centered. On the second floor, a large box bay window is supported by large craftsman knee braces. The attic level, which also projects outward, has a small tripartite window containing a taller six-over-one double-hung window flanked by two shorter six-over-one double-hung windows. All original windows of the house appear to be intact. Building Permit No. 143912, dated 9-2-1915, authorized owner J. Parshall to build a roof over the porch.

The Parshalls (also spelled "Paschall") lived in this house from 1910 to 1925. Louis A. Parshall was manager of the Union Trust Co. He and Martha Parshall had one daughter, Kathleen E. (b. 1905).

Accessory Structure: Detached garage
Built: 1914

Description: Historic Contributing.
Building Permit No. 130661, dated 3-11-1914, authorized owner Martha L. Parshall to build a garage 11 feet by 16 feet at 2706 Tenth Ave E at an estimated cost of $100. The garage has an old-style removable plank floor to facilitate working under an automobile, original-looking double doors, and a shingle roof. The driveway between 2700 and 2706 Tenth Ave E is shared. The garage appears on the Volume 4 Sanborn map, Sheet 444.

Site ID #75 2707 Tenth Ave E Built: 1909

Historic Name: Rhodes, Frank B. and May, House
Contemporary Name: Lorenz, Jr., Frederick J. and Marianne, House

Denny-Fuhrman Addition Block 14 Lot 9
Style: American Foursquare
Builder: C. M. Warren
Architect: Sequist & [illegible]
Legal: 1959700810

Classification: Historic Contributing
Description: Building Permit No. 78697, dated 7-6-1909, authorized applicant, builder C. M. Warren to build a two-storey frame residence 34 feet 6 inches by 33 feet 6 inches designed by architectural firm Sequist & [illegible] for owner F. B. Rhodes. The American Foursquare house has a clapboard first storey and a stucco second storey. The hipped roof with modillions under its eaves has a hip-roofed, clapboard-clad dormer centered in the front. A bump-out with a narrow hipped roof appears at the rear of the north side of the house. The centered clapboard-clad, flat-roofed porch with tapered clapboard pillars at one time might have supported a balcony, but the centered door in the second storey no longer leads to one.

186 Kreisman and Mason, 167.
187 Ochsner, "Additional Significant Seattle Architects," under entry "Dose, Charles C." in Ochsner, 342. According to Ochsner, Dose was the son of developer Charles P. Dose and died circa 1925. Neither West nor Reinoehl has his own entry, and little seems to be known about their work.
Cultural Data: Frank B. Rhodes and May Rhodes (also spelled "Rhodie" in the 1910 census) lived at 2707 Tenth Ave E in 1910. They had two children, Marvin (b. 1897) and Gladys (b. 1900). Frank B. Rhodes was vice-president and secretary of Commonwealth Security Co. According to the 1914 Polk directory, the Rhodeses had moved to 219 Twelfth Ave E by that year. Herren & Rhodes, who paid the taxes on Block 14, Lot 9, in 1910, were stocks and bonds brokers. Their business address was 627 First Avenue in 1910. By 1914 they were listed as dealing in "Real Estate, Stocks and Bonds, Insurance" and were doing business at 1129 Cherry Street at the corner of Second Avenue.

Accessory Structure: Detached garage on northwest side of lot. Built: 1919

Description: Historic Contributing.

Building Permit No. 186280, dated 10-22-1919, authorized owner A. W. Pollack to have contractor A. A. Nelson build a two-machine garage, 17 feet by 20 feet, with a concrete floor, 6 inch wall, over 3 feet from any building, with doors that open on own land, alley access, and siding walls painted. A two-car, frame garage, 18 feet by 22 feet, with a flat roof is on the property now. Andrew A. Nelson also built the Elmer Ellsworth Green–designed Gates-Bass Mansion at 1018 E Roanoke St (Site ID#52).

Site ID #76 2712 Tenth Ave E Built: 1909

Historic Name: Siegley, Earl E. and Mabel A., House
Contemporary Name: Lindley, Jayne P., House

Denny-Fuhrman Addition Block 13 Lot 5 Legal: 1959700745

Style: Foursquare Builder: Architect:

Classification: Historic Contributing

Description: Building Permit No. 67433, dated 10-7-1908, authorized E. E. Siegley to have built a two-storey frame residence 29 feet by 41 feet. Neither a builder nor an architect is identified. Building Permit No. 91865, dated 6-23-1910, authorized applicant, builder John J. Hartins, of 2940 East Spring Street, to build a second storey 9 feet by 26 feet addition to the residence for owner E. E. Siegley. It is now a two-storey house. At one time the exterior and roof were shakes. Now they are clapboard and composition, respectively. The first floor front windows have a narrow roof over them. The recessed front porch is on the south side of the front façade, and its stairs face the street. The gable-roofed porch is supported by craftsman-style brackets. Building Permit No. 117146, dated 9-24-1912, authorized applicant E. E. Siegley to build a concrete retaining wall 8 feet high, 9 inches thick at base, and to lay a concrete floor in the garage. On this hilly site at the edge of the plateau, the high retaining wall would have been needed in the back of the house. Building Permit No. 118066, dated 10-29-1912, authorized applicant, owner E. E. Siegley to have "Day Work" enclose the house's porch.

188 King County Assessor Real Property [online] Report.
Cultural Data: Mabel A. Siegley owned Lot 5 in 1908, shortly before the house was built. She was married to Earl E. Siegley, and they had a son, David Phillip, born in 1907. They were the first owner-residents of the house, and Earl E. Siegley stayed until 1944, remarrying at some point. In 1910, Siegley was a contractor's accountant. In 1920, he was a real estate salesman. In 1930, he was a bonds salesman and married to Clara M. Siegley, who did club work booking concerts.

Accessory Structure: None

Built: 1911 (destroyed)

Description: Building Permit No. 106228, dated 8-30-1911, authorized applicant C. W. Vollier (or Votties) to have owner, builder E. E. Siegley build a frame garage 10 feet by 18 feet.

Site ID #77

2715 Tenth Ave E

Built: 1909

Historic Name: Lazelle, Dr. H. G. and Martha K. W., House

Contemporary Name: Young, Sharon, House

Denny-Fuhrman Addition: Block 14 Lot 10

Style: Colonial Revival

Builder:

Classification: Historic Non-Contributing

Description: Building Permit No. 67860, dated 10-17-1908, authorized owner Dr. H. G. Lazelle to build a two-storey frame residence 40 feet by 26 feet at 2715 Tenth Ave E. The house with a side-gabled roof faces sideways on the south with an entry porch approached by steps on the side from the street. Two dormers with six-over-six double-hung windows are centered on the side gable above the porch. The porch is supported by Tuscan pillars and is topped now by an enclosed shed-roofed second-storey addition. New shakes replacing the original clapboard exterior and new trapezoid windows in the attic storey of the front gable streetside mar historical integrity. In a 1930s photo, the exterior and the chimney are completely covered by ivy. A 1950s photo shows exterior wood siding.\footnote{Property Record Card.} The six-over-six double-hung windows and one six-over-six triple-hung window on the second storey appear to be original. Multiple-paned French doors and a six-over-six double-hung window on the first floor appear to be original as well.

Cultural Data: The house was built for Dr. H.G and Martha Lazelle. In Clarence Bagley’s \textit{History of King County} Dr. H. G. Lazelle appears as president of the King County Medical Society in 1921. He does not appear on the society’s roster in 1929.\footnote{Bagley, 576, 568.} Dr. Lazelle was commissioned in the U. S. Army for service in World War I.

Accessory Structure: Garage on west side of lot.

Built: 1913

Description: Historic Contributing.
Building Permit No. 120528, dated 2-21-1913, authorized applicant John Quirk (T. F. Quirk's brother and also in their tea and coffee importing business) to build a garage 12 feet by 16 feet, 6 feet from any building. H. Lazelle is the owner, builder. Building Permit No. 142033, dated 6-11-1915, authorized the addition to a 12 feet by 14 feet garage of 5 feet by 14 feet, 6 feet from the owner's residence and 15 feet from any others. The new part of the garage was to have a plank floor.

The contractor for the garage addition was Gustav Olson, who also built the garage at 2813 Tenth Ave E in 1913 (Site ID #90). Olson had built the house at 2836 Tenth Ave E in 1909 (Site ID #99) and the W. E. Dwyer-designed house at 2716 Broadway Ave E in 1912 (Site ID #10). He had been the designer-builder for the house at 920 E Shelby St in 1910 (Site ID #62) and the designer-builder for the house at 926 E Shelby St in 1912 (Site ID #63).

Site ID #78 2716 Tenth Ave E Built: 1910

Historic Name: Wolfe-Dowling House
Contemporary Name: Rosenkrantz, Elsa C., House
Denny-Fuhrman Addition Block 13 Lot 4 Legal: 1959700740
Classification: Historic Non-Contributing
Description: Building Permit No. 83820, dated 11-9-1909, authorized owner H. H. Wolfe, of the London Store, to have Walters Bros. build a one and a half-storey frame residence 24 feet by 41 feet designed by Willcox & Sayward. The house has been significantly altered. The original house had a stucco on metal lath exterior with shingles on the gables. In a 1930s photo, all but the shed dormer was covered in ivy. Currently, the house is made up of two perpendicular, clapboard-clad gabled wings. On the exterior sides of the gables—that is on the north side of the street-facing gable and on the east side of the south-facing gable—the gable eaves have been truncated, so that the gable ends are asymmetrical. An entry porch is located where the gabled wings meet. A small garage attached to the south side of the house has been converted to a studio. A small porch with a shed roof is on the north side of the street-facing front gable. The original windows appear to be intact on the first floor. Replacement windows are on the second floor.

Cultural Data: The principals of the architectural firm Willcox & Sayward were both from Vermont. Walter Ross Baumes Willcox practiced in Chicago. He came to Seattle before his Vermont partner, William J. Sayward, who had worked for McKim, Mead & White in New York. They opened their Seattle office in 1907 and designed this house before Sayward went back to the East Coast in 1912. (Willcox kept the name of the firm until 1915.)

Willcox is noted for the design of the arched footbridge over Lake Washington Boulevard in the Arboretum in 1910–11 and for the design of 1913's Queen Anne retaining wall and public stairways on

191 Property Record Card.
Seventh and Eighth Avenues. He and Charles H. Bebb were the first two American Institute of Architects (AIA) fellows from Washington state. Willcox was instrumental in the founding of the Architecture program at the University of Washington, teaching there, and went on to found the Architecture Department at the University of Oregon in Eugene. He was president of the AIA Seattle in 1912 and 1913. The Walter Bros., of 4049 Latona Avenue, built this house for first owner and resident H. H. Wolfe.

According to the 1910 and 1930 U. S. Census, H. H. (b. 1864) and Mary Wolfe (b. 1888), who owned the house from 1910 to 1915, had three young daughters when they lived there: Leahmary (b. 1909), Barbara (b. 1912), and Harriet (b. 1914). The Building Permit for the house shows H. H. Wolfe's address as the London Store. The 1914 Polk directory shows Wolfe as vice president of the John Panton Co., a department store, and home at 2716 Tenth Ave E.

Dr. J. T. Dowling, older brother of Dr. George A. Dowling, who lived at 912 E Shelby St (Site ID #61), lived in this house with his family after the Wolfes, from about 1915 to at least 1935.

Accessory Structure: Garage on southeast corner of lot. **Built: 1919**

Description: Historic Contributing.

Building Permit No. 178013, dated 4-12-1919, authorized owner Dr. J. T. Dowling to have Walter (perhaps one of the Walter Bros., who built the house) & Brady build a sleeping porch and a pergola as well as a garage 11 feet 6 inches by 19 feet designed by W. R. B. Willcox. The frame, two-car, gable-roofed garage is shingled.

Site ID #79 2717 Tenth Ave E

Built: 1909

Historic Name: Caldwell, Hugh M. and Sarah (Smith Howard), House

Contemporary Name: Mankoff, David, and Cho, Jean, House

Denny-Fuhrman Addition

Block 14 Lot 11

Style: American Foursquare

Builder: C. A. Rushton

Architect:

Classification: Historic Contributing

Description: Unfortunately, the microfilm of the first building permit for the two-storey house, No. 80032, is illegible. Judging from permits shown before and after, it would be dated in the second half of 1909. Building Permit No. 131362, dated 4-3-1914, authorized builder C. A. Rushton to construct a one-storey addition 14 feet by 28 feet to the residence at 2717 Tenth Ave E at an "estimated cost $450." Rushton was also the contractor for a two-storey addition to the Bridge house at 2729 Tenth Ave E (Site ID #83). Sarah H. Caldwell owned the lot. Building Permit No. 271870, dated 10-24-1927, authorized

owner Hugh M. Caldwell to have contractor E. C. Edwards make an otherwise illegible repair to the
residence that involved removing part of the floor.

The yellow American Foursquare house had been remodeled in a Japanese theme that eliminated
the original architectural details sometime during the fifties or sixties but now has been restored to its
historic appearance. The house has a hipped roof with exposed rafter tails and hip-roofed dormers on the
north and south facades. A full-width porch is supported by large square columns. The southeast and
southwest corners have rectangular hay windows. The exterior of the house is clapboard, as is the porch,
whose flat roof forms the floor of a second-storey balcony. The porch and the balcony have matching
railings. The three-light front door is on the right of the porch, and the balcony is accessible by means of
French doors on the right.

Cultural Data: In 1909, Hugh M. Caldwell (1882–1955) revived the Municipal League originally started
up by Arthur A. Denny, Morgan Carkeek, John McGilvra, and 42 other leading Seattle citizens. The
revived progressive league championed good government and was instrumental in the recall of Mayor
Hiram Gill, who during his first term as Seattle’s mayor was running a wide-open city government
receptive to graft and prostitution with the help of a corrupt police force.194

In 1917, Caldwell was Corporation Counsel for the Seattle Lighting Company (later City Light)
and persuaded then Secretary of Agriculture David F. Houston to allow the company to call for bids for an
electric plant on the Skagit River, thus opening the way, after much skirmishing among bidders, for J. D.
Ross’s construction of the Ruby and Diablo dams.195 Also in 1917, as Seattle’s Corporation Counsel,
Caldwell pleaded the City’s case against the Puget Sound Traction, Light & Power Co., Boston firm Stone
& Webster’s streetcar and power company, before his neighbor Judge Jeremiah Neterer (Site ID #5).

Caldwell resigned the Corporation Counsel position to accept a commission in the army during
World War I. When he came back, he ran for mayor against the incumbent appointee C. B. Fitzgerald, who
had succeeded Caldwell’s former neighbor Mayor Ole Hanson to Hanson’s uncompleted term as mayor.
Caldwell was elected to a two-year term as mayor in 1920, two years after Hanson had been mayor.
According to Richard C. Berner, Caldwell was not sympathetic to unions but had refused to run an anti-
union campaign.

After his election, Caldwell appointed Tucker & Hyland, the law firm of his neighbor Wilmon
Tucker, to investigate the street railway negotiations in which Stone & Webster had sold their streetcar
lines to the City—during resident Mayor Ole Hanson’s term (2609 Broadway Ave E, Site ID #2), for $15
million, said to be three times the lines’ actual worth—for evidence of fraud and bribery. Later, Caldwell
went into private practice (Caldwell & Lyecke).

195 Bagley, 548–50.
Accessory Structure: Garage on west side of lot. Built: ca. 1909

Description: Historic Contributing.
A two-car garage with a concrete floor and a shake roof. The garage is now shingled, with a composition roof. It appears on the Volume 4 Sanborn map, Sheet 444.

<table>
<thead>
<tr>
<th>ID #80</th>
<th>2721 Tenth Ave E</th>
<th>Built: 1910</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Name: Hayes, Mavis C., House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contemporary Name: Cunningham, Thomas W. and Mary Kathleen, House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denny-Fuhrman Addition</td>
<td>Block 14 Lot 12</td>
<td>Legal: 1959700825</td>
</tr>
<tr>
<td>Style: Craftsman</td>
<td>Builder: F. B. Finley</td>
<td>Architect: W. E. Dwyer</td>
</tr>
<tr>
<td>Classification: Historic Non-Contributing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Building permit No. 87822, dated 3-12-1910, authorized applicant, builder F. B. Finley to build a two and a half-story frame residence 30 feet by 45 feet designed by architect W. E. Dwyer. The owner is shown as Elizabeth C. Finley, of 104 Cherry Street. The first storey of the house is stucco on metal196 with shingled second and attic storeys. The house has a front facing gable roof that extends outward in the upper gable end. A full-width front porch with a shed roof dominates the main façade. The front door is on the left side of the porch, which has stucco pillars and enclosure. The first- and second-storey one-over-one windows are intact. Modern glass doors lead to a shallow attic-level balcony on the main façade.

Cultural Data: W. E. Dwyer was the architect for the houses on at least two Finley properties, this one and the house at 2818 Broadway Ave E (Site ID #20). He was also the architect for the Gustav Olson–built Brown, C. Rogers and Harriet, House at 2716 Broadway Ave E (Site ID #10). Dwyer also built houses in the district designed by other architects, such as the Hayes House (Site ID #11) designed by Bertrand & Chamberlin.

Mavis C. Hayes, who paid the taxes along with F. B. Finley in 1920, is the owner of record from 1925 to 1935. She has not appeared in other records examined so far. Samuel E. and Margaret H. Hayes lived across the alley at 2722 Broadway Ave E. Whether Mavis C. Hayes was related to the Samuel E. and Margaret H. Hayes family is not known.

The next owner, Dr. Carl M. Helwig from 1936 to at least 1941, was a physician.

Accessory Structure: Garage on southwest corner of lot. Built: 1911

Description: Historic Contributing.
Building Permits No. 104386, dated 6-30-1911, authorized applicant, owner, builder F. B. Finley to erect a one-storey frame garage 12 feet by 20 feet. The present garage has a concrete floor and a shallow-gabled
Shake roof. The garage appears on the Volume 4 Sanborn map, Sheet 444. A shed has been added to the garage on the north side.

Site ID #81 2722 Tenth Ave E Built: 1910

Historic Name: Cavanaugh, William E. and Alice, House
Contemporary Name: Carlstrom, David and Lin Jin, House

Denny-Fuhrman Addition: Block 13 Lot 3
Style: Arts and Crafts
Builder: illegible

Classification: Historic Contributing

Description: Building Permit No. 72798, dated 3-4-1909, authorized a builder whose name is illegible to build a two-storey frame residence 40 feet by 26 feet designed by architect E. W. (or E. H. or E. N.) Sanders (or Sancroft) for owner W. E. Cavanaugh. The residence is a substantial cross-gabled, two-storey, Arts & Crafts style house. Largely hidden by a tall fence, the house is clad with alternating large and small exposure cedar shingles. The north end of the house has a gabled bay. On the second storey is a small projecting bay window. The front entrance is highlighted by a broken-pediment gabled stoop. Almost no two of the windows, with curves and multiple lights, are alike. The roof curves, too, above the front entrance, to shelter a triple window.

The roof was originally shingle and is now composition. The ceilings on the first and second floors are 9 feet high. The attic ceilings are 10 feet 6 inches high, and the basement ceiling is 7 feet 6 inches high.197 The original windows are intact.

Building Permit No. 194665, dated 8-20-1920, authorized owner Addie B. Conly, of 2726 Tenth Ave E (next door to the north), to have contractor A. J. Carr, of 4003 Densmore Ave, erect a retaining wall on private property, 7 inches thick, of concrete, 80 feet long, 2 feet high, and also make general repairs to the residence.

Cultural Data: William E. Cavanaugh was 37 when he and his wife, Alice, 28, moved into the house at 2722 Tenth Ave E. They brought their two daughters, Elizabeth (8) and Caroline (3), and two servants. William E. Cavanaugh was a bookkeeper.

A. B. Conly/C. C. Belknap Glass Co., who owned and paid the taxes from 1910 through 1935, also owned and paid the taxes respectively on 2726 Tenth Ave E (Site ID #82) from 1914 to 1935 and on 2730 Tenth Ave E (Site ID #84) from 1915 to 1935, and, in 1925, on 2731 Tenth Ave E (Site ID #85). Charles C. Belknap was president of C. C. Belknap Glass Co., and his sister, Addie M. Belknap Conly, was secretary and then vice-president of C. C. Belknap Glass Co. Charles Belknap and Addie B. Conly, lived in the house next door, at 2726 Tenth Ave E. (Site ID #82)

Accessory Structure: Detached garage. Built: ca. 1910

197 Property Record Card.
Description: Historic Contributing.
A retaining wall along the alley on the south end of the property adjoins a single-car garage with original-looking double doors that is now used as a storage area. It adjoins the garage for the next property north, at 2726 Tenth Ave E (Site ID #82). No garage appears on the Volume 4 Sanborn map, Sheet 444.

Site ID #82 2726 Tenth Ave E Built: 1916
Historic Name: Conly, Addie B., House
Contemporary Name: Lundin, John W. and Jane E., House
Denny-Fuhrman Addition Block 13 Lot 2 Legal: 1959700720
Style: American Foursquare Builder: Architect:
Classification: Historic Contributing
Description: A two-storey, hipped-roof house with two-storey shed-roofed bump-outs on the deep north and south sides. The eaves of the roof have modillions. The shallow hipped roof was originally shingles and is now composition. The exterior was shingles and is now siding. The three windows that make up the bay at the right, front of the house have been replaced with single-pane glass, but their size has not been altered. One of the original ten-light-over one windows in the second storey is centered over the bay, and the other is centered over the recessed, arched front doorway. The windows run right up to the fascia board. A brick chimney is on the north side of the house. A second brick chimney is on the south side, toward the rear of the house.
Cultural Data: Harry F. Conly, then secretary of C. C. Belknap Glass Co., was the owner of record in 1914. By 1915, Addie B. Conly was shown as owner and continued to own the house through the 1930s. She and her brother, Charles C. Belknap, lived in the house. The Watsons lived in this house from 1965 until 1991, when they built a new house next door (2730 Tenth Ave E, Site ID #84) on the corner. They sold this house to the Lundins in 1991.

Accessory Structure: None Built: Initial garage floor 1915 (destroyed)
Description: Building Permit No. 143640, dated 8-23-1915, authorized owner, contractor Mrs. Addie M. Conly, to build a concrete floor 20 feet by 26 feet, 3 feet from adjoining property, for a garage. A sketch shows the concrete floor on the corner lot, next door to the house at 2726 Tenth Ave E. The garage would eventually be replaced by the Watsons' new house, which was built in 1991. A newer one-storey, flat-roofed, frame, shingled garage now adjoins the garage next door (south) on the east side of this property. The present owners are renovating the later garage that adjoins the Carlstrom garage.
Site ID #83 2729 Tenth Ave E Built: 1909

Historic Name: Packard-Bridge House

Contemporary Name: Walters, Deborah, and Patterson, Daniel S., House

Denny-Fuhrman Addition Block 14 Lot 13 Legal: 1959700835

Style: Craftsman Builder: A. C. Russell

Classification: Historic Non-contributing

Description: The one and a half-storey, side-gabled house with a wide, shed-roofed dormer centered in the roof was originally shingled and is now clapboard and, on the front of the first storey, stucco. The dormer exterior is shingled on the front and clapboard on the sides. Two sets of three six-over-six double-hung windows are set in the dormer, divided by a decorative wood trim piece. The recessed porch on the north side of the façade is balanced by a large single-paned window on the south side of the façade. The front door centered on the porch has sidelights, and the porch and its single pillar are clad in the same stucco as the house exterior. Building Permit No. 83380, dated 10-29-1909, authorized applicant and builder A. C. Russell to put one room 12 feet by 14 feet in the basement of the residence—to be enclosed with a lath-plastered partition—for owner-resident S. B. Packard. Building Permit No. 142007, dated 6-9-1915, authorized the construction of a two-storey 8 feet 6 inches by 12 feet 6 inches den and sleeping porch on the exterior of two bedrooms. The owner was J. L. Bridge, and the contractor was C. A. Rushton.

Cultural Data: Elizabeth C. and F. B. Finley owned four lots in the neighborhood over the years: Site ID #20, Site ID #80, this Site ID #83, and Site ID #85. They held on to part of this property through 1941. Francis B. Finley was a bank appraiser. The Finley residence was next door (south) at 2731 Tenth Ave E (Site ID #85).

The first owner of the house was Stephen B. Packard. He was 69 at the time, and his ownership was brief. J. L. Bridge, who owned and lived in the house on Lot 13 from 1915 through 1935, was manager of Sound Timber Co. and secretary of Pacific Towboat Co.

Accessory Structure: Garage Built: ca. 1909

Description: Historic Contributing.

A two-car, two-door, flat-roofed, shingled garage on the southwest side of the lot. The garage appears on the Volume 4 Sanborn map, sheet 444.
Site ID #84 2730 Tenth Ave E Built: 1991

Historic Name: Watson, Fred B. and Martha S., House
Contemporary Name: Ramsy, Karen S. and Shearer, Jane M., House
Denny-Fuhrman Addition: Block 13 Lot 1
Style: Contemporary
Classification: Non-Historic Non-Contributing

Description: A two-storey newer house, deeper than wide, with a wood siding exterior. The stucco-clad cement foundation is exposed in increasing depth along the hillside to the east. A recessed porch with square pillars is set into the north side of the front, one-storey, flat-roofed wing. Above and behind the one-storey front wing is a corner window on the second storey's west and north sides and a glass block window in the south side of the second storey's west side. Down along the E Hamlin St hill on the north side of the house, two gables flank a stucco-clad chimney. Each gable contains a triple window. Under the westernmost, wider gable is a lower-level garage. Two storeys of balconies are on the east (view) side of the house.

Cultural Data: The Watsons, who owned both Lot 1 and Lot 2, lived in the 1916 house on Lot 2 from 1965 until 1991 (Site ID #82), when they built and moved into this house on Lot 1, at the southeast corner of Tenth Ave E and E Hamlin St. The Watsons lived in the house until 2001, when they sold the house to Karen S. Ramsey and Jane M. Shearer.

Accessory Structure: Lower level garage
Description: Non-Historic Non-Contributing.
Two adjacent single-car garages with roll-up doors.

Site ID #85 2731 Tenth Ave E Built: 1909

Historic Name: Finley, Francis B. and Elizabeth C., House
Contemporary Name: Kavalam, Jude J. and Brooke, Patricia M., House
Denny-Fuhrman Addition: Block 14 Lots N 6' of 13, all of 14
Style: Elizabethan Tudor Revival
Classification: Historic Contributing

Description: The first storey of this two-storey house is shingled, and the second storey and attic are stucco on wood lath with half-timbering.198 Multiple large gables intersect on the roof. A porch supported by three wooden posts resting on each of two brick bases whose flat roof supports a balcony emerges beneath the large gable on the east side. A similar porch supporting a balcony is centered out from the area between two gables on the north side. A lower-level garage was recently installed under the east porch.

198 Property Record Card.
National Register of Historic Places
Continuation Sheet -

ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 7
Page 104 of 121

Many of the original leaded glass windows were destroyed in the course of a recent remodel, but they have been replaced by new windows appropriate for the style of the house.

Cultural Data: This is the house that the multiple-propertied Finleys actually lived in. They took Lot 14 and the north six feet of Lot 13. Francis B. Finley was a property appraiser with the Washington Savings & Loan Association. He and Elizabeth financed several houses in the Roanoke Park Historic District—2818 Broadway Ave E (Site ID #20), 2721 Tenth Ave E (Site ID #80), 2729 Tenth Ave E (Site ID #83)—and presumably, they had this one built, too, although the building permit has not been found. In 1910, the King County Real Property Tax Assessment and Rolls show that the Finleys owned Lots 12–14 of Block 14. They eventually sold Lot 12 and the south 44 feet of Lot 13. They lived in the house at 2731 Tenth Ave E from 1910 through at least 1941.

Accessory Structure: None
Built: 1912 (destroyed)
Description: Building Permit No. 111665, dated 3-20-1912, authorized applicant, owner F. B. Finley to have a detached garage at the northwest corner of the lot constructed by “Day Work.” The garage was taken down by present owners, Jude Kavalam and Patti Brook, to give their young children more yard space. They had a garage constructed under the east porch.

2800 Block of Tenth Ave E

Site ID #86

Historic Name: Mayer, Marcus and Mildred K., House
Contemporary Name: Spangler, Mark Francis and Renfro, LuAnn, House

Denny-Fuhrman Addition
Style: Colonial Revival
Classification: Historic Contributing

Description: Building Permit No. 237893, dated 9-16-1924, authorized owner Markus (or Marcus) Mayer, of the Colman Building, to have contractor Nels Hedin, of 2312 Federal Ave E, erect a two-storey residence 30 feet by 38 feet per plan by architectural firm Hunt & Wheatley. The permit was signed by A. Wheatley. The result is a two-storey brick house with hipped roof and copper detailing. The composition roof has shallow eaves and is outlined in dentils. The front porch is supported by Tuscan columns. The door and sidelight and the windows are intact. All is symmetrical and neat. On the south side, a one-storey, one-car garage wing clad in the same brick as the house is topped by a first floor residential wing, which in turn supports a balcony. Most of the windows are double-hung, one-over-one.

199 King County Assessor Real Property [online] Record.
Cultural Data: On his own and early in his career, Arthur Wheatley designed the Fourth Avenue Building (1920). Later, Wheatley was a partner with Bertram Dudley Stuart 1925-30. (See, Site ID #6.) The firm designed the Exeter House Apartments (1927), the Bergonian Hotel (1926, now the Mayflower Park Hotel), and the Marlborough Apartments (1926-27).

Builder Nels Hedin shows up on records for several houses in the district. In addition to this house, he built a sleeping porch for the "Swedish" chalet at 2800 Broadway Avenue (Site ID #14), a house designed by Victor W. Voorhees at 2831 Harvard Ave E (1909) that was destroyed to make way for Interstate-5, and a house at 2837 Harvard Ave E that was also destroyed for the sake of Interstate-5. He owned the latter two houses in 1923.

Owner Marcus Mayer, who was born in Germany ca. 1878, lived with his wife, Mildred K. Mayer, who was born ca. 1890, and their son, Marcus (b. 1916), in the house from 1925, right after it was built, until at least 1940. He worked for Joseph Mayer & Bros., a family jewelry manufacturing firm.

Accessory Structure: None

Description:

Site ID #87 2808 Tenth Ave E Built: 1909
Historic Name: Spencer, George K. and Mabel M., House
Contemporary Name: Watson, Brant, House
Denny-Fuhrman Addition Block 26 Lot 7 Legal: 1959701820
Style: Craftsman Builder: P. E. Wentworth Architect: Ed Merritt
Classification: Historic Contributing
Description: Building Permit No. 94070, dated 3-30-1909, authorized builder-owner P. E. Wentworth to build a two-storey frame residence, 24 feet by 43 feet, designed by architect Ed Merritt. The plain, shingled, front-gabled Craftsman house has a stucco with half-timbering front gable containing a quadruple, double-hung, narrow-sectioned multiple-lights-over-one window. Two small casement windows flank the quadruple window in the acute angles of the gable. A perpendicular gable intersects the front gable on the south, and a shed roofed bump-out is on the north. The full-width, hip-roofed porch is supported by shingle-clad posts with Craftsman braces. The first-floor, front windows have been replaced

200 Terra-Cotta Seattle, 65.
201 Dennis A. Andersen, in entry "Stuart, Bertram Dudley," in "Additional Significant Seattle Architects," in Ochsner, 352.
202 By the 1930s, Hedin lived up the hill to the south, and appears with wife Marie and son Nels William Hedin on the same census page in 1930 as Carl F. Gould, who lived nearby at 1058 East Lynn Street. No collaboration between the two in the Roanoke Park district has been found, but it would be interesting to know whether neighbors Gould and Hedin ever worked together on residential projects elsewhere.
with single panes, but their size has not been altered. The interior features oak, ribbon-inlaid floors and fir stairs and trim. A window on each side of the fireplace was closed over during a remodel and is being restored in the course of a renovation by present owner Brant Watson.

Cultural Data: In 1909, architect Edward L. Merritt was an associate of Jud Yoho, owner of the Craftsman Bungalow Company and publisher of *Bungalow Magazine* (ca. 1909–18).\(^{203}\) Whether the house at 2808 Tenth Ave E was a pattern book design or a one-off isn’t clear. Merritt worked with Yoho from the 1910s through 1920. The 1925 *Times-States & Post Tudor Revival Model House* of 1925, at 915 East Allison Street, two streets to the north of the Roanoke Park district’s E Shelby St, has been attributed to Merritt alone.\(^{204}\)

Builder P. E. Wentworth was also the builder for the house across the street at 2809 Tenth Ave E (Site ID #88) and for the houses at 2833 Tenth Ave E (Site ID #98) and 2837 Tenth Ave E (Site ID #100). He and his family lived at least briefly in the Merritt Hall & Merritt house he built at 918 East Hamlin St (Site ID #32).

George K. Spencer and his wife, Mabel M. Spencer, were the first owner-residents of the house, and their daughter, Mary Louise Spencer, was 11 years old. At that time, according to the 1910 Federal Census, Spencer was a mill superintendent. By the 1920 Federal Census, he was treasurer of Carnation Milk Co. Mary Louise Spencer was by then a stenographer.

Accessory Structure: None

Built: 1910 (destroyed)

Description: Building Permit No. 87301, dated 2-25-1910, authorized builder P. E. Wentworth to build a one-storey frame garage 12 feet by 22 feet with no floor. The garage, now gone, is shown on the Volume 4 Sanborn map, Sheet 444, on the southeast corner of the lot.

Site ID #88 2809 Tenth Ave E

Historic Name: Bardshar, Fred H. and Rachel, House

Contemporary Name: Allen, Victoria Elizabeth, House

Denny-Fuhrman Addition

Block 25 Lot 10

Legal: 1959701755

Style: Craftsman

Builder: P. E. Wentworth

Architect:

Classification: Historic Contributing

Description: Building Permit No. 82162, dated 10-2-1900, authorized applicant, builder, owner P. E. Wentworth, of 1212 Twenty-first Ave E, to build a two-storey frame residence 26 feet by 40 feet. The two and a half-storey house is clad in clapboard with a stucco and half timber gable end. The front-facing gabled roof has relatively simple barge boards and generous eaves supported by Craftsman knee braces.

\(^{203}\) Katheryn Hills Krafft, “Yoho, Jud” entry in “Additional Significant Seattle Architects,” in Ochsner, 354.

\(^{204}\) Swope, 153, 247.
The full-width porch gable is wider and shallower than the house gable. The porch railing and step pillars are clapboard-clad, and the porch is supported by Craftsman knee braces attached at right angles to each other on each of two relatively narrow square columns. Cut glass windows and sidelights are on the first floor. The door is on the north side of the front. The second storey windows are symmetrically arranged, each having 21 lights over one.

Cultural Data: Builder P. C. Wentworth probably built the house as an investment. The Wentworth family moved into the neighborhood at 2837 Tenth Ave E (Site #100) in 1910 and Wentworth also built the house next door (south) at 918 E Hamlin St (Site #32), which became the Wentworth family home for a time. Wentworth also built the house across the street from this one, at 2808 Tenth Ave E (Site #87) and the house at 2833 Tenth Ave E (Site #98). Later he built the “Japanese-inspired P. E. Wentworth bungalow in the Phinney Ridge neighborhood by Craftsman Bungalow Company with its prominent river rock foundation and chimney” which was featured in the October 1914 issue of Jud Yoho’s *Bungalow Magazine.*

By 1915, the Bardshars owned this house, and they kept it in the family until at least 1935. Fred H. Bardshar, from Ohio (wife Rachel), was the western Washington distributor of Stevens Duryea, Cole and Maxwell Motor Cars, doing business at 1107 Pike Street. His son, D. E. Bardshar, who lived in the house through the 1930s, was treasurer of F. H. Bardshar.

Accessory Structure: None.

Built:

Description:

Site ID #89

2812 Tenth Ave E

Built: 1903

Historic Name: Turner, Issac L. and Bethina, House

Contemporary Name: Beale, John A., and Bonner, Megan, House

Denny-Fuhrman Addition: Block 26 Lot 6

Style: Colonial Revival

Builder: E. Almquist

Architect:

Classification: Historic Contributing

Description: Building Permit No. 272732, dated 11-29-1927, authorized owner Woolsey (in records variously spelled Wolsey, or Woolsey as well) Aspinwall (or Aspenwall) to have contractor Eric Almquist, of 3903 Aurora Avenue, enclose the porch of this two-storey residence per plan. That would be the sunroom at the front of the present house.

The two-storey, front-gabled, clapboard house has an intersecting gabled dormer on the south and north sides. A shed-roofed bay is centered under the gabled dormer on the south side. The entrance is via steps on the north side of the full-width front porch. The entry door has lights and sidelights. Double,
double-hung, one-over-one windows are in the second storey, and a small double window is in the apex of the front gable. A small diamond-paned window is toward the front of the south side.

Cultural Data: Builder Eric Almquist is named as architect of the substantial Rentree Stevenson House at 2200 Twelfth Ave E in *Homes and Gardens of the Pacific Coast, Volume 1, Seattle, 1913.* Almquist also built the house at 812 E Shelby St (1909, Site ID #54) and the E. E. Green–designed house next door to that one for A. F. Anderson, Dorothy Storm's father, at 816 E Shelby St (1910, Site ID #55). Eric Almquist might have designed as well as built the house at 812 E Shelby St or have taken the design from Elmer E. Green's plan book or another plan book. Eric Almquist was also the builder of the McClelland-Pinneh–designed Storm House at 2611 Broadway Ave E and of at least two houses on the west side of Harvard Ave E that were subsequently destroyed to make way for Interstate-5.

Isaac L. and Bethina (or Bessie) Turner, who invested in at least two properties in the neighborhood in its early years, owned this house from 1905 to sometime between 1926 and 1927. They also owned Block 24, Lot 4, from 1905 to 1915 (2822 Harvard Ave E, Site ID #47). The house at that address wasn't built until 1922. The family lived in this house until 1925. Isaac and Bethina Turner's three children in 1910 were Cyrus Turner (33), Benie M. Turner (21), and Ruth Turner, (16). Turner was a County tax collector. By 1920, he was a retired widower living with his son, Cyrus, and his daughter Ruth, still at this address.

Accessory Structure: Garage/studio. Description: Historic Contributing.

Building Permit No. 257569, dated 6-10-1926, authorized owner I. L. Turner to build a 12 feet by 18 feet garage at the rear of the lot with a front entrance. The garage at the end of the driveway has been turned into a studio-office. No garage is shown on the Volume 4 Sanborn map, Sheet 444.

Site ID #90 2813 Tenth Ave E Built: 1908

Historic Name: Collins-Lyons House
Contemporary Name: Fisk, John C. and Nancy (Swanson), House
Denny-Fuhrman Addition Block 25 Lot 11 Legal: 1959701760
Style: Dutch Colonial Revival Builder: Architect:
Classification: Historic Contributing
Description: Building Permit No. 64708, dated 8-14-1908, authorized J. D. Collins to build a two-storey frame dwelling whose dimensions are illegible. The house has a steep gambrel roof offset by a large gable-roofed dormer and projecting entry porch. Smaller shed style dormers, each with a single six-over-one double-hung window, flank the large gable dormer. Three Tuscan columns on each side support the square roof.
front porch roof, which is topped by a railed balcony accessible by French doors. The deeply recessed front door has sidelights and a neoclassical frame. Large projecting bow windows, nine-over-one in each part, flank the porch on the first floor. The south and north side elevations of the house have each a bow window.

Cultural Data: John D. and Catherine P. Collins owned and lived in this house from 1910 to 1915. Collins was Sales Manager at Old Oregon Lumber Co. Thomas F. and Rose D. Lyons lived in the house after the Collinses and stayed until at least 1941. Lyons was a lawyer.

Accessory Structure: Garage on southwest side of lot. **Built:** 1915

Description: Historic Contributing.

Building Permit No. 141735, dated 5-27-1915, authorized owner, resident J. D. Collins and contractor Gustav Olson, of 2546 Boyer Ave E, close by, to build a one-storey garage 13 feet by 18 feet, joists 18 inches above ground, 20 feet from any residence. The flat-roofed, frame garage is shown on the Volume 4 Sanborn map, Sheet 444.

Site ID #91

2816 Tenth Ave E **Built:** 1912

Historic Name: Richardson, Dr. Waldo and Ora (Brown), House

Contemporary Name: Smiley, Lorraine A. and Bennett, George R., House

Denny-Fuhrman Addition

Block 26 Lot 5 **Legal:** 1959701810

Style: Colonial Revival

Builder: Johnson Bros. **Architect:** Julian G. Everett

Classification: Historic Contributing

Description: Building Permit No. 111588, dated 3-18-1912, authorized applicant J. A. Johnson for builders Johnson Bros., doing business at 4319 Thackery, to build a two and a half-storey frame residence 35 feet 6 inches by 48 feet, designed by architect J. G. Everett, whose office was at 427 Walker Building, for owner Dr. Waldo Richardson.

This brick Colonial Revival house has been an object of admiration from almost the moment it was built. It received praise in *Homes and Gardens of the Pacific Coast. Volume 1*, Seattle 1913, in which it was cited as a fine duplicate of the revolutionary-era house from which General George Washington directed his forces in the Battle of Germantown.\(^{207}\) Editor Frank Calvert said that the owners brought the design for the house back from the east coast.\(^{208}\) J. G. Everett, whose name appears on the building permit, might have been the supervising local architect. The formal two and a half-storey house has common bond laid brick and double-hung six-over-six windows highlighted by flat jack arches and centered keystones. Three dormers grace the side gable roof, each containing an arch-topped window. The center dormer has a

\(^{207}\) Calvert, ed., no page numbers. The house is praised further for "the treatment of the windows and the charming doorway."

\(^{208}\) Calvert, ed., no page numbers.
half round roof while the two outside dormers are gabled. Two chimneys complete the symmetrical theme. Each gable end contains a large round window. A classical-inspired entry portico held up by Tuscan columns is centered on the main façade and flanked by French doors with flat jack arches and centered keystones.

Cultural Data: Architect Julian G. Everett studied at MIT and came to Seattle in 1904. He practiced independently and occasionally was associated with W. R. B. Willcox, who had also attended classes at MIT. Everett’s most famous work apart from the Waldo Richardson House is probably the Pioneer Square Comfort Station and Pergola (1908). He also designed the Plymouth Congregational Church in Seattle (1905–6), and Temple de Hirsch in Seattle (1906–8, destroyed). Everett & (Frank Lidstone) Baker designed Firehouse No. 23 in 1909.

This fine Georgian brick house was built for Dr. Waldo Richardson, who occupied the house in 1912, the year it was built. Dr. Waldo Richardson appears in the Washington state archives as having been licensed for medicine and surgery in 1909, three years before the house at 2816 Tenth Ave E was built. Richardson was listed in the 1911 Polk directory as a physician boarding at 1703 California Avenue. By 1912, the Polk directory shows him as a physician with an office in the Cobb Building.

Richardson figures in Clarence Bagley’s *History of King County* as a doctor commissioned in the U.S. Navy when the United States entered World War I in 1917. His wife, Ora Brown, was prominent in the Social Welfare Forum of the National Conference of Charities and Corrections.

Physician Irvin A. Weichbrodt and his wife Eugene (probably Eugenia) are shown as the owners from 1925 to 1935. They lived in the house with their two children, Robert J. (12 in 1930) and Betty (almost 4 in 1930). Richardson, though, is shown on the Side Sewer Card arranging for some sewer work for the house as late as 12-12-1934. That seems to be the last time he is associated with the house. By that time he and Ora Brown Richardson were living with their daughter, Helen Hollis Richardson, in Alhambra, California.

Accessory Structure: Garage on southeast corner of lot.

Built: 1911

Description: Historic Contributing.

Building Permit No. 103241, dated 5-22-1911, for 2828 Broadway Ave E, authorized applicant, builder, Charles O. Horn, of 1061 E Lynn Street, to build a garage 12 feet by 14 feet 6 inches for owner Dr.
Waldo Richardson. Most likely, the address for this building permit should have been 2816 Tenth Ave E, not 2828 Broadway Ave E (Site ID #24), which had a four-machine garage built in 1920 with no mention of a teardown on its building permit. The two-storey Richardson House garage opens on the alley by means of two single doors.

Site ID #92 2817 Tenth Ave E Built: 1909

Historic Name: Stevenson, Elizabeth, House
Contemporary Name: Galpin, Amos and Lufkin, Elise, House
Denny-Fuhrman Addition Block 25 Lot 12
Style: Craftsman
Builder: Roberts & Williams
Classification: Historic Contributing
Description: Building Permit No. 70598, dated 12-31-1908, authorizes Roberts & Williams to build a two-storey, 38 feet by 36 feet house designed by V. W. Voorhees. The house design might have come from Voorhees' pattern book, or he might have custom-designed the house. The two-storey house has a hipped roof with exposed rafter tails and three Asian-inspired deep-eaved gables including a large central half-storey dormer. The first floor is shingle, and the second storey and half-storey gables are stucco with half-timbering. A small balcony rests on the shed roof of the full-width porch and is sheltered by a shallow projection from the house roof under the central dormer gable. The gabled projections on either side of the second storey appear to rest on the porch roof. Four square pillars clad in the same shingling as the first floor help to balance the mass of the second storey. The original windows are intact.
Cultural Data: The builders were Roberts and Williams; and William J. Williams signed the permit when the plans were returned to the builders 5-15-1909. The house changed hands at least every five years until the Burke Family acquired it in 1935. It remained in the Burke family until 2008.

Accessory Structure: Garage on northwest corner of lot. Built: 1913

Description: Historic Non-Contributing.
Building Permit No. 128202, dated 11-20-1913, authorized owner Mrs. Maria Odell to have a garage 10 feet by 16 feet built at 2817 Tenth Ave E. The garage appears on the Volume 4 Sanborn map, Sheet 444. The garage now has vertical siding and a roll-up garage door.

Site ID #93 2822 Tenth Ave E Built: 1909

Historic Name: Phillips-Hyde House
Contemporary Name: Stout, Virginia F., House
Denny-Fuhrman Addition Block 26 Lot 4
Style: Colonial Revival
Builder: A. L. Russell Co.
Classification: Historic Contributing
Legal: 1959701805
Architect: Huntington & Gould
Description: Building Permit No. 81201, dated 9-11-1909, authorized A. L. Russell Co. to build a two-story frame residence designed by "Gould & Huntington." The actual association name was Huntington & Gould, so it's possible that Gould, whose name appears first on the permit, was the primary architect. The William C. Phillips House was featured in *Homes and Gardens of the Pacific Coast, Volume I Seattle 1913*. The editor admires the result of "plainness and ordinary material for an effect of beautiful simplicity."\(^{216}\)

The rounded entry pediment supported by Doric columns has been admired as have the French doors with multiple-paned sidelights on each side of the front door.\(^{217}\) The original shingles have been replaced by lap siding. The hipped roof has a small hip-roofed dormer in its center, balanced by other dormers on the sides of the house. All three of the second-story double windows, including the small window centered under the dormer that had a top-bracketed window box giving it some weight, have lost their original window boxes. One brick chimney is on the south side of the house, and a second brick chimney is on the northeast side of the house, near the kitchen.

Cultural Data: After training at Ecole des Beaux-Arts in Paris, New Yorker Carl F. Gould had recovered from an illness and recently moved to Seattle. He was quickly able to win an associate position with Daniel Riggs Huntington.\(^{218}\) (See 2608 Tenth Ave E, Site ID #65, for a house in the district built in 1910 that was designed by Huntington and whose plans were drawn by Carl F. Gould.) Such a relationship gave both architects the freedom to take their own commissions while allowing Gould to associate himself with Huntington's well-known office.\(^{219}\)

The 1910 U.S. Census shows a William C. Phillips from Connecticut and a Cora S. Phillips from New York living in Seattle's Ward 7 in the County of King, Washington. He was 30 in 1910, and so was Cora. Cora S. Phillips was the owner of record in 1915. William C. Phillips appears again in the Death Records as having died 11-19-1942 at the age of 60. Phillips was president of the Sound Coal Co. and then of the Sound Fuel Co.

Although the house has always been called the William C. Phillips house, by 1920 Joseph A. and Maude B. Hyde had become the owners of record. They owned the house until 1935. Joseph A. Hyde was president of the Joseph Hyde Co. an electrical business. They had a daughter, Jane, who would have been born in 1915.\(^{220}\)

Accessory Structure: Garage.\(^{221}\)

\(^{216}\) Calvert, ed., no page numbers.

\(^{217}\) Swope, 72.

\(^{218}\) Booth and Wilson, 38. "Associated status, for all practical purposes a partnership, was a remarkable endorsement of Gould's ability and his prospective capacity to garner his own clients."

\(^{219}\) Booth and Wilson, 38.

Description: Historic Contributing.
A two-storey garage on the northeast side of the lot adjoins the garage to the north at 2826 Tenth Ave E (Site ID #95). The garage appears on the Volume 4 Sanborn map, Sheet 444.

Site ID #94 2823 Tenth Ave E Built: 1910
Historic Name: Mason, Leonard A. and Marion B., House
Contemporary Name: Chapman, Bruce and Sarah, House
Denny-Fuhrman Addition Block 25 Lot 13 Legal: 1959701770
Classification: Historic Contributing
Description: Building Permit No. 86905, dated 2-11-1910, authorized applicant L. A. Mason to have Builder Otto Roselief, of 1011 Lowman Building, build a one and a half-storey residence 32 feet 6 inches by 34 feet at 2823 Tenth Ave E designed by Victor W. Voorhees. The Craftsman bungalow has a side-gabled roof and inset full-width porch. A large center gabled dormer dominates the main façade and has stucco with half-timbering in the gable end. The top of the porch is stucco with echoing half-timbering. The house has exposed rafter tails and decorative Craftsman style knee braces. The sets of double-hung, six-over-one wood windows on the first storey and in the dormer are grouped in threes and have simple surrounds. Four square timber porch posts with diagonal braces rest on a solid baluster wall.
Cultural Data: The house design could be a custom design, or it could come from Victor W. Voorhees' pattern book, Western Home Builder. By 1911, the book was in its 7th edition. After 1917, Voorhees also designed auto showrooms and garages. In the mid-1920s, he designed the Lloyd Building and the Vance Hotel, both on Stewart Street in downtown Seattle. He also designed the Joseph Vance Building (1929); the Earl Hotel (1929, now the Seattle Hotel); several apartment buildings; and the house at 2817 Tenth Ave E (Site ID #92).

Leonard A. Mason, who was from Australia, and his wife Marian B. Mason, who was from England, moved into the house in 1910, the year it was built. Mason was a real estate man doing business in the Lowman Building downtown.

Accessory Structure: Garage on northwest corner of lot. Built: 1913
Description: Historic Contributing.
Building Permit No. 124676, dated 7-21-1913, authorized owner L. A. Mason to build a frame garage 14 feet by 20 feet. The clapboard garage has a gable roof. It appears on the Volume 4 Sanborn map, Sheet 444. The garage has an old swing-up door.

Site ID #95 2826 Tenth Ave E Built: 1909

Historic Name: Clark, Robert F. and Alice M., House
Contemporary Name: Hanley, Jr., John W. and Sondra F., House

Denny-Fuhrman Addition Block 26 Lot 3

Style: Craftsman
Builder: R. F. Clark

Classification: Historic Non-contributing

Description: Building Permit No. A-9154, dated 7-24-1901, gives permission to Mrs. E. Kling to put a new foundation under the house (an earlier house?) at 2826 Tenth Ave E. Building Permit No. 75436, dated 4-26-1909, authorized builder R. F. Clark to build a partition 6 feet by 10 feet over the driveway at 2826 Tenth Ave E for owner [illegible] Sands. Building Permit No. 83844, dated 11-10-1909, authorized applicant and builder Robert F. Clark to build a one-storey frame addition 8 feet by 14 feet to the residence owned by Alice M. Clark. Presumably, the two-storey house was already there. The building permit for the house itself was not found.

The house has a truncated-looking (on the north) side gable roof with an intersecting gable on the south side. The brick first storey is topped by a stucco and half-timbered second storey with a front gabled roof, again intersecting the side gable. A hip-roofed wing on the north side of the facade might have been added later. It is topped by a small balcony accessed by French doors. The hip-roofed recessed porch is on the south side of the front façade, approached by brick-pillared steps. The porch itself is supported on one side by a Craftsman-looking tapered brick pillar and has a brick arch on the south side. A shed-roofed bump-out is on the south. Most of the original windows appear to have been replaced, and it's not clear where the original windows might have been.

Cultural Data: The name Kling of the 1901 building permit for a new foundation under a house appears in a photo of a real estate tent and sign in Murray Morgan's Skid Road. The sign advertises Miller Bay Waterfront Tracts for sale by SHAM and KLING. See 912 E Shelby St (Site ID #61) for an account of a building permit for a tent platform that might have been for a real estate tent similar to the one shown in the photo.

The appearance and subsequent disappearance of this building permit dated before 1908 remains a mystery to the writer, who made a copy of the permit and then was unable to find it again, even with the help of staff at the City of Seattle Department of Planning and Development's Microfilm Library. Of some consolation for the absence of building permits before 1908 is the paucity of information to be obtained from early permits if this one is a good example. No architect or builder is named, and description of the project is less detailed than on later building permits.

Morgan, in photo well between 120-21.
In 1910, Robert F. and Alice M. Clark lived in the house at 2826 Tenth Ave E with their children, Robert F., Jr. (7) and Ruth H. (3), along with their nephew, Robert E. Miller (13), and two servants. Robert F. Clark was a traveling salesman, according the 1910 U. S. Census. By 1915, the Clarks no longer owned the house and presumably had moved away.

Accessory Structure: Detached garage.
Built: 1918

Description: Historic Contributing.
Building Permit 166177, dated 4-29-1918, authorized owner George F. Barrett to have built a one-storey frame garage, 15 feet by 18 feet, joists to be 18 inches on center, 30 feet from the nearest building, doors to open on own land. The garage is on the southeast corner of the lot and appears on the Volume 4 Sanborn map, Sheet 444. The garage is approached from the street via a driveway shared with the Phillips-Hyde garage south of it and attached to it—both on the edge of their property lines.

Site ID #96 2829 Tenth Ave E
Built: 1909

Historic Name: Riley-Kucher House
Contemporary Name: MacKay, Chad Scott and Jennifer, House
Denny-Fuhrman Addition
Block 25 Lot 14
Legal: 1959701775
Style: American Foursquare
Builder: C. L. Martin
Architect: Same
Classification: Historic Contributing
Description: Building Permit No. 76052, dated 5-10-1909, authorized C. L. Martin, of 711 East John St, who is shown as applicant, builder, owner, and designer, to build a two and a half-storey residence, 27 feet by 43 feet. C. Lewis Martin was the designer-builder-owner of the house at 2813 Broadway Ave E (Site ID #18) the year after he built this house. The hip-roofed, large-shingled Foursquare house has a centered hip-roofed dormer containing three single-pane windows. The second storey contains two wide, widely spaced double-hung windows with cut-glass over one pane each. Two stained glass windows in the center of the second storey have been covered over, both outside and in, but are intact. Another stained-glass window, still exposed, is on the north side of the house. The full-width, hip-roofed front porch has steps at its north end. The entry door is flanked by beveled-glass sidelights, and the wide first-floor windows are the original cut-glass over one.
Cultural Data: Renevids Riley (also known as F. C. Riley or Fenwick Rilor), of Coast Timber & Cruising Co., is the first owner-resident of the house at 2829 Tenth Ave E. According to the 1910 census, he was 34 years old and had come from Wisconsin, his parents from English Canada. His wife, Margaret Riley (or Margaret Rilor), was 32 years old and had also come from Wisconsin. Her parents had come from

226 Present owners Jennifer and Chad MacKay in conversation 3-5-2009.
Connecticut (father) and Massachusetts (mother). The Rileys moved into the house with their children and two servants. They had four children: Marjorie (8), Elizabeth (5), Fenwick M. (3), and Catharine (1).

By 1915 the Rileys no longer owned the house, and the family of Charles Kucher owned the house and had moved in. Charles Kucher was 51, from Pennsylvania, and his wife, Elva was 47 and had come from Pennsylvania, too. They moved into the house with their four children (and no servants): Ronald E. (18), John W. (16), Elva (6), and Charlotte (12). By 1930, Ronald E., the eldest (33), had left home, as had John W. (31), and only Charlotte (27) and Elva (21) remained. The family had a servant by then. Kucher was president-treasurer-manager of the Olympic Foundry. The family remained in the house until at least 1931.

Accessory Structure: Detached garage
Description: Historic Contributing.
Building Permit No. 162600, dated 12-29-1917, authorized owner, resident C. W. Kucher to have built a garage 20 feet by 22 feet, the floor 2 feet above ground, and the structure 20 feet from the nearest residence. The hip-roofed, one-car garage is not shown on the Volume 4 Sanford map. The entrance on the alley of this large-shingled garage has been fenced off by newly constructed double doors.

Site ID #97
2832 Tenth Ave E
Built: 1909

Historic Name: Higgins, John C. and Lorene S., House
Contemporary Name: Pickel, Charles Weber and Bossier, Shirley A., House
Denny-Fuhrman Addition
Block 26 Lot 2
Legal: 1959701795
Style: Craftsman
Builder:
Architect:
Classification: Historic Contributing
Description: A two-storey, front-gabled Craftsman house. The first storey is clapboard, and the second storey is stucco with half-timbering. Gables intersect the front gable on the north and the south sides. The front porch is recessed on the right side of the facade. The original windows are intact.
Cultural Data: John C. Higgins, an attorney, was the first resident of the house at 2832 Tenth Ave E. He and his wife, Lorene (or Loraine) S. Higgins, and later their son, Jack S. Higgins (b. 1915), who was 5 in 1920, lived in the house from 1910 until 1930, when it was sold to F. M. Roberts. In the 1910 Polk directory, John C. Higgins is shown as a partner in Higgins, Hall & Halverstadt and home at 2832 Tenth Ave E. In 1916, he is shown still living at 2832 Tenth Ave E and as a partner in Higgins & Hughes as well as secretary of Frye & Co.
By 1930, the Higginses had moved to Manhattan, and John C. Higgins, now of the New York law firm Sullivan & Cromwell and a friend of Carl F. Gould, tried to help Gould find more commissions

227 King County Assessor Real Property [online] Report.
during the Great Depression, in particular to help Gould get the commission for the U. S. Marine Hospital on Beacon Hill. He wrote a letter on Gould’s behalf in November 1930 and another in December 1930. In 1930 Gould designed a family monument for Higgins that was placed in Washelli Cemetery.228 Higgins’ two letters to Assistant Secretary of the Treasury Ferry K. Heath must have done some good, for Gould got the commission, with John Graham, Sr., in an associate relationship, and went on to design his spectacular U. S. Marine Hospital, a completely successful departure from even his modern expression of classical forms.229

Accessory Structure: Garage on northeast corner of lot. **Built**: 1913:

Description: Historic Contributing.

Building Permit No. 121632, dated 4-1-1913, authorized applicant H. D. Smith of 2832 Tenth Ave E to have builder Nudd & Taylor of Interbay build a garage 12 feet by 18 feet on behalf of owner John C. Higgins. The two-car cement garage is shown on the northeast side of the lot on the Volume 4 Sanborn map, Sheet 444.

Site ID #98

2833 Tenth Ave E
Built: 1909

Historic Name: Peterson, Neil S., House
Contemporary Name: Kohl, Jerome and Crickmer, Anna M., House

Denny-Fuhrman Addition: Block 25 Lot 15
Legal: 1959701780

Style: American Foursquare
Builder: P. E. Wentworth
Architect: Booth and Wilson, 148-49, 154, 190. 212n2.

Classification: Historic Contributing

Description: Building Permit No. 66383, dated 12-17-1908, authorized P. E. Wentworth to build a two-storey frame residence. The substantial American Foursquare two-storey house has a hipped roof with wide eaves and long modillions that supports a centered hip-roofed dormer, also with modillions. The second floor and dormer are stucco. The first storey is clapboard. The dormer and second floor windows have diamond pattern lights over one pane, and the first floor’s wider windows have diamond panes over one pane. The centered front door has sidelights. Six square pillars support the front porch, which wraps around the house. The front porch rail is clad in the house’s siding. A balcony rail on the porch roof wraps around the house, echoing the porch below. Stone pillars flank the front steps, and a stone block wall runs along the sidewalk.

Cultural Data: Builder P. E. Wentworth also built the houses at 918 E Hamlin St, 2808 Tenth Ave E, 2809 Tenth Ave E, and 2837 Tenth Ave E. He lived briefly in the neighborhood in the houses he built at 2837 Tenth Ave E and 918 E Hamlin St.

228 Booth and Wilson, 148-49, 154, 190. 212n2.
229 Booth and Wilson, 149.
The first owner of the house was Neil S. Peterson (b. 1852), a Dane who followed his brother, Jens C. Peterson, to the United States in 1878. He and his brother started up an investment business, which they dissolved after the Seattle fire of 1889. Peterson then began the study of law and was the clerk in charge of probate business in the office of the clerk of the superior court while a student. Probate became his specialty.

Peterson married in 1890 and was left with two children when his wife died in 1896. With his brother Jens and his children, John (then 23) and Eva Marian (then 21), both students, he moved into the house on Tenth Ave E in 1912 and lived there through 1941. He was but one of the neighborhood's distinguished jurists, valued especially for his probity and his thoroughness.230

Accessory Structure: Garage on southwest corner of lot. Built: ca. 1908
Description: Historic Contributing.
The gable-roofed, frame, clapboard one car garage appears on the Volume 4 Sanborn map, Sheet 444. An old swing-up door is intact.

Site ID #99 2836 Tenth Ave E Built: 1909
Historic Name: Patten, William T. and Innengard, House
Contemporary Name: Weber, Kent B. and Carolyn A., House
Denny-Fuhrman Addition: Block 26 Lot 1
Style: Colonial Revival
Builder: Gustav Olson
Classification: Historic Contributing
Description: Building Permit No. 73628, dated 3-27-1909, authorized owner Gustav Olson to build a two-storey frame residence 28 feet by 42 feet at 2836 Tenth Ave E. Gustav Olson also owned the property and would go on to design and build the house at 920 E Shelby St in 1910 (Site ID #62) and the house at 926 E Shelby in 1912. He built an addition for the garage at 2715 Tenth Ave E (Site ID #77) in 1913, a garage at 2813 Tenth Ave E (Site ID #90) in 1913, and the house at 2716 Broadway Ave E (Site ID #8) designed by W. E. Dwyer (Site ID #10) in 1912.

The two-storey, deeper than wide, hip-roofed house is clapboard on the first storey and stucco with no half-timbering on the second and has non-original vertical siding in the top gabled dormer. The double window at the top of the dormer and a row of four windows between the base of the dormer and the house roof are not original. Cut-glass-over-one wide, original double-hung windows flank a small, traditional decorative window in the second storey. A half-circle shed roof protects a curved bay in the north side of the first storey facade, and it is nicely balanced by the circular steps that lead to the front porch on the south side of the front facade. The front porch and the bay are clapboard-clad. The quintuple window in

the bay is made up of narrow, one-over-one double-hung sections. The hip-roofed porch is supported by square pillars. Along the north side of the house, as it goes down the steep hill, the cement, stucco-clad foundation becomes increasingly visible.

Cultural Data: William T. Patten (wife Irmengard), who owned and lived in the house at 2836 Tenth Ave E in 1910, right after it had been built, was in 1912 a captain in the U. S. Army and a teacher at the University of Washington. Later he was also president-treasurer of Distributors of Hupmobile Pleasure Cars. He and his wife raised their two children in this house: William T., Jr. (7 in 1910) and Irmangere (Irmengard?) A. (2 in 1910).

Accessory Structure: Garage on east side of lot. **Built:** 1909

Description: Historic Contributing.

Building Permit No. 83622, dated 11-4-1909, authorized applicant, builder Gustav Olson to build a one-storey frame private garage 12 feet by 16 feet for “one machine only.” According to the building permit, the garage was to have a cement floor and footing. The garage, which is shown on the Volume 4 Sanborn map, Sheet 444, has been converted to a shed.

Site ID #100: 2837 Tenth Ave E **Built:** 1908

Historic Name: Sutherland, Augustus A. and Rosalind, House

Contemporary Name: Morrill, Richard L., House

Denny-Fuhrman Addition

Block: 25 **Lot:** 16 **Legal:** 1959701785

Style: American Foursquare **Builder:** P. E. Wentworth **Architect:**

Classification: Historic Contributing

Description: Building Permit No. 66624, dated 9-22-1908, authorized P. E. Wentworth to build a two and a half-storey frame residence 28 feet by 43 feet at 2837 Tenth Ave E. A one-storey sunroom wing is on the north side of this otherwise symmetrical clapboard house. Both the house and the sunroom wing have shallow, hipped roofs. A slightly protruding band between the first and the second storeys appears to support the one-over-one windows of the second storey. On the north side of the house, a door leads to a balcony atop the sunroom wing. A small, hip-roofed canopy is over the front door on the south side of the east-facing facade. A wide one-over-one window is to the side of the door, on the north side of the east-facing facade. The garage with its original multiple-paned windowed doors is underneath the sunroom wing.

Cultural Data: P. E. Wentworth lived briefly with his family in this house and owned other properties in the district as well. He also built and lived briefly with his family at 918 E Hamlin St (Site ID #32). He was also the owner-builder for the houses at 2808 Tenth Ave E (Site ID #87) in 1909; 2809 Tenth Ave E (Site ID #88) in 1910; and 2833 Tenth Ave E (Site ID #98) in 1909.
The first owner-resident of the house, Augustus A. Sutherland was treasurer and sales manager of Superior Portland Cement Co. With his brother, F. V. Sutherland, he was a partner in Sutherland Bros. Inc. Augustus and his wife, Rosalind (variously spelled), owned and lived in the house from 1910 to 1920.

Accessory Structure: None

About the Inventory of Harvard–Roanoke Historic District Properties

Build Dates
Build dates in the preceding inventory are based on the following sources.

- Archived Property Record Cards, 1920s–1972 at the Puget Sound Regional Archives, in Bellevue Washington, on the Bellevue Community College campus.

- Archived King County Real Property Assessment and Tax Rolls from 1891 through 1941, also at the Puget Sound Regional Archives. The Puget Sound Regional Archives contain King County Real Property Assessment and Tax Rolls for the years 1891, 1892, 1895, 1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935, and 1941. The changes in owner and taxpayer names at mostly five-year intervals speak volumes about the wheeling and dealing in land and then houses that went on in Seattle’s Roanoke Park Historic District through the years. They also permit a dating of the houses that enables one at least to be able to say that sometime between one year and another five years later, some improvement, probably a house, had been made. These large old volumes are a good source of ownership sequence information as well.

- The King County Assessor Real Property Report website, the City of Seattle’s Parcel Data, and the City of Seattle’s Side Sewer Cards with entries dating from 1909 through 2000 are excellent online sources of property descriptions, recent sales histories, current owners, and in the case of the Side Sewer Cards, some earlier owners. Build dates echo the information on the archived Property Record Cards.

- The City of Seattle Department of Planning and Development (DPD) Microfilm Library contains rolls of filmed building permits from 1908 through 1938. They are probably the best source of build dates. These records also contain the names of builders and architects.231

231 Property Record Card headers provide “Architect” and “Builder” lines but they are almost uniformly and frustratingly blank.
Building Permits and Architects
An interesting pattern to be observed in building permits issued between 1908 and 1938 is the use of the word “Same” to fill in the “Architect” line when a builder-applicant has functioned as the designer for a house or an accessory structure. Formally trained architects appear by name on the “Architect” line. Whether this is a convention adopted by modest designer-builders reluctant to advertise themselves as the architects they might not be certified to call themselves or whether this was a silent convention imposed by the Superintendent of Buildings on over-reaching designer-builders is not clear. In the Inventory headers in Section 7, the “Architect” slot is filled in as on the building permit—with the architect’s or the firm’s name or with the word “Same.”

The Naming of Houses
The historic name for each house is based on consideration of a number of criteria with an emphasis on the original significant resident. The original owner is often the builder, who might have had little or no connection with the house thereafter. Or the original owner might have had the house built on spec, as John F. Erickson, who lived in his family residence outside the district at 2448 Harvard Ave E until he took up residence at 815 E Edgar St, had the house at 2601 Broadway Ave E built but never lived in it. In such cases, when the original owner has no particular association with the house, the name choice favors the early significant resident.
Narrative Statement of Significance

The Roanoke Park Historic District is eligible for listing on the National Register under Criterion "A" for its direct association with events that made a significant contribution to the broad patterns of local and national history. The district is also significant under Criterion "C" for its collection of early 20th century residential architecture designed by many notable Seattle architects. The period of significance for the Roanoke Park Historic District begins in 1899, the earliest construction date, and ends in 1939, the date the neighborhood was built out.

Many residents in the district were directly involved in the local and sometimes national historic context, some as much creating the history as expressing or representing it. The politicians, jurists, medical people, and earliest historians of Seattle who lived in the district were powerful actors, and many local themes of the day were played out with varying degrees of self-consciousness by other residents. The work and careers of the district's residents epitomize patterns and preoccupations in the settlement of the American west coast maritime cities.

The events of that pre-war period of political, economic, and cultural activity coincide with the period of the district's architectural significance, in which many of its architects trained on the east coast of the United States, the Midwest, England, and Europe designed the district's residences at the same time that they were designing the city of Seattle's significant buildings during and even after the only partial realization of the City Beautiful movement's ideals in the cities of the United States. The rise of world fairs and expositions and the realization of City Beautiful ideals in the layouts and buildings of these "cities within cities" is directly involved as well on the Roanoke Park plateau, whose major period of development was occasioned in large part by its overlooking the Alaska-Yukon-Pacific Exposition grounds. And the settlement of residential suburbs—in Seattle's case, "streetcar suburbs" ever farther outside the city center—is a pattern of development to be seen in the environment of most cities in the United States and in Seattle, particularly in the Roanoke Park Historic District.

Criterion A: Events That Have Made a Significant Contribution to the Broad Patterns of Our History

Some background is in order. A pattern of discrimination all too common in the settlement of the west was sadly in play during the early settlement of Seattle. And an ingenious employment of the Homestead Act's generous provision of acreage to those willing to improve it was in large part responsible for the development of the great cities and ports of the maritime Pacific Northwest.

Lawrence Kreisman and Glenn Mason, *The Arts and Crafts Movement in the Pacific Northwest* (Portland, Ore.: Timber Press, 2007), 47, use this apt term to describe the essence of the world fairs and expositions from an architectural and planning standpoint.
People of the Large Lake

In the 1880s, Lake John of the Duwamish Tribe, also known as Cheshiahud, Cheslahud, Chudups John, and Lake Union John, had a cabin and a potato patch as late as 1900 at the foot of Shelby Street, at either West Montlake Park or in the Roanoke neighborhood, on land given him by David T. Denny. The Denny gifting makes the site more likely the Roanoke location, whereas Montlake is associated with Harvey Pike. Circa 1904, Orion O. Denny (“Double O,” son of Arthur A. and Mary Ann Boren Denny) took a photo of Old Tom (actually Old John) and his wife, Madeline, at their house on Portage Bay.

The Native people around Lake Washington were known as the People of the Large Lake. They and the People of the Inside (around Elliott Bay) had lived in their “usual and accustomed places,” as the treaties put it, for 4000 years—some speculate at least 10,000 years. It was good real estate, and they were among the earliest tribes of the west coast to be dispossessed by treaties. The terms of their treaties still haven’t been met by the U.S. Government. The dispossessed Duwamish (and all Native people) had been prohibited from living in Seattle since the mid-1860s. Lake John and Madeline and Chief Sealth’s daughter, Princess Angeline, were notable exceptions to the ban.

Prejudicial activity against both native and immigrant minorities would persist in Seattle, although some residents of the Roanoke Park Historic District, such as Samuel L. Crawford, friend and memorializer of Chief Sealth, who as a journalist tried to quell the anti-Chinese riots; Daniel Waldo Bass, friend and benefactor of the Nakashima family; and Mayor Hugh Caldwell, who resisted his city council’s attempts to put the Japanese out of business, would play their part in trying to achieve more equitable treatment of “the different.”

Homesteading

Arthur and David Denny & Co. should have been exhausted by the time they reached the end of the Oregon Trail, content each to pick out his 320 or 160 acres and put together a bucolic life for himself and his family in the new territory. They’d homesteaded already, in treks from Kentucky and Pennsylvania to Illinois and Indiana. They knew how to make farms—build houses and barns, fence, grow and preserve food, raise animals. And the territory was rich in game, fish, shellfish, and edible vegetation. The settlers could have lived on what was available, and at first they would. They hunted, fished, and harvested clams.

2 Eugene Smith, Montlake: An Urban Eden, A History of the Montlake Community of Seattle (La Grande, Ore.: Oak Street Press, 2004). Much of the early part of this excellent history is taken up with the efforts of Harvey Pike to develop Montlake and even hand-dig a cut between Lake Union and Lake Washington.

and mussels. They learned to raise potatoes from the Natives, and they traded for wild fowl with the Natives. They picked berries, cooked nettles, and famously (and perhaps apocryphally) nursed little Rolland Denny on clam juice. The diet was adequate if monotonous and even if they did run short of flour and sugar, tea and coffee.

But they wanted flour and sugar and tea and coffee and the other luxuries they could import, not just for themselves but to make money selling the goods to their fellow citizens and the rest of the country. And they viewed the land they were granted for homesteading not just for farming but for extracting resources to trade. Ultimately, land was for developing and profiting thereby. So they didn’t linger at the end of the trail. With larger intentions, they pushed off to Alki Point on the Exact.

They had come west deliberately to create a seaport for trade and a great city. They wanted to be capitalists and statesmen, to make their fortunes and find scope for distinguished careers. They wanted commerce and good government. They also wanted curbed sidewalks and fine architecture, a university, a library, the opera, clubs, good newspapers, and a railroad, a fine harbor, good roads. It wouldn’t be too long before they or their children would learn to want automobiles, bicycles, tennis and golf. Even as they were building their necessary rudimentary cabins on the claims they were “homesteading,” they were cutting and hauling lumber to the Exact for export to San Francisco on its return trip, and trading claims.

In the 1850s, when they had first arrived in the northern part of the Oregon Territory, the pioneers had found an almost impenetrable forest between what are now called Lake Union and Lake Washington. Anybody who wanted to parley with the People of the Large Lake who camped on the shores of what is now Lake Washington, who seemed to them sometimes friendly, sometimes unfriendly, and always unpredictable, had to brave the deep woods. The forest was so dense that if someone were gone even a little bit too long, search parties went out. The adventurer might be stalked by the Natives, by nine-feet cougars up in the trees, or by wild pigs. The forest floor was criss-crossed not only by deer runs but also by black-and-brown-bear trails. At least there were no deadly reptiles.

The dense forest had been dangerous, and treeless San Francisco had needed lumber. In fewer than 50 years, as the city’s center expanded for commercial and civic enterprise, they had cleared downtown, then First Hill, and then the part of Capitol Hill closest to downtown. Then the timber barons, their children, and an intermittent flow of newcomers moved on to the outlying “additions,” clear-cutting as always and starting new residential suburbs for themselves and other prosperous Seattle buyers.

4 Arthur A. Denny had already served in the Illinois legislature with Abraham Lincoln.

5 This composite description is made up of reminiscences from Emily Inez Denny’s Blazing the Way (Seattle: Rainier Printing, 1909); Roberta Frye Watt’s Four Wagons West (Porland, Ore.: Binfords & Mort, 1931), and Sophie Frye Bass’s When Seattle Was a Village (Seattle: Lowman & Hanford, 1947).

6 Casey Rosenberg, in Streetcar Suburb: Architectural Roots of a Seattle Neighborhood (Seattle: Fantlight Press, 1989), with illustrations by W. G. Hook and many photographs of residences, describes the phenomenon as it took place earlier on upper Capitol Hill, on Moore’s Addition, south of the Roanoke Park District and closer to downtown.
Denny-Fuhrman (and Denny-Fuhrman Supplemental) was one such addition, developed by timber barons who first sold the lumber and then became real estate developers.

Fashioning History
During its period of significance, the Roanoke Park neighborhood sheltered a cluster of second and third generation Seattle Dennys plus the first-generation matriarch of that pioneer family, who was the last surviving member of the landing party at Alki Point. Louisa Boren Denny (Site ID #27) spent her last years in the Roanoke Park Historic District, living with her eldest child, Emily Inez Denny, who wrote *Blazing the Way*, and the family of her youngest son, Victor W. S. Denny. Louisa was within walking distance of both Roanoke Park and the five-acre park carved out of Interlaken Park and dedicated to her in 1914 while she was still alive and could enjoy the honor.

Had she lived ten years longer, Louisa Boren Denny might have dropped in on her great niece, the grandchild of her sister Mary Ann Boren Denny and Arthur A. Denny, Sophie Frye Bass (Site ID #52), who would publish *When Seattle Was a Village* (in 1937, a year after her husband, Daniel Waldo Bass's, death) and *Pigtail Days in Old Seattle* (ten years later, in the year of her own death). Sophie would be joined in her widowhood at the Gates-Bass Mansion by her widowed sister Roberta Frye Watt, who had already written *Four Wagons West: The Story of Seattle* and whose son Robert Denny Watt would write a history of Robert Moran’s Lakeside School. Louisa’s father-in-law, John Denny, had written his history of the great trek west to Oregon, and her brother-in-law, Arthur A. Denny, had written his account of the settlement of Seattle, *Pioneer Days on Puget Sound*.

The writers in the Denny family set up the city of Seattle’s governing myths. Even a scholarly historian such as Edmund Meany acknowledged Emily Inez Denny’s *Blazing the Way* as an important contribution to his own histories. Revisionist histories have come out in recent years to shake the attachment of residents to the perspective on the creation of this important city and seaport that the Dennys advanced, but few are inclined to be as cynical as William Speidel, who assigns self-interested and dishonorable motives to practically every player in the city from its earliest days. The Denny themes of pluck, fortitude, ingenuity, versatility, pragmatism, and civic virtue prevail.7

Jurisprudence
Almost every local case of significance, many of them with national import as well, went through the U. S. District Court, Western Division, of Roanoke Park Historic District resident the Hon. Jeremiah Speidel’s *Sons of the Profits: There’s No Business Like Grow Business, the Seattle Story, 1851–1901* (Seattle: Nettle Creek Publishing, 1967) doesn’t have a good word to say about anybody save David T. Denny, that unlucky and generous founder of Seattle who owned and platted the Roanoke Park Historic District.
Neterer (Site ID #5), and attorneys from the neighborhood were involved in arguing most of them. In 1916, Neterer enjoined the International Longshoreman’s Union from picketing. Although not a union sympathizer, Neterer would later rule that unions could not be enjoined from picketing because they were not corporations. The bascule bridge controversy involving four of the city’s draw bridges led to a decision in Neterer’s court on what constituted a basis for suing a city for damages. (He was upheld when the case was appealed.) Neterer ruled on the admissibility of evidence gained through wiretapping in a case that involved an early use of that tactic for the prosecution of Seattle’s favorite bootlegger, Roy Olmstead, during Prohibition. (Neterer was upheld by the U.S. Supreme Court in an appeal.) Much of the decades-long City Light vs. Stone & Webster struggle over public vs. private ownership with respect to first streetcars and then electric power was argued in Neterer’s court with attorneys for both the plaintiff and the defense resident in the Roanoke Park Historic District. Reponses to the General Strike, the first in the country, and the adjudication of attempts to repress union activity in the midst of the Red Scare and after the lynching in Centralia of an IWW (Wobbly) union member came into Neterer’s Court as well. And Neterer rebuked his neighbor, U.S. Attorney Robert C. Saunders, for blaming civic unrest on the unions. It’s interesting to imagine how the attorneys across the alley, next door, and down the street might comport themselves in such close proximity to the judge whose court would hear most of their cases. The note struck was probably the bonhomie so evident in resident Samuel L. Crawford’s fellow journalist and real estate partner, C.T. Conover, in Mirrors of Seattle.8

8 C.T. Conover, Mirrors of Seattle: Reflecting Some Aged Men of Fifty (Seattle, Lowman & Hanford, 1923). The writer’s copy of this collection of essays on local notables contains a hand-written inscription from Conover to his son: “To Tallmadge, with affection and every good wish. I would have you a composite of all the people who make up this book, with all their varied talents and merits and graces. Emulate the virtues and, as I have done in writing, avoid their faults. Father, Christmas 1923.”
Politics

The resident mayors both provoked and had a stake in Neterer’s decisions. Ole Hanson (Site ID #2) and Hugh Caldwell (Site ID #79) both served the city as mayor in the late teens and early twenties and had their profound effects on the issues of the day.

Ole Hanson’s biography is a classic case of the perpetual reinvention of self that the west seemed to invite. He was a real estate man; a heroic mayor during the Spanish Influenza epidemic; a bit of a fool who ended up facing a Grand Jury inquiry when it came to the City’s “municipalizing” the streetcars at three times their worth and giving Stone & Webster a $15 million debt-holder’s advantage in the electric power wars; and an opportunist who seized the moment of the General Strike to reach for national prominence, abandoning his mayorship midterm for a national lecture tour and personal opportunities in Washington, D.C., and then in California.

Neighbor Hugh M. Caldwell seemed to have a true calling for good government. He revived the Denny’s old Municipal League for its usefulness in monitoring government for corruption during the wide-open days and nights of Mayor Hiram Gill’s first term. He served as the City’s Corporation Counsel in the dispute between the power-municipalizing J. D. Ross and the power-privatizing Stone & Webster, and he personally intervened to persuade the country’s Secretary of Agriculture to enable Ross to open bidding and move ahead with his plans to build the Diablo and Ruby dams to generate power for the public.

Caldwell dropped out to serve in World War I. He came back to successfully oppose incumbent C. B. Fitzgerald, who had been appointed to fill out Ole Hanson’s incomplete term, in the race for mayor. To investigate fraud in the negotiations for the streetcar lines, Caldwell appointed the firm of Roanoke Park Historic District resident attorney Wilmon Tucker (Site ID #25) to look into it. Caldwell’s administration was marked by ethical behavior and a strength of character that persuaded his City Council not to try to overturn his veto of their transparent attempt to please constituents by legislating the Japanese out of the hog business in which they had been prospering. Caldwell’s veto stood.

The Advancement of Women

Bernice Stern, who grew up in the neighborhood (Site ID #36) and lived here in the early part of her marriage (Site ID #29), was the first woman to hold most of the offices in which she served and set a high standard for other women to emulate. Alice Franklin Bryant (Site ID #18), politically to the left of Stern, was active in Democratic politics and in the Peace and Freedom League. She ran for both the U. S. House of Representatives and the U. S. Senate. Resident state Sen. Pat Thibaudau (Site ID #56 and Site ID #37), mental health advocate Eleanor Owen (Site ID #59), and Alice Bryant’s daughter Imogene Williams come out of a tradition of active neighborhood women. Many other women in the neighborhood were important “clubwomen,” organizing for civic, medical, and cultural causes. Ora Brown Richardson (Site ID #91), for example, was a prominent member of the Social Welfare Forum of the National Conference of Charities and Corrections.
Many of the wives among the early residents have “None” on the census lines asking for occupation, but many of the daughters did go to work outside the home, the daughters of the lawyers and other jurists tending to become public and private school teachers and the daughters of people in trade to become stenographers in their fathers’ businesses and other businesses of the day such as lumber companies and auto dealerships. Even some of the wives worked as stenographers.

Addie Conly was secretary—an officer, not a stenographer—and then vice-president of C. C. Belknap Glass Manufacturing Co. Eva Sheppard (Site ID #41), a single parent as we would say today, ran one of the new employment agencies devoted to finding jobs for women. Several other women worked as salesladies in the new department stores. Alice Taylor (Site ID #45) was on the masthead as associate editor of her husband, Joseph T. Taylor’s, magazine on Freemasonry. And of course, Emily Inez Denny and the Denny-Frye sisters Sophie Bass and Roberta Watt were distinguished historians of the day. As an archivist, Sophie Frye amassed an impressive private collection of books, papers, pamphlets, and maps that earned her the Museum of History and Industry’s (MOHAI’s) library name. Jean Ross, who lived in the district from the age of 5 (1926) to the age of 87 (2008), was the first female engineer to work for Boeing.

Resident Clara M. Siegley (Site ID #76) did “club work, booking concerts.” This was likely work connected with the Music Club started up by several quite accomplished local women musicians and devoted to bringing in high caliber performers for concerts. Some of those women, attorney Israel Nelson’s wife, Esther M. Nelson (Site ID #6), for one, were paid to sing and play the piano in churches. And Seattle did get its opera house, built by real estate entrepreneur and mother of residents Sophie, Roberta, and Elizabeth Frye, Louisa C. Denny Frye (eldest child of Arthur A. Denny and Mary Ann Boren Denny), whose company acquired several properties in the district and on neighboring Eleventh Avenue East.

Medicine

At least three important medical institutions were founded by residents of the Roanoke Park Historic District: Seattle’s first hospital, the Seattle General Hospital, in 1894 through the combined efforts of Byron Phelps, E. C. Kilbourne, and resident Samuel Leroy Crawford (Site ID #59); Swedish Hospital in 1909 by resident Dr. Nils Johanson (Site ID #14) with funds raised at least partly from his neighbors in the district; and the Polyclinic founded by resident C. K. Hillman’s son Van Hillman (Site ID #1).

The sheer number of physicians—the Sons of Doc Maynard—in addition to the hospital founders who lived in the district in its period of significance is as impressive as the resident legal talent: Dr. E. L. Milligan, Dr. Lorenzo L. Stephens, Dr. William G. Booth and Dr. John T. Booth, Dr. George A. Dowling and Dr. James T. Dowling, Dr. Horace G. Lazelle, Dr. Waldo Richardson, Dr. Smith S. Johnson, Dr. Carl M. Helwig, Dr. Irvin A. Weichbrodt, Dr. D. Henry McChesney. Resident Max Clericus was a pharmacist.

Journalism, Publishing, Broadcasting, Advertising

Mention of Samuel Crawford reminds one, too, of the presence of people involved in journalism in a time when typesetting, running the presses, and managing the business as well as advertising and
circulation were handled by the same people who managed and wrote the reporting and editorial. Samuel Crawford (Site ID #59) did it all, eventually founding the *Intelligencer* with Thomas Prosch and staying on as news editor when the *Post* and the *Intelligencer* merged. He was a real estate man as well, in a partnership with *Post-Intelligencer* columnist C. T. Conover. Ed Guthman (Site ID #22) was a Pulitzer Prize-winning investigative reporter for the *Seattle Times* and a professor of journalism. David Hunter (Site ID #15 and Site ID #56) was a pressman for the *Times* and a real estate developer, as well; William T. Prosser (Site ID #61) in addition to his newspaper work as city editor for the *Post-Intelligencer*, ran an early advertising agency. Lilly (Site ID #45) & Lundquist men’s clothiers also sponsored and ran an hour-long radio show and did other advertising business on the side. After holding the chair in higher mathematics and starting the astronomy department, personally selecting the telescope and building its observatory platform himself, at the University of Washington, Professor Joseph M. Taylor (Site ID #45) started up a successful national magazine devoted to Freemasonry. The William L. Cooper family (Site ID #19) ran Seattle Typesetting Co. The Carrel A. Brose family and their boarders the Harry H. Wiseman family, who succeeded the Coopers in their house, were manager, assistant manager, and superintendent in the city directory they published, providing much of the information about residency and occupation that informs this nomination.

New Ventures

In addition to advertising and radio, many of the residents were caught up in other new businesses, especially in running automobile dealerships and even an early auto rental agency. Frank Helt (Site ID #8), in addition to running Pittsburg Luncheon, was vice-president of Vernon A. Smith Motor Car Co., Inc. William T. Patten (Site ID #99), also an army officer and a teacher at the University of Washington, was president-treasurer of Distributors of Hupmobile Pleasure Cars. Resident Harry W. Kent (Site ID #15) more or less invented the truck by modifying a Model T Ford⁹ and went on to build one of the country’s biggest trucking firms. Bernard Hoehn (Site ID #46) was a tire salesman. Fred H. Bardshar (Site ID #88) was the Western Washington distributor of Stevens, Duryea, Cole, and Maxwell Motor Cars.

John R. Blum (Site ID #10) from Alaska was an early developer of commercial aviation. Jean Ross worked for Boeing Co.

Alexander D. Walker (Site ID #13) owned Benton County Irrigation Co., and his son was also in this business so crucial to the development of agriculture in Eastern Washington.

C. M. Twelves (Site ID #56) was a telephone engineer, for an invention that called for the development of new case law surrounding privacy issues, as in the Olmstead wiretapping case heard in Jeremiah Neterer’s court.

Joseph A. Hyde (Site ID #93) was president of an electrical business.

John Q. Clemmer (Site ID #35) made the transition in theater ownership and management from Vaudeville to the movies.

Business, Insurance, Investment, and Banking

Charles L. Betterton (Site ID #1) is variously listed in the Polk directories as a fire insurance agent and an investor. Jerome R. Storm (Site ID #3) ran an independent insurance company after working for Travelers Insurance earlier in his career. In addition to running three logging companies and a dairy, plus overseeing his interests in property in the neighborhood, Aaron Frederick Anderson (Site ID #55) was a director of the National City Bank of Seattle and the founder and president of Puget Sound Savings and Loan. William H. Parsons (Site ID #39), after founding the first bank in Alaska during the Gold Rush came back to be an officer in many of the banks founded by Dexter Horton. John F. Erickson (site destroyed) pronounced himself a “capitalist” in the U. S. Census. A. D. Walker (Site ID #13) of the Benton County Irrigation Co. was also a manager of the Massachusetts Mutual Life Insurance Co. His son in addition to serving as treasurer of their irrigation company was an assistant cashier at the National Bank of Commerce. Francis B. Finley (Site ID #85) was a bank appraiser. Theodore Jenner was the vice-president of a mortgage loan company. Laurence Booth (Site ID #51) was treasurer of the Washington Title Insurance Co. Harold S. Gaunce (Site ID #21) was a “creditman” for machinery and then haberdashery. James G. Elliott (Site ID #32) was a real estate investor. James P. Gleason (Site ID #44) was president of the American Savings Bank and Trust Co. and eventually bank chairman of the board. John C. Slater (Site ID #62) was a stocks and bonds broker. Murray Jacobs was a stock broker. In his later years, Frederick C. Bloxom (Site ID #70) was a partner in Smith & Bloxom Investment Co. Louis A. Parshall (Site ID #74) was manager of the Union Trust Co. Frank B. Rhodes (Site ID #75), of Herrin & Rhodes, dealt in “Real Estate, Stocks and Bonds, and Insurance.” E. E. Siegley (Site ID #76) was a real estate salesman. W. E. Cavanaugh (Site ID #81) was a bookkeeper. Leonard A. Mason (Site ID #94) was a real estate man doing business in the Lowman Building.

Maritime Businesses

Thomas J. King (Site ID #36) went from cod fishing to a partnership in King & Winge, “Machinists, Shipwrights, Boat Builders, Caulkers, & Sparmakers” “Marine Ways, Barges, and Scows for rent” and “All Kinds of Winches for Halibut Boats.” W. H. Horner (Site ID #71) was a salmon cannery inspector and then superintendent. J. L. Bridge (Site ID #83) was secretary of Pacific Towboat Co. Oscar Johnson built several houses in the neighborhood but was also a ship’s chandler. Fred Sohl (Site ID #22) was a ships block builder and also made steering wheels and repaired blocks.

Groceries and Restaurants

Ora and Frank Helt (Site ID #8) ran the Pittsburg Luncheon. Julius W. Augustine (Site ID #10) was a wholesale and retail grocer (Site ID #10). Otto Guthman (Site ID #22), father of Ed, was a sales manager.
for the National Grocery Company. H. L. Klock (Site ID #23) was a butter and eggs broker. Abe Friedman (Site ID #36), father of Bernice Stern, was a wholesale butcher. Harry Stokes (Site ID #42) was a candy and ice cream manufacturer, ran luncheon restaurants, and had a tea room designed by Kirtland Cutter in the Empire Building. Clay D. Kahle (Site ID #43) was an officer in the family business, Crescent Manufacturing Co. of baking powder and spices fame. Ned Schaefer and his sister Anne (Site ID #48) were orchardists. Frederick Clinton Bloxom (Site ID #70) was early in his career a partner in a wholesale fruit and produce company. George K. Spencer (Site ID #87) was a department manager at PCC Milk Co. and then treasurer of Carnation Milk Co. Aaron F. Anderson (Site ID #55) owned a dairy. Daniel Waldo Bass owned a dairy on land in Snohomish County after he had logged the land. T. F. and John Quirk imported teas and coffees. That early monotonous diet seemed to elicit a great interest in importing, producing, and consuming a variety of good foods.

Exporting: Mining, Lumbering, Agriculture

Gold and silver assaying Victor W. S. Denny (Site ID #27) was working with his father, David T. Denny, developing mines in eastern Washington when David died in 1903. J. A. Soderberg (Site ID #12) was a quarrier who contributed the granite curbs for Seattle’s downtown sidewalks. Charles Gifford (Site ID #66) was a grain exporter whose business was made possible by the irrigating Alexanders and the James Hill railroad along with the development of the Port of Seattle. Hayes (Site ID #11) and Markham were Lumber Buyers. Rufus G. King (Site ID #15) was president of the Pioneer Logging Co. Elbert Pettitt (Site ID #16) was a lumber merchant. William J. Chisholm (Site ID #40) was vice-president of Merrill & King Logging Co. C. K. Hillman (Site ID #1) manufactured electrical machinery for mining and logging. Builder A. W. Mylroie (Site ID #58) was eventually president-treasurer of Ellis Mylroie Lumber Co. J. L. Bridge (Site ID #83) in addition to serving as secretary of Pacific Towboat Co., was manager of Sound Timber Co. J. D. Collins (Site ID #90) was Sales Manager of Old Oregon Lumber Co. William C. Phillips (Site ID #93) was president of Sound Coal Co. and then Sound Fuel Co. F. C. Riley (Site ID #96) ran Coast Timber & Cruising Co.

Merchandising and Luxury Enterprises

B. L. Gates (Site ID #52) was a jeweler. Marcus Mayer (Site ID #86) worked in a family jewelry manufacturing firm. Elmer H. Fish (Site ID #67) was the proprietor of several cigar stores as was James R. Brewster (Site ID #87). The Quirk Brothers ran a tea and coffee importing business. The Max Silver family (Site ID #31) were furriers. H. H. Wolfe (Site ID #78) was vice-president of John Panton Co., a department store. Lilly (Site ID #24) and Lundquist ran a men’s clothing store. A. Harry Dalley (Site ID #65) was a merchandise broker.
Manufacturing

C. C. Belknap and his sister Addie B. Conly (Site ID #82) in addition to owning several properties in the Roanoke Park Historic District, owned a glass manufacturing company whose art glass was featured in many downtown buildings. Charles Kucher (Site ID #96) was president-treasurer of the Olympic Foundry. Augustus A. Sutherland (Site ID #100) was treasurer and sales manager of Portland Cement Co. C. K. Hillman (Site ID #1) produced machinery for mining and fishing.

Building

The district's many builders, both from outside and resident, have been listed in the nomination form's Section 8 continuation sheet, and their work in the Roanoke Park Historic District has been described in individual Inventory entries. None of the architects but many of the builders and designer-builders lived in the Roanoke Park Historic District and nearby, at times, on the surrounding hills.

The Roanoke Park Historic District drew some of Seattle's and the country's most authentic characters, powerful influencers, and notable benefactors. The different kinds of businesses the same man would engage in speaks to versatility, the ability to define and redefine oneself in a new and then rapidly changing environment.

Criterion C: Design/Construction

The Roanoke Park Historic District is an oasis of substantial single-family residences, many of which were designed by architects of some renown. The architects had been drawn to the city of Seattle by a perceived opportunity to realize the ideals of the early 20th century City Beautiful movement and more pragmatically by a perceived opportunity to find work. In their residential designs in the Roanoke Park Historic District, the architects came up with variations on well known revival styles of the early twentieth century along with the American Foursquare and adaptations of the Craftsman bungalow style, so popular in the west, to larger houses with second floors.

Despite the many architects (and builders) involved, the welter of architectural styles, and the construction of most of the district's houses over a 40 year period from 1899 to 1939 at a pace that varied in response to both national and local developments, the early establishment of a high standard of design and craftsmanship and the dominance of high-quality work in the period of the district's most pronounced building activity led to a pleasing coherence and a standard of capacious comfort that unifies the district. The expression "safe as houses" is epitomized by the solid construction and the atmosphere of prosperous stability in this neighborhood of single-family houses.

Immigrant builders came, too, from Scandinavia in particular, and served their exacting architects with a fine craftsmanship and a work ethic they brought from home. The houses in the district were built to
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet - ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 8 Page 12 of 19

last, and they have. Building permits were set to expire after an incredible three months for a house, one month for a garage or an addition.

A few of the builders became architects (and at least one architect, Edward J. Duhamel, became a builder). Many a builder evolved into a designer, with no formal training but with a good eye and tutelary examples from the architect’s plans he had worked with and from the pattern book plans that started to appear in the first ten years of the new century.

The conversation going on toward the end of the district’s period of significance between architect advocates of a mastery of many styles in the Beaux Arts tradition and proponents of what might be called original genius in architecture is not reflected in the district’s houses, even though some of the same architects would do bolder, more experimental work in their large projects. One thinks of Carl F. Gould, who was so identified with the City Beautiful movement and whose residential work was so often in exquisite renditions of the Colonial Revival style such as the Phillips-Hyde House (Site ID #93) and the Dalley House (Site ID #65) in the Roanoke Park Historic District and whose institutional work could be so attuned in the 1930s to the new Art Deco style in buildings such as the Seattle Asian Art Museum in Volunteer Park (1930) and the spectacular U. S. Marine Hospital skyscraper atop Beacon Hill (1930–31).

Or of Andrew Willatsen, who designed a straightforward Elizabethan Tudor house for Jeremiah Neterer in the Roanoke Park Historic District but more Prairie-style, Wrightean houses elsewhere.

Likewise, the careers of Tennys F. Bellamy and John I. Mattson, two of the architects of the three 1930s houses along the southwest side of the 2700 block of Broadway Ave E, straddle architecture that celebrates a mastery of many different styles and architecture moving into contemporary creativity and originality in design. Both architects did traditional work in the late 1930s in the Roanoke Park Historic District, probably out of sympathy for the traditional styles that dominated in the neighborhood but also one can surmise, because their experience, particularly Bellamy’s, had been with firms that worked in the traditional styles. John I. Mattson resisted in his design for the Tudor Revival house built in the Roanoke Park Historic District in 1937 (Site ID #7), close to the end of the period of significance, any inclination to move to the more modern design principles that would show up in his only slightly later residential work on Beacon Hill. Both Bellamy and Mattson went on to develop signature, unique styles that did not depend on traditional styles and participated in moving Seattle architecture into modern residential, commercial, and institutional idioms.

The district is tightly unified geographically, with 96 single-family residences and 3 houses now serving as duplexes on relatively small lots usually 50 feet wide and 110 feet deep. The park that is the district’s chief amenity apart from its views has always stimulated a coming together over playground activities for parents and young children, picnics, caring for the park, and making common cause over the welter of issues that confront an urban neighborhood in Seattle. A sense of pleasant confinement and shelter comes from the large elms and horse chestnuts that shield the park and surrounding streets from the arterial at the district’s south end. The continuous blocks of East Shelby Street with no perpendicular
interruptions on the north side tend to deter traffic from coming through the neighborhood and clearly mark the north boundary of the district. The steep hills on the east side of the plateau seem to forbid through traffic. On the south and west, a treed and shrubbed diverter, a landscaped bulb-out, and a landscaped blocked street end further discourage through traffic.

At one time, Broadway Avenue East and Tenth Avenue East were to be boulevards. Thus property lines were drawn quite a way in from the present city sidewalks and the houses were consequently sited well inside the lawns and gardens that extend out beyond the technical property lines to a narrower street than the boulevard that was planned. Uninterrupted vistas down three blocks of avenue with trees and shrubs in wide curb lawns increase the sense of spaciousness but with the richness of green shade.

To the east and the west the eye is drawn out to the lakes and even further to the rugged often snow-capped mountains of the Cascades on the east and the Olympics on the west.

The district grew up around the City’s realization of a park the Olmsteds had asked for at the same time that a streetcar finally came directly to the neighborhood and its new park just west and north of the viewpoint on the western edge of Interlaken Park. At the same time preparations for the Alaska-Yukon-Pacific Exposition of 1909 turned the attention of both locals and visitors to the north, where the new suburb happened to lie on a plateau overlooking the Exposition grounds. Ambitions for the Denny-Fuhrman Addition and its supplemental addition coincided with a vision of the City Beautiful sparked by the wealth of planning and architectural talent come to town to make beautiful boulevards and great buildings. The Olmsteds, city planner Virgil Bogue, and architects such as Carl F. Gould and W. R. B. Wilcox weren’t able to realize their ideal fully. In 1912, funding for Virgil Bogue’s ambitious Plan for Seattle was voted down. The Olmsted plan for a necklace of parks and boulevards fared better, but in its isolation, the Roanoke Park Historic District reflects the not-quite-accomplished original vision of parks and districts connected by a system of boulevards.

All of the properties in the Roanoke Park Historic District were owned and platted for residences by David T. Denny and Henry Fuhrman. The King County Real Property Assessment and Tax Rolls show that by 1895 Henry Fuhrman had taken on most of the bankrupted David Denny’s properties. The lots remained mostly unimproved until 1899, when the first house in the district (Site ID #13) was built. Development from 1899 through 1907 was slow. Henry Fuhrman, then Henry Fuhrman’s Estate, and a few other land speculators on a relatively large scale such as C. T. Conover sold and bought back and resold many of the lots in the period 1895 through 1907, when all but a few of the lots—Site ID #s 13, 16, 19, 39, 42, 44, 50, 51, 53, and 89, only ten in all—were still unimproved. Then several phenomena combined to create easy access to, attention to, and a rush of nevertheless well-designed and well-built development on the Roanoke Park plateau.

Streetcar Suburbs
Given its distance from downtown and the steep surrounding hills, even a streetcar line that had run from downtown along Eastlake Avenue two blocks below the plateau on the west hadn’t persuaded many
families to view, let alone buy, the home sites David Denny and then Henry Fuhrman had for sale up on the plateau. Then Roanoke Park and the Bagley Wright viewpoint on the western edge of Interlaken Park began to attract visitors and a streetcar line was run north along Harvard Avenue East, east on East Shelby Street, and back south up Tenth Avenue East, effectively right along the boundaries of the Roanoke Park Historic District.

The City Beautiful

The Olmsted Brothers had identified Block 9 of the Denny-Fuhrman Addition as a good place for a park to connect up with Interlaken Park and its western viewpoint, now the Bagley Wright Viewpoint. The Parks Department acquired the 2.2 acres of Block 9 in 1908 and established Roanoke Park. As the Olmsteds' earlier design and development of Volunteer Park (1903–1904) had contributed to the development of Moore's Addition, that is, Capitol Hill, so was the creation of Roanoke Park to the residential development of the streets that surrounded it.

The West had attracted talented, trained architects and landscapers, early city planners, and engineers. Architects who had studied at the Ecole des Beaux-Arts in Paris, at Harvard, Cornell, Columbia, MIT, and the University of Pennsylvania in the East, in the Chicago of Richardson, root, Sullivan, and Adler, at Frank Wright's studio in Oak Park, in the England of Sir Edwin Luytens and Gertrude Jekyll, who'd made the Grand Tour to Renaissance Europe and to Classical Rome and Greece, came to the West to bring all of that education, training, talent, and tradition to bear on building the City Beautiful.

It was an international movement. Baron Georges Eugene Hausmann undertook the redesign and rebuilding of Paris, including its infrastructure, in 1909. Daniel Burnham drew up his comprehensive plan for Chicago in 1909. Walter Burley Griffin would design a plan for Canberra in 1912, as would Sir Edward Luytens for New Delhi in 1912. And it is a movement that never quite dies. As late as 1951, Le Corbusier undertook the design of Chandigarh, "the first planned city in post-colonial India." Modern Dubai is an even more recent example. Schemes such as the Commons proposed for Seattle in the 1990s and recent developments in Seattle's South Lake Union district exemplify the City Beautiful impulse, if on a much smaller scale.

In The Arts and Crafts Movement in the Pacific Northwest, Lawrence Kreisman and Glenn Mason devote an entire chapter to the City Beautiful movement as it played out in Seattle, Tacoma, Portland,

10 Reminiscence of neighbor Arabelle Compton, who grew up on East Hamlin Street, between Eleventh Avenue East and Boyer Avenue East, and moved away only recently, in Kavanaugh, The History of St. Patrick's Church, 45.
11 Rosenberg, 2.
12 Allan Greenberg, Luytens and the Modern Movement (London: New Architecture Group Ltd., 2007), 108. Although Greenberg's wonderful book on the influence of Luytens on Wright and Le Corbusier mentions many of the City Beautiful, Beaux Arts-influenced city plans of the twentieth century, Greenberg's emphasis is on the contrast between the garden city approach of Luytens and later, Corbusier, with the monumentality of the plans for Chicago and many other cities.
Spokane, and even smaller cities such as Bellingham, Ellensburg, and Yakima. Voters in the cities and towns weren't ready to pay for planning and executing the layout, buildings, and infrastructure for an entire city or town, but Kreisman and Mason describe the effect of the movement on the development of parks and boulevards and residential enclaves such as Mount Baker, Beaux Arts Village, and what is now Windermere. They point out that world fairs such as the Alaska-Yukon-Pacific Exposition in the larger cities were cities within cities, in their layouts and buildings themselves expressions of the City Beautiful.

The Alaska-Yukon-Pacific Exposition

Internationalism grew apace in the cities of the west as they participated in each others' world fairs. As early as 1893, Washington, Montana, and Idaho participated in Chicago's World Columbian Exhibition. Seattle architect August Heide grew to specialize in designing state exposition buildings such as the Washington State Pavilion for the St. Louis Louisiana Purchase Exposition in 1905, in which Seattle, Spokane, Oregon State, and Portland also participated. Portland held its Lewis and Clark Centennial Exposition in 1905, and Seattle would hold its Alaska-Yukon-Pacific Exposition in 1909, to be followed by San Francisco's Panama-Pacific Exposition in 1915 and also in 1915 by San Diego's Panama-California Exposition.

Preparations for the 1909 Alaska-Yukon-Pacific Exposition on the new University of Washington grounds turned attention north and to the Roanoke Park district in particular. An astounding 3,740,551 visitors made their way to the AYPE. Both locals and visitors from all over the world liked what they saw of surrounding Seattle—the Roanoke Park district (and the Montlake district) most immediately during the Exposition. Many visitors to the AYPE relocated to Seattle, including Aaron Frederick Anderson's family from Michigan cited in the Inventory for this nomination, who acquired several properties and interests in other properties in the Roanoke Park Historic District and took to logging, dairying, and banking with the kind of versatility that realizing ambitions in the still-young city called for.

Prosperity

Two events in 1893 had brought on an expansion of Seattle's population and fortunes five years later. Disappointed by the Northern Pacific railroad's choice of Tacoma for its western terminus, Seattle perked up when James J. Hill brought his transcontinental Great Northern Railway into Seattle in 1893.16

13 Lawrence Kreisman and Glenn Mason, 119-151.
14 Kreisman and Mason devote another entire chapter to the explosion of world fairs all up and down the west coast and describe the design of many fair grounds by the likes of the Olmsteds as realizations of the aesthetic ideals of the City Beautiful movement so often frustrated on the full city level.
16 Speidel, 182.
That was the City's badly needed commercial outlet to the rest of the country east of the Cascade mountains.

And in 1893, ironically during a national panic brought on by a scarcity of gold, the Klondike gold fields were discovered. It took some time for the discovery to make a difference, but then in 1897 the Excelsior steamed into San Francisco carrying a half-ton of gold from the Klondike followed by the Portland steaming into Seattle's Elliott Bay with a staggering full ton of gold. The Rush took off, and a few improbable local fortunes were made. Seattle entrepreneurs quickly realized, however, that it might be easier and more certainly profitable to make money by promoting Seattle as the gateway, provisioner, and assayer (the Roanoke Park Historic District's own Victor W. S. Denny) for all of the gold prospectors pouring into the west from all over the country. The city would profit from the prospectors' coming to provision themselves for the goldfields and having a final fling before setting off on their rigorous enterprise; then, when the prospectors came back to have their gold assayed and turned into cash, they would spend most immediately in Seattle. It took a campaign of some duration to win the government Assayer's Office for Seattle, but it was well worth it.

The country and Seattle especially were coming out of the national depression that followed the Panic of 1893 (and a lesser depression in 1907). The publicity about the opening up of the Klondike gold fields made optimists of bankers everywhere and of nicely positioned Seattleites in particular. The town began to prosper and by 1910 had tripled its population.

In Lockstep with the Larger Phenomena

Events having conspired to further the development of the suburbs and even more particularly of the Roanoke Park residential district, the budding neighborhood experienced a building boom. The greatest number of houses in the district, 53 houses on the 100 residential lots in the preceding inventory, were built in 1908, 1909, and 1910 as attention turned to the north suburbs in anticipation and enjoyment of the Alaska-Yukon-Pacific Exposition of 1909 on the present University of Washington campus.

The substantial nature of the houses erected during the Roanoke Park Historic District's building boom, with views of the Exposition grounds from atop the district's plateau, reflects the wave of optimism that influenced the real estate market and commerce in general. The 53 houses built in that three year period...
and the design and planting of Roanoke Park in those three years joined the only 10 houses that had been built in the eight years from 1899 through 1907.20

After the housing boom and before World War I, in 1911, 1912, and 1913, nine more houses were built. During World War I, 1914–1918, only four houses were built. Altogether, by 1918, though, when World War I came to an end, 77 of the 100 properties had been improved with substantial, handsome houses and the park was greening. No houses were built in the district in 1919 and 1920 as the wartime economy slackened.

Then as the 1920s economy took off elsewhere in the country, a healthy 14 more houses were built on the plateau in the eight years between 1921 and 1928, for a total of 91 houses and one park before 1929. In 1929, no houses were built. So far as can be discovered, only accessory structures such as the still-intact Brewster playhouse at 2808 Broadway Ave E (Site ID #16) and a garage for the residence at 1015 E Roanoke St (both house and garage subsequently destroyed to make way for SR-520) were built in the district in this year of the Great Depression. Only three relatively modest houses were built in the depression years of the 1930s—one in 1933, one in 1937, and one in 1939.21

In the 1940s, during World War II and after the end of the war, in 1942, 1945, and 1946, in the midst of a nationwide housing shortage and despite a shortage of materials, three of the few remaining lots were improved with houses even more modest than the three built in the 1930s.

No houses were built in the 1950s, and only St. Patrick’s Church was built in the 1960s as Interstate-5 took St. Patrick’s buildings up Tenth Avenue East at East Lynn Street. One modest house was built in 1979, on one of the two lots that had been occupied by a Standard Oil gas station. Finally, in the boom-time early 1990s, in 1991, the Watsons built a large new house on their corner lot next door to their 1916 house, on Tenth Ave E and E Hamlin St, and Greg McGar Construction built a sizable contemporary spec house on the former gas station’s corner lot at 2600 Harvard Ave E. The district was full.

Real Estate Activity

Many attorneys, doctors, bankers, editors, educators, politicians, storekeepers, lumbermen, manufacturers, miners, fishermen, importers and exporters, policemen, auto dealers, wholesalers of every kind, and families engaged in many other types of activity for their livelihoods simply could not resist also owning, trading, and improving multiple lots in the Roanoke Park Historic District over the years. In a year

20 The title of a January 19, 1913, article in the Seattle Post-Intelligencer cited in Casey Rosenberg’s Streetcar Suburbs bibliography, p. 53, says it all, albeit inelegantly and of the earlier development of Moore’s Addition, not of the later development of the Denny-Fuhrman Addition: “Palaces Replace Forest Stumps in Eleven Years.” Note, too, that both Samuel L. Crawford and C. T. Conover of the Post-Intelligencer were heavily involved as Crawford & Conover in the real estate wheeling and dealing in the additions, or streetcar suburbs. An earlier Post-Intelligencer article, also cited in Rosenberg’s bibliography, was “Capitol Hill Ready for Market” (10-13-1901). The line between news and advertising could be slim.

21 Between 1930 and 1940 the population growth of Seattle was under 3000, or practically none at all.” Roger Sale, Seattle Past to Present (Seattle, University of Washington Press, 1976), 137.
in which a fortune might have been lost or a business might have failed, owning a lot or two and working on improvements could justify "Real Estate Investment" as one's calling in that year's Polk directory. Some of the real estate investors lived in statelier and more noted mansions or in more modest houses and apartments elsewhere, but a number of them, having achieved a fair degree of success, started out or ended up developing and living in the demi-mansions of the Roanoke Park Historic District.

Freeways Ran Through It

Massive infusions of greenery, old shade trees, and the architectural distinction of its housing enable the Roanoke Park Historic District to retain its air of prosperous charm and civility. But the heavy presence of Interstate-5 and to a lesser extent State Route-520 has to be at least a leitmotif in any account of the history of the Roanoke Park district. The local freeways built during a nationwide surge of highway construction in the 1950s and early 1960s have been the biggest challenge to the residential atmosphere of the district, but in an odd way the salvation of its architectural integrity.

In negotiations for fair-value compensation in anticipation of the construction of I-5, neither the state nor the federal government was kind to the owner-residents in houses along the west side of Harvard Avenue East and the east side of Boylston Avenue East where I-5 runs now. In the late 1950s, the government paid the owners for the land under the houses but not for the market values or even the assessed values of the houses themselves.

Some people moved their houses, an expensive and perilous undertaking but one not foreign to Seattleites with the Denny Regrade as a precedent and a familiarity with the odd house move here and there even after the Regrade. By the late 1950s, though, land nearby was scarce, and the best-case limit for house moving is to take a house no more than two miles from its spot. And big houses on narrow streets are the most difficult to move. As a consequence, most of the residents didn't move their houses.

Some owners rented out their houses on a "sudden death" basis that turned out to be for a longer period than anticipated as freeway construction schedules pushed dates of demolition back. A lot of other...

22 Prescient and/or cavalier, in 1910 one resident, T. E. MacLaghlan, who lived at the ill-fated, odd-numbered 2627 Harvard Avenue East address 50 years before the coming of the freeway, was a house mover by trade. He had competition from a Harry J. Miller, house mover. Perhaps one or the other helped the Drs. Booth (Site ID #51) with their building rearrangements.

23 Neighbor and economic consultant Ted Lane (Site ID #34) remembers that in his graduate school days at the University of Washington he rented the large house at 1015 East Roanoke Street on the same kind of sudden death basis, while that house awaited demolition for the sake of SR-520. Another house now gone for the sake of SR-520 was the Captain David Gilmore residence at 903 East Roanoke Street designed by Elmer Ellsworth Green that appeared in Calvert, ed., Homes and Gardens of the Pacific Coast, no page numbers. Ned Neal, architect and resident, remembers that the Gilmore House was used as "an old folks home" while it awaited demolition.
owners boarded up the windows and relocated, expecting to sell their houses at auction, only to watch them deteriorate from the ravages of salvagers and vandals. It was not a pretty picture.

And it didn't enhance perceptions of the handsome neighborhood just behind that western flank of the Roanoke Park plateau. To say that the neighborhood became unfashionable is an understatement. But at least it wasn't attractive to the remodelers and renovators who contributed so much to the loss of architectural integrity that well-designed and well-built houses all over the country suffered in the 1960s and the 1970s. Although not to the fond residents left in their good houses in the neighborhood, to people driving past, the empty foundations and the boarded-up vandalized houses must have made the district seem forlorn. Then property values in a neighborhood already perceived as blighted plummeted in the hard times of the 1970s, when Boeing, at that time the one and only big company in town, was laying off both workers and managers and the famous billboard asked the last person leaving Seattle to turn out the lights. As Seattle emptied out, the Roanoke Park district became a well-kept secret to the mostly longtime resident families who continued to love it and who had developed a long-standing tradition of celebrating it and striving to perfect it notwithstanding the size of the challenge when confronted with the huge machinations of progress.

When new energy (yes, including money) comes in, the residents are welcoming and eager to pass on the tradition of protecting and improving this beloved, historic neighborhood. With the coming of the booming high-tech 1990s, the houses that did go up for sale were restored by their prosperous new owners and are ready to weather the next economic downturn.

24 Architectural historian Allan Seidenverg called the writer’s attention to HistoryLink.org Essay 4168, “Washington establishes an office for clearing the route of the Seattle Freeway (Interstate 5) on April 1, 1957.” The essay describes the trauma to the western edge of the Roanoke Park district and to the eastern and western edges of all the adjacent districts during the years of Interstate-5 anticipation and construction.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet -

ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 8 Page 1 of 1

Architect/Builder:

Architects: Duhamel, Edward J.; Bertrand, E.C.; Chamberlin, Arthur B.; Everett, Julian F.; Haynes, Charles; Stuart, Bertram D.; West, Thomas L.; Merritt, Edward L.; Voorhees, V. W.; Hall, Virgil; Johnson, Alvin L.; McClelland, Robert F.; Pinneh, Edward F.; Sequist, (?); Cutter, Kirtland K. (undocumented); Bellamy, Tennys F.; Mattson, John I.; Wheatley, Arthur

Builders: Almquist, Eric; Austin, Herman A.; Hedin, Nels; Barnes, J.M.; Wentworth, P.E.; Manson, Alex R.; Nelson, Andrew A.; Gwinn, Gardner J.; Mylroie, A.W.; Haller, John; Erskine, B.; Johns, A.D.; Dickson, W.R.; Walter Bros.; Russell, A.L.; Olson, Gustav; Roseleaf, Otto; Roberts & Williams; Johnson Bros.; Rushton, C.A.; Beck & Rasmussen
BIBLIOGRAPHY

Conley, Gerry to Allan Seidenverg, 11 January 2008, email.

Conley, Gerry to Erin O’Connor, 8 March 2008, email.

748 243 Federal Reporter STATE OF WASHINGTON ex. rel. CITY OF SEATTLE v. PUGET SOUND TRACTION, LIGHT & POWER CO.

Hongladarom, Gail to Erin O'Connor, 13 April 2008, email.

United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet -

ROANOKE PARK HISTORIC DISTRICT
KING COUNTY, WASHINGTON

Section number 9 Page 4 of 7

---. to Erin O'Connor, 21 April 2008, email.
---. to Erin O'Connor, 26 April 2008, email.

---. Conversation with Erin O'Connor and other participants in MOHAI-sponsored walking tour of the Roanoke Park district, 6 September 2008.

John Owen, “The Intermediate Eater: The streets are alive, with the smell of Seattle.” Seattle Post-

Polk’s Seattle Directory, various years.

Property Record Cards. Washington State Archives, Puget Sound Regional Branch, Bellevue, Wash.

“Roanoke Park Historic District.” Historic Property Inventory Form 44343, 8-1998.

Rootsweb.com (accessed 3-8-2009 and other dates).

Rundquist, Nolan, City Arborist. Meeting with Roanoke Park residents Robert Buchanan and Erin O’Connor and commercial arborist John Hushagen, of Seattle Tree Preservation, 2 April 2002, to discuss plans for prophylactic measures to protect Roanoke Neighborhood elms from the risk of Dutch elm disease.

Sherwood, Don. Park History Files. http://www.seattle.gov/parks/history/sherwood.htm

Territorial Census. Various years.

U.S. Census, 1900, 1910, 1920, 1930.

Wolfe, Wellington C. Sketches of Washingtonians: Containing Brief Histories of Men of

Worley, Providence. Conversation with Erin O’Connor and other participants in MOHAI-sponsored walking tour of the Roanoke Park district. 6 September 2008.
<table>
<thead>
<tr>
<th>Address</th>
<th>Historic Name</th>
<th>ID #</th>
<th>Classification</th>
<th>Date Built</th>
</tr>
</thead>
<tbody>
<tr>
<td>2601 Broadway Ave E</td>
<td>Betterton-Hillman House</td>
<td>1</td>
<td>Contributing</td>
<td>1912</td>
</tr>
<tr>
<td>2609 Broadway Ave E</td>
<td>Johnson-Hanson House</td>
<td>2</td>
<td>Contributing</td>
<td>1911</td>
</tr>
<tr>
<td>2611 Broadway Ave E</td>
<td>Storm, J. R. & Dorothy A., House</td>
<td>3</td>
<td>Contributing</td>
<td>1924</td>
</tr>
<tr>
<td>2617 Broadway Ave E</td>
<td>Winters, Sr., Al, House</td>
<td>4</td>
<td>Non-historic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-contributing</td>
<td></td>
</tr>
<tr>
<td>2702 Broadway Ave E</td>
<td>Neterer, Jeremiah & Sarah E., House</td>
<td>5</td>
<td>Contributing</td>
<td>1915</td>
</tr>
<tr>
<td>2706 Broadway Ave E</td>
<td>Nelson, Israel & Esther M., House</td>
<td>6</td>
<td>Contributing</td>
<td>1921</td>
</tr>
<tr>
<td>2707 Broadway Ave E</td>
<td>Arensberg, Charles & Anna M., House</td>
<td>7</td>
<td>Contributing</td>
<td>1937</td>
</tr>
<tr>
<td>2712 Broadway Ave E</td>
<td>Helt, Frank H. & Ora J., House</td>
<td>8</td>
<td>Contributing</td>
<td>1918</td>
</tr>
<tr>
<td>2715 Broadway Ave E</td>
<td>Felger, W. W. & Vina C., House</td>
<td>9</td>
<td>Contributing</td>
<td>1933</td>
</tr>
<tr>
<td>2716 Broadway Ave E</td>
<td>Brown, C. Rogers & Harriet, House</td>
<td>10</td>
<td>Contributing</td>
<td>1912</td>
</tr>
<tr>
<td>2722 Broadway Ave E</td>
<td>Hayes, Samuel E. & Margaret H., House</td>
<td>11</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2725 Broadway Ave E</td>
<td>Soderberg, J. A. & Martha, House</td>
<td>12</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2736 Broadway Ave E</td>
<td>Sullivan-Walker House</td>
<td>13</td>
<td>Contributing</td>
<td>1899</td>
</tr>
<tr>
<td>2800 Broadway Ave E</td>
<td>Johanson, Dr. Nils A. & Katherine B., House</td>
<td>14</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2801 Broadway Ave E</td>
<td>Hunter, David & Nellie, House</td>
<td>15</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2808 Broadway Ave E</td>
<td>Pettitt, Elbert & Jennie, House</td>
<td>16</td>
<td>Contributing</td>
<td>1906</td>
</tr>
<tr>
<td>2812 Broadway Ave E</td>
<td>Clericus-Mulvehill House</td>
<td>17</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2813 Broadway Ave E</td>
<td>Wilson-Franklin House</td>
<td>18</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2817 Broadway Ave E</td>
<td>Cooper, William L. & Grace M., House</td>
<td>19</td>
<td>Contributing</td>
<td>1907</td>
</tr>
<tr>
<td>2818 Broadway Ave E</td>
<td>Marcus, Max & Frieda, House</td>
<td>20</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2822 Broadway Ave E</td>
<td>Gaunce, Harold S. & Maude I., House</td>
<td>21</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>2823 Broadway Ave E</td>
<td>Guthman, Otto & Hilda L., House</td>
<td>22</td>
<td>Contributing</td>
<td>1912</td>
</tr>
<tr>
<td>2827 Broadway Ave E</td>
<td>Ritchie-Klock House</td>
<td>23</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2826-28 Broadway Ave E</td>
<td>Johnson-Lilly-House</td>
<td>24</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>2832 Broadway Ave E</td>
<td>Tucker, Wilmon & Lillian House</td>
<td>25</td>
<td>Contributing</td>
<td>1911</td>
</tr>
<tr>
<td>2833 Broadway Ave E</td>
<td>Sands, Magnus & Olga, House</td>
<td>26</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2838 Broadway Ave E</td>
<td>Denny, Emily Inez, House</td>
<td>27</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>815-823 E Edgar St</td>
<td>St. Patrick's Church and Parking</td>
<td>28</td>
<td>Non-historic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-contributing</td>
<td></td>
</tr>
<tr>
<td>818 E Edgar St</td>
<td>Milligan-Stern House</td>
<td>29</td>
<td>Contributing</td>
<td>1939</td>
</tr>
<tr>
<td>804 E Hamlin St</td>
<td>Stephens, Dr. Lorenzo L. & Maude B., House</td>
<td>30</td>
<td>Contributing</td>
<td>1913</td>
</tr>
<tr>
<td>817 E Hamlin St</td>
<td>Jacobs-Silver House</td>
<td>31</td>
<td>Contributing</td>
<td>1926</td>
</tr>
<tr>
<td>918 E Hamlin St</td>
<td>Wentworth-Elliot House</td>
<td>32</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>Address</td>
<td>Name</td>
<td>#</td>
<td>Status</td>
<td>Year</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>2600 Harvard Ave E</td>
<td>Stefanac-Thomas/Lane House</td>
<td>33</td>
<td>Non-historic</td>
<td>1991</td>
</tr>
<tr>
<td>2606 Harvard Ave E</td>
<td>Gounder, Raj Gopal, House</td>
<td>34</td>
<td>Non-historic</td>
<td>1979</td>
</tr>
<tr>
<td>2612 Harvard Ave E</td>
<td>Clemmer, James Q. & Sybil, House</td>
<td>35</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2616 Harvard Ave E</td>
<td>King-Friedman House</td>
<td>36</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2632 Harvard Ave E</td>
<td>Mosco-Pierce-Thibaudeau House</td>
<td>37</td>
<td>Non-historic</td>
<td>1946</td>
</tr>
<tr>
<td>2636 Harvard Ave E</td>
<td>Scheiene-Pierce House</td>
<td>38</td>
<td>Non-historic</td>
<td>1945</td>
</tr>
<tr>
<td>2706 Harvard Ave E</td>
<td>Duhamel-Parsons House</td>
<td>39</td>
<td>NRHP</td>
<td>1903</td>
</tr>
<tr>
<td>2712 Harvard Ave E</td>
<td>Chisholm, William J. & Mary A., House</td>
<td>40</td>
<td>Historic</td>
<td>1908</td>
</tr>
<tr>
<td>2716 Harvard Ave E</td>
<td>Hall-Sheppard House</td>
<td>41</td>
<td>Historic</td>
<td>1921</td>
</tr>
<tr>
<td>2722 Harvard Ave E</td>
<td>Stokes, Harry C. & Emma J., House</td>
<td>42</td>
<td>Contributing</td>
<td>1906</td>
</tr>
<tr>
<td>2726 Harvard Ave E</td>
<td>Agnew-Kahle House</td>
<td>43</td>
<td>Historic</td>
<td>1908</td>
</tr>
<tr>
<td>2728 Harvard Ave E</td>
<td>Gleason, James P. & Nellie D., House</td>
<td>44</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2812 Harvard Ave E</td>
<td>Taylor-Frater House</td>
<td>45</td>
<td>Historic</td>
<td>1903</td>
</tr>
<tr>
<td>2816 Harvard Ave E</td>
<td>Hoehm, Bernard & Evelyn, House</td>
<td>46</td>
<td>Historic</td>
<td>1909</td>
</tr>
<tr>
<td>2822 Harvard Ave E</td>
<td>Stack, J. H., House</td>
<td>47</td>
<td>Historic</td>
<td>1922</td>
</tr>
<tr>
<td>2826 Harvard Ave E</td>
<td>Schaefer, Ned A. & Anne E., House</td>
<td>48</td>
<td>Historic</td>
<td>1925</td>
</tr>
<tr>
<td>2832 Harvard Ave E</td>
<td>Barter-Devers House</td>
<td>49</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>2836 Harvard Ave E</td>
<td>Dawson, Mamic C., House</td>
<td>50</td>
<td>Contributing</td>
<td>1907</td>
</tr>
<tr>
<td>900 E. Roanoke St</td>
<td>Roanoke Park (site)</td>
<td>50a</td>
<td>Contributing Site</td>
<td>1908</td>
</tr>
<tr>
<td>1004 E. Roanoke St</td>
<td>Booth, Dr. William G., House</td>
<td>51</td>
<td>Contributing</td>
<td>1907</td>
</tr>
<tr>
<td>1018 E. Roanoke St</td>
<td>Gates-Bass Mansion</td>
<td>52</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>808 E Shelby St</td>
<td>Brady-Alexander House</td>
<td>53</td>
<td>Contributing</td>
<td>1900</td>
</tr>
<tr>
<td>812 E Shelby St</td>
<td>Mifflin, Emmett R. & Mary R., House</td>
<td>54</td>
<td>Historic</td>
<td>1909</td>
</tr>
<tr>
<td>816 E Shelby St</td>
<td>Anderson, Aaron F., House</td>
<td>55</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>817 E Shelby St</td>
<td>Twelves, C. M. & Ruby, House</td>
<td>56</td>
<td>Contributing</td>
<td>1923</td>
</tr>
<tr>
<td>822 E Shelby St</td>
<td>Chavelle, Edward H. & Maud (Gray), House</td>
<td>57</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>900 E Shelby St</td>
<td>Myhrioic, A. W. & Lillian O., House</td>
<td>58</td>
<td>Contributing</td>
<td>1922</td>
</tr>
<tr>
<td>906 E Shelby St</td>
<td>Crawford, Samuel L. & Clara M., House</td>
<td>59</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>Address</td>
<td>Name</td>
<td>Year</td>
<td>Status</td>
<td>Year</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>908 E Shelby St</td>
<td>Falknor, Alonzo J. & Lola, House</td>
<td>60</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>912 E Shelby St</td>
<td>Prosser-Dowling House</td>
<td>61</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>920 E Shelby St</td>
<td>Slater, John C. & Carrie M., House</td>
<td>62</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>926 E Shelby St</td>
<td>Ross, Bart C. & Ethel H., House</td>
<td>63</td>
<td>Contributing</td>
<td>1912</td>
</tr>
<tr>
<td>1000 E Shelby St</td>
<td>Dart, Frank V. & Nora A., House</td>
<td>64</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2608 Tenth Ave E</td>
<td>Dalley, A. Harry & Olive W., House</td>
<td>65</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2612 Tenth Ave E</td>
<td>Grifford, Charles & Elizabeth S., House</td>
<td>66</td>
<td>Contributing</td>
<td>1924</td>
</tr>
<tr>
<td>2616 Tenth Ave E</td>
<td>Fish, Elmer H. & Charlotte, House</td>
<td>67</td>
<td>Contributing</td>
<td>1922</td>
</tr>
<tr>
<td>2622 Tenth Ave E</td>
<td>Jenner-Bogue House</td>
<td>68</td>
<td>Contributing</td>
<td>1923</td>
</tr>
<tr>
<td>2626 Tenth Ave E</td>
<td>Loe, Olive W., House</td>
<td>69</td>
<td>Historic</td>
<td>1928</td>
</tr>
<tr>
<td>2632 Tenth Ave E</td>
<td>Bloxom, Frederick C. & Elizabeth, House</td>
<td>70</td>
<td>Contributing</td>
<td>1917</td>
</tr>
<tr>
<td>2636 Tenth Ave E</td>
<td>Horner, W. H. & Margaret K., House</td>
<td>71</td>
<td>Contributing</td>
<td>1925</td>
</tr>
<tr>
<td>2700 Tenth Ave E</td>
<td>Beekwick-Thompson House</td>
<td>72</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2701 Tenth Ave E</td>
<td>Saunders, Robert C. & Mansy, House</td>
<td>73</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>2706 Tenth Ave E</td>
<td>Parshall, Louis A. & Martha L., House</td>
<td>74</td>
<td>Contributing</td>
<td>1911</td>
</tr>
<tr>
<td>2707 Tenth Ave E</td>
<td>Rhodes, Frank B. & May, House</td>
<td>75</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2712 Tenth Ave E</td>
<td>Siegley, Earl E. & Mabel A., House</td>
<td>76</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2715 Tenth Ave E</td>
<td>Lazelle, Dr. H. G. & Martha K. W., House</td>
<td>77</td>
<td>Historic</td>
<td>1909</td>
</tr>
<tr>
<td>2716 Tenth Ave E</td>
<td>Wolf-Dowling House</td>
<td>78</td>
<td>Historic</td>
<td>1910</td>
</tr>
<tr>
<td>2717 Tenth Ave E</td>
<td>Caldwell, Hugh M. & Sarah (Smith Howard), House</td>
<td>79</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2721 Tenth Ave E</td>
<td>Hayes, Mavis C., House</td>
<td>80</td>
<td>Historic</td>
<td>1910</td>
</tr>
<tr>
<td>2722 Tenth Ave E</td>
<td>Cavanaugh, William E. & Alice, House</td>
<td>81</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2726 Tenth Ave E</td>
<td>Conly, Addie B., House</td>
<td>82</td>
<td>Contributing</td>
<td>1916</td>
</tr>
<tr>
<td>2729 Tenth Ave E</td>
<td>Packard-Bridge House</td>
<td>83</td>
<td>Historic</td>
<td>1909</td>
</tr>
<tr>
<td>2730 Tenth Ave E</td>
<td>Watson, Fred B. & Martha S., House</td>
<td>84</td>
<td>Non-historic</td>
<td>1991</td>
</tr>
<tr>
<td>2731 Tenth Ave E</td>
<td>Finley, Francis B. & Elizabeth C., House</td>
<td>85</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2802 Tenth Ave E</td>
<td>Mayer, Marcus & Mildred K., House</td>
<td>86</td>
<td>Contributing</td>
<td>1924</td>
</tr>
<tr>
<td>Address</td>
<td>Name(s)</td>
<td>Number</td>
<td>Type</td>
<td>Year</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>2808 Tenth Ave E</td>
<td>Spencer, George K. & Mabel, House</td>
<td>87</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2809 Tenth Ave E</td>
<td>Bardshar, Fred H. & Rachel, House</td>
<td>88</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2812 Tenth Ave E</td>
<td>Turner, Issac L. & Bethina, House</td>
<td>89</td>
<td>Contributing</td>
<td>1903</td>
</tr>
<tr>
<td>2813 Tenth Ave E</td>
<td>Collins-Lyons House</td>
<td>90</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>2816 Tenth Ave E</td>
<td>Richardson, Dr. Waldo & Ora (Brown), House</td>
<td>91</td>
<td>Contributing</td>
<td>1912</td>
</tr>
<tr>
<td>2817 Tenth Ave E</td>
<td>Stevenson, Elizabeth, House</td>
<td>92</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2822 Tenth Ave E</td>
<td>Phillips-Hyde House</td>
<td>93</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2823 Tenth Ave E</td>
<td>Mason, Leonard A. & Marion B., House</td>
<td>94</td>
<td>Contributing</td>
<td>1910</td>
</tr>
<tr>
<td>2826 Tenth Ave E</td>
<td>Clark, Robert F. & Alice M., House</td>
<td>95</td>
<td>Historic</td>
<td>1909</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Non-contributing</td>
<td></td>
</tr>
<tr>
<td>2829 Tenth Ave E</td>
<td>Riley-Kucher House</td>
<td>96</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2832 Tenth Ave E</td>
<td>Higgins, John C. & Lorene S., House</td>
<td>97</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2833 Tenth Ave E</td>
<td>Peterson, Neil S., House</td>
<td>98</td>
<td>Contributing</td>
<td>1908</td>
</tr>
<tr>
<td>2836 Tenth Ave E</td>
<td>Patten, William T. & Irmengard, House</td>
<td>99</td>
<td>Contributing</td>
<td>1909</td>
</tr>
<tr>
<td>2837 Tenth Ave E</td>
<td>Sutherland, Augustus A. & Rosalind, House</td>
<td>100</td>
<td>Contributing</td>
<td>1908</td>
</tr>
</tbody>
</table>
Roanoke Park Historic District: Seattle, WA

UTM: ZONE 10 Seattle North USGS Quad

1) 550917 E 5277312 N
2) 551142 E 5277312 N
3) 527198 E 5276873 N
4) 550917 E 5276873 N
Roanoke Park Historic District
Contributing Vs. Non - Contributing Map - Primary Structures

- Contributing
- Non-Contributing

NR District Boundary
Roanoke Park Historic District
Contributing Vs. Non - Contributing Map - Accessory Structures

- Contributing
- Non-Contributing
Roanoke Park Historic District
Extant structures in 1900

NR District Boundary
Roanoke Park Historic District
Extant structures in 1910

NR District Boundary
This page intentionally left blank.
Park Site ID #2
Harvard-Roanoke Historic District
Mayor Ole Hanson House
2609 Broadway Ave E
Seattle, King, Wash

Facing West
By Lee O'Connor
4/10/2008

Photo #1/54
Roanoke Park Historic District
Jeremiah Neterer House
2102 Broadway Ave E
Seattle, King, Wash

Facing Northeast

By Lee O'Connor 4/10/2008

Photo #3/54
Roanoke Park Historic District
Logan House
2706 Broadway Ave E
Seattle, King, Wash.

Facing Northeast

By Lee O'Connor 4/10/2008

Photo #4/54
Roll A
Roanoke Park Historic District
Kavanaugh House
2712 Broadway Ave E
Seattle, King, Wash

Facing East
By Lee O'Connor 4/10/2008

Photo #5/54
Roll A
Roanoke Park Historic District
Soderberg - Vive Kananda House
2725 Broadway Ave E
Seattle, King, Wash

Facing Southwest

By Lee O'Connor 4/10/2008

Photo #6/54
Roanoke Park Historic District
Hayes - Byers House
2722 Broadway Ave E
Seattle, King, Wash

Facing East
By Lee O'Connor 4/10/2008

Photo #7/54
Roll A
Roanoke Park Historic District
Sullivan-Silverberg House
2736 Broadway Ave E
Seattle, King, Wash

Facing Northeast

By Lee O'Connor 4/10/2008

Photo # 8/54
Roanoke Park Historic District
Johnson-Anderson House
2900 Broadway Ave E
Seattle, King, Wash

Facing Northeast

By Lee O'Connor 4/10/2008

Photo #9/54
Roanoke Park Historic District

Hunter-Kindred House
2901 Broadway Ave E
Seattle, King, Wash

Facing Southwest

By Lee O'Connor 4/10/2008

Photo #10/54
Roanoke Park Historic District
Hunter-Kindred House (2)
2801 Broadway Ave E
Seattle, King, Wash

Facing Southwest

By Lee O'Connor 4/10/2008

Photo #11/54
Roll A

Roanoke Park Historic District
Pettitt-Taylor House
2808 Broadway Ave E
Seattle, King, Wash

Facing East

By Lee O’Connor 4/10/2008

Photo #12/54
Roll A

Roanoke Park Historic District
Martin - Franklin/Bryant/Williams House
2813 Broadway Ave E
Seattle, King, Wash

Facing West

By Lee O'Connor 4/10/2008

Photo #13/54
Roanoke Park Historic District

Guthman-Simpkins House
2828 Broadway Ave E
Seattle, King Co, Wash

Facing west

By Lee O'Connor
4/10/2008

Photo #14/54
Roll A

Roanoke Park Historic District
Klock-Nelson House
2827 Broadway Ave E
Seattle, King Co, Wash

Facing West

By Lee O'Connor
4/10/2008

Photo #15/54
Site ID # 24

Roanoke Park Historic District
Lilly - Emrich House
2826 - 2828 Broadway Ave E
Seattle, King Co, Wash

Facing East

By Lee O’Connor
4/19/2008

Photo # 16/54
Roanoke Park Historic District
Sands - Stowell/Russell House
2833 Broadway Ave E
Seattle, King Co, Wash
Facing West
By Lee O'Connor
4/10/2008
Photo #17/54
Roanoke Park Historic District
Denny - Jesuit House
2838 Broadway Ave E
Seattle, King Co, Wash

Facing Southeast

By Lee O'Connor
4/10/2008

Photo #18/54
Roanoke Park Historic District
Jacobs - Hongladaram House
817 E Hamlin St
Seattle, King Co, Wash

Facing Southwest

By Lee O'Connor

4/10/2008

Photo #19/64
Roanoke Park Historic District
Elliott-Christothoulou House
918 E Hamlin St
Seattle, King Co, Wash

Facing North
By Lee O'Connor
4/10/2008

Photo #20/54
Roanoke Park Historic District

Clemmer-Holdridge House

2612 Harvard Ave E

Seattle, King Co, Wash

Facing East

By Lee O'Connor

4/10/2008

Photo # 21/54
Roanoke Park Historic District
King-Friedman-Meshers House
2616 Harvard Ave E
Seattle, King Co, Wash

Facing Northeast

By Lee O'Connor
4/10/2008

Photo #22/54
William H. Parsons House - Harvard Mansion
Historic Landmark Number (31)
2706 Harvard Ave E

Seattle, King Co, Wash
Facing Northeast

By lee O'Conner
4/10/2008

Photo #23/54
Roanoke Park Historic District
Chisholm - Carroll/Triplett House
2712 Harvard Ave E
Seattle, King Co, Wash

Facing East
By Lee O'Connor 4/10/2008

Photo # 24/54
Roanoke Park Historic District
Gleeson-Mitchell House
2728 Harvard Ave E
Seattle, King Co, Wash

Facing Southeast

By Lee O’Connor 4/10/2008

Photo # 25/54
Harvard Reenoke Park Historic District
Dawson–Baird House
2836 Harvard Ave E
Seattle, King Co, Wash

Facing Southeast

By Lee O'Connor
4/10/2008

Photo #26/54
Roanoke Park Historic District
Gates - Bass/Denny Mansion
1018 E Roanoke St
Seattle, King Co, Wash

Facing Northeast
By Lee O'Connor 4/10/2008

(#28 a duplicate) Photo #27/54
Roanoke Park Historic District
808 E Shelby St
Seattle, King, WA
Sutherland - O'Donnell House

Facing Northwest

By Lee O'Connor
4/10/2008

Photo # 29/54
Roanoke Park Historic District

Anderson - Mellzi House
810 E. Shelby St.
Seattle, King, Wash

Facing Northeast

By Lee O'Connor
4/10/2008

Photo # 28/54
Roanoke Park Historic District

Hydeie - Groat Huizen House
900 E Shelby St
Seattle, King, Wash

Facing North

By Lee O'Connor
4/19/2008

Photo #31/54
Roll B

Park

Harvard-Roanoke Historic District

Crawford-Beck-Owen House

906 E Shelby St.

Seattle, King Co, Wash

Facing Northeast

By Lee O'Connor 4/10/2008

Photo # 32/54
Roll B
Harvard-Roanoke Historic District
Prosser-Dowling-Hayen House
912 E Shelby St
Seattle, King Co, Wash

Facing North

By Lee O'Connor 4/10/2008

Photo # 33/54
Roll B
Harvard - Roanoke Historic District
Olson - Moore House
920 E Shelby St
Seattle, King Co, Wash

Facing Northeast

By Lee O'Connor 4/10/2008

Photo # 54/54
Roll B
Harvard-Roanoke Historic District
Dalley-Stokke House
2608 Tenth Ave E
Seattle, King Co., Wash

Facing East

By Lee O'Connor 4/10/2008

Photo # 35/54
Roanoke Park Historic District

Gifford-O'Connor House
2612 Tenth Ave E
Seattle, King, Wash.

Facing East
By Lee O'Connor
4/10/2008

Photo # 36/54
Roanoke Park Historic District
Bogue - Alvarez House
2422 Tenth Ave E
Seattle, King, Wash

Facing East

By Lee O'Connor
4/10/2008

Photo # 37/54
Roanoke Park Historic District
Bloxom Buchanan House
2432 Tenth Ave E
Seattle, King, Wash

Facing Northeast

By Lee O'Connor
4/10/2008

Photo # 38
Roll B

Harvard Roanoke Historic District

Horner - Conley House
2636 Tenth Ave E
Seattle, King Co, Wash

Facing Southeast

By Lee O'Connor 4/11/2008

Photo# 39/54
Roanoke Park Historic District
Site # 14

Johnson-Anderson House
2000 Broadway Ave E
Seattle, King, Wash

Facing Northeast

By Lee O’Connor
4/10/2008

Photo # 40/54
Roll B

Harvard-Roanoke Historic District
Saunders-Celilo House
2761 Tenth Ave E
Seattle, King Co, Wash

Facing Northwest

By Lee O'Connor 4/11/2008

Photo #41/54
Roll B

Harvard-Roanoke Historic District
Parshall-Siegl-Todaro House
2706 Tenth Ave E
Seattle, King Co, Wash

Facing East

By Lee O'Connor 4/11/2008

Photo #42/54
Roll B Park Site ID # 79
Harvard-Roanoke Historic District
Caldwell-Boardman-Hankoff House
2717 Tenth Ave E
Seattle, King Co, Wash

Facing Northwest
By Lee O'Connor 4/11/2008

Photo # 43/54
Roll B Park Site ED 81
Harvard-Roanoke Historic District Barker - Satterberg - Carlstrom House
2722 Tenth Ave E
Seattle, King Co, Wash

Facing East

By Lee O'Connor 4/11/2008

Photo # 44/54
Roll B

Park Site ID #85

Harvard-Roanoke Historic District
Finley-Hueffed-Kavalam/Brooke House
2781 Tenth Ave E
Seattle, King Co., Wash

Facing Southwest

By Lee O'Connor 4/11/2008

Photo #45/54
Roll B

Park Site ID #86

Harvard-Roanoke Historic District
Hayes - Spangler/Renfro House
2802 Tenth Ave E
Seattle, King Co, Wash

Facing Northeast

By Lee O'Connell 4/11/2008

Photo #4(2)/54
Roll B

Park Site ID #88

Harvard-Roanoke Historic District

Bardshar-Allen House

2909 Tenth Ave E

Seattle, King Co, Wash

Facing West

By Lee O'Connor 4/11/2008

Photo #47/54
Roll B

Park Site ID # 90
Harvard-Roanoke Historic District
Collins-Lyons-Fisk House
2813 Tenth Ave E
Seattle, King Co, Wash

Facing Northwest

By Lee O'Connor 4/11/2008

Photo # 48/50
Harvard - Roanoke Historic District
Waldo Richardson - Smiley / Bennett House
2816 Tenth Ave E
Seattle, King Co, Wash

Facing Northeast

By Lee O'Connor 4/11/2008

Photo #49/54
Roll B

Park Site ID # 92

Harvard-Roomke Historic District

Burke House

2817 Tenth Ave E

Seattle, King Co, Wash

Facing West

By Lee O'Connor 4/11/2009

Photo # 50/54
Roll B

Harvard-Roanoke Historic District
William C. Phillips/Hyde-Stout House
2822 Tenth Ave E
Seattle, King Co, Wash

Facing East

By Lee O'Connor 4/11/2008

Photo # 51/54
Roll B

Park SiteID # 94

Harvard Roanoke Historic District
Mason - Chapman House
2123 Tenth Ave E
Seattle, King Co, Wash

Facing West

By Lee O'Connor 4/11/2008

Photo # 52/54
Roll 13

Park Site ID #98

Harvard-Roanoke Historic District

Peterson-Kohl/Crickner House

2833 Tenth Ave E

Seattle, King Co, Wash

Facing West

By Lee O'Connor 4/11/2008

Photo # 53/54
Roll B

Harvard-Roanoke Historic District

Patten-Weber House
2836 Tenth Ave E
Seattle, King Co, Wash

Facing Northeast

By Lee O'Connor
4/11/2008

Photo #54/54
Landmark Preservation Board Report
on Designation: Montlake Community
Center
REPORT ON DESIGNATION

Name and Address of Property: Montlake Community Center
1618 E. Calhoun St.

Legal Description:

All that part of the NE1/4 of Section 20 and the NW1/4 of Section 21, township 25 North, Range 4 East described as follows:
All of Lots 1, 2, part of Lots 3, 4, lying southwesterly of a line drawn from the most northerly corner of Lot 16 in Block 41, Pike’s Second Addition to Union City, to the most northerly corner of Lot 2 in Block 1, all of Blocks 2, 3, 4, 5, 7, 8, Lake Union Shore Lands less right of way of State Highway 520;

Also,
Lot 4, Block 9-A, Lots 1, 2, Block 6-A, Block 2-A, Second Supplemental maps of Lake Union Shore Lands less right of way of State Highway 520;

Also,
Blocks 41, 42, 43, 48, 49, 50, 52 of Pikes Second Addition to Union City, less right of way of State Highway 520;

Also,
That portion of Block 10 of Union City Addition lying westerly of a line described as follows:
Beginning at a point on the north line of South Louisa Street a distance of 69.51 feet east of 19th Avenue East; thence northeasterly to a point on the north line of the south 70 feet which is 113.09 feet east of the east line of 19th Avenue East; thence easterly along said north line 10 feet; thence northeasterly to a point on the north line of the south 140 feet which is 28.74 feet west of the east line of the west half; thence easterly along said north line to the east line of the west half, thence northerly along said east line to the southerly right of way line of State Highway 520
Together with the following vacated avenues and streets adjoining:
15th Avenue East from East Louisa to a line drawn southeasterly from the most southerly corner of Block 7, Lake Union Shore Lands
16th Avenue East from the north line of East Calhoun Street to the South line of East Louisa Street
18th Avenue East from the north line of Calhoun Street to the northwesterly line of Block 1, Lake Union Shore Lands
At the public meeting held on January 19, 2005, the City of Seattle's Landmarks Preservation Board voted to approve designation of the Montlake Community Center as a Seattle Landmark based upon satisfaction of the following standards for designation of SMC 25.12.350:

C. It is associated in a significant way with a significant aspect of the cultural, political, or economic heritage of the community, city, state or nation.

D. It embodies the distinctive visible characteristics of an architectural style, or period, or of a method of construction.

F. Because of its prominence of spatial location, contrasts of siting, age, or scale, it is an easily identifiable visual feature of its neighborhood or the city and contributes to the distinctive quality or identity of such neighborhood or city.

DESCRIPTION

Montlake Playfield is situated on a large waterfront parcel bounded by East Calhoun Street to the south, West Montlake Place East to the east, and Portage Bay to the north and west. State Route 520 follows the shoreline immediately north of the playfield. Completed in 1935, the brick field house occupies a site near the street within the southwest corner of the playfield where most of the facilities are clustered. The Tudor Revival building is part of the Montlake Community Center complex that also includes a prefabricated steel structure located some five feet to the north and a large freestanding gymnasium and recreation center located to the northwest across a small plaza. The gable roof steel structure was erected in 1948 as a temporary addition to the field house before the construction of the modern brick clad gymnasium and recreation center in 1976.

The children’s play area is located northeast of the field house along the east elevation of the gymnasium, and two tennis courts are located to the west. A small parking area with an entrance aligned with 16th Avenue East borders the tennis courts. Athletic fields located east and northeast of the play area cover the majority of the 27-acre site that is mostly flat and low-lying and surrounded by a residential neighborhood of well-kept homes and yards. A baseball diamond fills the southeast corner. Closer to the water, a combination football/soccer field lies within a large oval running track at the northeast corner of the playfield. Trees and mature landscaping line the perimeter of the largely open playfield. The Montlake Bike Path runs along the eastern margin of the playfield, which backs onto a row of single-family homes facing West Montlake Place East.

Measuring approximately 84 feet by 40 feet and known as the “Tudor Annex,” the 1½-story side gable building has wide projecting cross gables east of center on the north and south elevations. The
cross gables as well as the eastern side gable have distinctive clipped gable or jerkin head roofs. The western side gable has a large brick chimney, which rises up the center of the west elevation. All four of the gable ends feature decorative bargeboards incorporated into the ornamental half-timbering, which overhangs the lower walls clad with variegated brick veneer. The vertical members within the half-timbering end in drop pendants below the scalloped lower edge of the horizontal beam across the bottom. On the north and south elevations, the cross gable ends also feature a multi-paned casement window centered between wooden louvers of the same size. On the east elevation, the side gable end has two multi-paned casement windows in a similar configuration.

On the principal south elevation, the projecting cross gable of the Annex contains a shallow arched entrance within a corbelled recessed opening at the western end adjacent to a large multi-paned window towards the center. The brick wall to west of the entrance flares out at the base. Beyond this window, the eastern half of the structure has a small boarded over window opening adjoining two multi-paned horizontal windows. A single door entrance to the men’s restroom is located on the narrow eastern side of the cross gable. West of the projecting cross gable, the side gable main block has two large multi-paned windows at the western end and a shed roof wall dormer with a large opening near the eastern end. This large opening contains three multi-paned windows under a fascia embellished with a scalloped edge. East of the cross gable, the main block has two multi-paned horizontal windows within the upper wall below the roofline. The east elevation has a shallow arched entrance within a corbelled recessed opening centered between four multi-paned horizontal windows. On the west elevation, large multi-paned windows flank the chimney at the center.

The “Butler” brand prefabricated steel shed obscures much of the Annex building’s rear north elevation, which features a design nearly identical to the south elevation. The projecting cross gable contains an entrance door near the western end adjacent to a large multi-paned window towards the center. A smaller modern replacement door has been framed within the larger original opening. The brick wall to west of the entrance flares out at the base. Two horizontal multi-paned windows are situated at the eastern end of the cross gable and one is situated at the western end. A single door entrance to the women’s restroom is located on the narrow eastern side of the cross gable. Immediately west of the projecting cross gable, the side gable main block has an additional entrance door. Beyond this door, the western end of the main block contains two large multi-paned windows, while the eastern end has a shed roof wall dormer with a large opening. This large opening contains three multi-paned windows under a fascia embellished with a scalloped edge. East of the cross gable, the main block has two multi-paned horizontal windows within the upper wall below the roofline.

Dense plantings and mature trees almost completely conceal this attractive building. Although relatively well maintained, this Tudor style building shows signs of deferred maintenance and of a deterioration of the wood elements, especially the distinctive half-timbering. Nonetheless, this architecturally distinctive building retains excellent physical integrity.
STATEMENT OF SIGNIFICANCE

Montlake Neighborhood Historical Context

The Montlake neighborhood occupies a relatively low-lying area of land at the base of the northern end of Capitol Hill. Originally, this area was part of a larger hourglass-shaped strip of land that connected north and south Seattle and separated the waters of Lake Union’s Portage Bay to the west and Lake Washington’s Union Bay to the east. A small brook flowed west across this narrow isthmus roughly following the route of today’s SR520 and emptied into the southern end of Portage Bay, forming a shallow natural portage between the two bodies of water. The high bluffs of Capitol Hill terminated in a deep wooded ravine that extended along the southwestern margin of the area. Along the eastern margin, a wider but shallower ravine contained a stream that originated in the vicinity of today’s East Madison Street and flowed north before discharging into the southern end of Union Bay. Never developed, these ravines eventually became Interlaken Park and the Washington Park Arboretum. Although the area was easily accessible by water and first platted in the late 1860s, these natural features restricted overland access from adjoining areas, delaying significant residential development until the 1910s and 1920s.

From the earliest days of Euro-American settlement in Seattle, the narrow neck of land between Lake Union and Lake Washington was seen as a logical location for a canal uniting these two major inland bodies of water. Previously, Duwamish Indians, an Original Peoples of the area, had used the brook across the isthmus as a canoe portage in order to travel between seasonal campsites and villages established in the area and points beyond. As envisioned by settlers, the construction of additional canals to the west would link the two lakes with Puget Sound, facilitating the development of industry and commerce. In anticipation of this, pioneer settler Thomas Mercer proposed the “Lake Union” and “Union Bay” names to those gathered for Independence Day celebrations on July 4, 1854. In the late 1860s, it also inspired Harvey L. Pike to name his newly platted town on the low neck of land “Union City.” Earlier that decade, Pike had acquired a large tract of land across the isthmus and to the south as payment for painting the Territorial University Building completed in the fall of 1861. His father, John H. Pike, a carpenter, had designed and constructed the university’s first building on its original downtown campus, a ten-acre site roughly bounded by Third and Fifth Avenues and Union and Seneca Streets. The elder Pike had arrived in Seattle in 1858 after living in Corvallis, Oregon since the early 1850s. His son followed him to Seattle a few years later and obtained the commission of painting the stately Classical Revival building.

Once he took possession of the land, Harvey Pike attempted to excavate a canal across the lower portion of the isthmus, using only a pickaxe, shovel and wheelbarrow and the assistance of his father. Ultimately unsuccessful, Pike then turned his sights towards real estate development despite the fact that this area was considered far from the center of town in Pioneer Square and located just outside the Seattle city limits with a northern boundary at Galer and McGraw Streets in 1869. In the summer of that same year, Pike recorded his first plat of “Union City,” sixteen blocks located to the north and south of a strip of land designated as the “Canal Reserve.” Two hundred feet wide, the Canal Reserve followed a curved route through the center of Union City, cutting through several blocks fronting onto it. Laid without regard to topography, the eleven full blocks each contained twelve lots, measuring 60 feet by 100 feet. Unlike other outlying areas where larger parcels were platted to serve as farms, Union City’s small lots anticipated denser residential development that would not commence for almost forty years.
Over the next two years, Pike filed two additional town plats, “H.L. Pike’s First Addition to Union City” in December of 1870 and “Pike’s 2nd Addition to Union City” in January of 1871. Located north of the original plat, the smaller “First Addition” comprised eight blocks in a narrow strip of land that was later replatted as the “Montlake Park” addition in 1909. The substantially larger “2nd Addition” contained thirty-two blocks and covered an area south of the original plat between Portage Bay on the west and the Arboretum ravine on the east to the north of present-day East Lynn Street. Harvey Pike then sold the rights to develop the canal in 1871 to the Lake Washington Canal Company, of which he was one of the incorporators. Pike probably anticipated that he would benefit from both the construction of the canal and real estate development in his town site. After failing to obtain federal support for the project, the firm built a narrow gauge railway to transfer coal extracted from east side mines between Lake Washington barges and Lake Union barges. An 1874 map of the city of Seattle published by A. Mackintosh shows the routes of the “R.R. Portage” across the isthmus and the “Seattle Coal Co. Steamer line” across Lake Washington. Within a few years, this railway was abandoned when a rail outlet via Renton became available, and the tracks were removed in 1878.

Five years later, a second attempt was made to excavate a canal across the isthmus. However, this effort proved more successful as the Lake Washington Improvement Company managed to construct a canal deep enough to float logs and small boats between the two lakes. Organized in 1883 by Judge Thomas Burke and pioneer entrepreneur David Denny among others, the company hired Chinese labor to complete the project by the mid-1880s. Logs transported through what came to be called “The Portage” were stored in the millpond at the southern end of Portage Bay before being transferred to the sawmills at the south end of Lake Union, including one owned by David Denny. Historic photographs from the 1890s show a largely bare low-lying ridge covered with grasses, bushes and scattered trees that slope down from the Lake Washington side to the Lake Union side. Dams and sluice gates regulated water flow through the narrow channel bordered by steep banks. Later, this channel was deepened and widened. Shortly after the completion of the canal, Judge Burke joined with entrepreneur Daniel J. Gilman and others to organize the Seattle Lake Shore & Eastern Railway line, which reached Union Bay in 1887. Now the route of the Burke-Gilman Trail, this railroad skirted the northern shoreline of Lake Union and looped around Union Bay before heading north to continue along the western shore of Lake Washington.

Although it proved to be a successful venture, construction of the canal failed to spur the real estate development that Harvey Pike envisioned when he platted Union City and its subsequent additions. Annexation of the area by the city of Seattle also did little to encourage residential or commercial growth. The North Seattle Annexation in May of 1891 encompassed the northern ends of Capitol and Queen Anne Hills as well as Magnolia, Fremont, Wallingford, Green Lake, Latona, and Brooklyn, which later became known as the University District. The annexed area included Union Bay and its marshlands west of 35th Avenue NE and south of NE 55th Street and the Montlake and Madison Park neighborhoods. Limited access to the area remained a primary obstacle to its development. Although a wagon road connected the area to Capitol Hill and the new University of Washington campus by the mid-1890s, no streetcar or cable car lines served the Montlake neighborhood until 1909, well after the city’s first lines were developed in the late 1880s and early 1890s. As is apparent on maps of the era, growth progressed in a linear fashion along the routes of these public transportation lines, accelerating the trend for residential and commercial development outside the city’s original downtown core.
Prior to the development of the streetcar line, the area’s first major transportation improvement came in the form of a ten-mile cinder bicycle path that linked downtown Seattle with Lake Washington. Completed in the summer of 1897 by the Queen City Good Roads Club, the immensely popular Lake Washington Path roughly followed the route of today’s Lakeview and Interlaken Boulevards and eventually became part of a larger 25-mile system of bicycle paths. Assistant City Engineer George F. Cotterill had developed this system with the assistance of volunteers by walking about and surveying the city. In 1903, the Olmsted Brothers landscape firm of Brookline, Massachusetts utilized some of Cotterill’s existing bicycle routes, including the portion now comprising Interlaken Boulevard, as part of their plans for a comprehensive park and boulevard system for Seattle. The city had hired the illustrious firm that same year to prepare a report detailing their plans for such a system as well as suggestions for improvements to existing parks.

As a result of the Olmsted Brothers’ recommendations, the city acquired much of the deep wooded ravine along the northern end of Capitol Hill for Interlaken Park in 1905 and subsequently developed Interlaken Boulevard. This occurred five years after the city acquired the larger ravine to the east from Union Bay to East Madison Street through donation and purchase and named it “Washington Park” after the nearby Lake Washington. The first phase of Lake Washington Boulevard was largely completed through Washington Park in 1904. However, it was not until the mid-1930s that most of the land was developed into the Washington Park Arboretum in association with the University of Washington and the Arboretum Foundation.

The development of these parks and parkways may have been the stimulus needed to increase the rate of residential development in the Montlake neighborhood, for in December of 1905, the Interlaken Land Company filed the area’s first plat in more than thirty years. Recognizing the need for such an amenity, the company’s president, John E. Boyer, had exerted great influence in the creation of Interlaken Park prior to the development of the company’s “Interlaken” addition. Bordered on the west by Interlaken Park and on the east by Washington Park, the plat featured twenty irregularly shaped blocks located on either side of 24th Avenue East to the north of East Galer Street. The addition’s curvilinear streets included a short portion of Interlaken Boulevard. Unlike the earlier Union City plats, the blocks and streets of the Interlaken Addition were laid out with close regard to the topography, following principles espoused by the Olmsted Brothers. In addition to being more scenic and picturesque, this type of design allowed for better use of the land, maximizing the number of building lots. In order to attract affluent buyers, predominately Euro-Americans, the company placed restrictive covenants on the lots sold, requiring minimum costs for the homes constructed on them that were substantially above average prices at the time. Furthermore, all deeds contained restrictions against businesses and apartment houses, an early means of enforcing single-family zoning. Boyer, a lawyer, built his own 1907 mansion on a choice parcel located between Interlaken Boulevard and Boyer Avenue East overlooking Washington Park.

The Interlaken Addition represented the neighborhood’s first platted lands south of the original Union City additions. Less than two years later, the H.S. Turner Investment Company, under the direction of A.B. Graham, recorded the “H.S. Turner Park Addition” in January of 1907. Located immediately north of the Interlaken Addition and west of Washington Park, this plat covered seven blocks east of 24th Avenue East and south of East Lynn Street. Four years later in 1911, most of the remaining unplatted lands south of Pike’s 2nd Addition to Union City and west of 24th Avenue East were recorded as “H.S. Turner’s Interlaken, An Addition to the City of Seattle.” Owners John and
Louise Boyer once again developed a subdivision with irregularly shaped blocks and curvilinear streets that followed the topography rather than a rectilinear street grid. In naming their additions, the Boyers hoped that the entire neighborhood would come to be known as Interlaken. However, that name went to the real estate developers who platted “Montlake Park, An Addition to the City of Seattle” in July of 1909.

By this time, the Federal Government had taken over the old canal right-of-way originally designated by Harvey Pike and had largely completed plans to construct a navigable canal within a new right-of-way located further north on the isthmus. The new canal, which later became known as the “Montlake Cut,” would be the easternmost portion of the Lake Washington Ship Canal, a series of locks and canals that would finally connect Puget Sound with Lake Union and Lake Washington. The waterway’s northern route through Ballard’s Salmon Bay, Fremont, and the Montlake isthmus was chosen after decades of debate over alternative routes, including one through Beacon Hill. After numerous delays, construction finally began in the fall of 1911. When the Montlake Cut opened in 1916, the level of Lake Washington eventually dropped by almost nine feet, draining low-lying marshes and exposing new land all around Union Bay. The old portage canal was also left high and dry. The entire waterway opened to ship traffic the following year with formal dedication ceremonies held on July 4, 1917. However, it was another eight years before the present Montlake Bridge was finally completed to replace a temporary wooden bridge.

The 1909 Montlake Park Addition occupied the narrow strip of land between the two canal right-of-ways and encompassed the eight blocks originally platted as H.L. Pike’s First Addition to Union City in 1870. The addition’s developers, James M. Corner and Calvin H. Hagen, completely reconfigured the earlier plat’s grid plan in order to better accommodate the site and to include a wide boulevard through the middle and public parks at each end. It is no coincidence that development of the plat coincided with plans to hold the Alaska-Yukon-Pacific Exposition on the lower half of the of the University of Washington campus for four and a half months in 1909, especially since it required construction of a new streetcar line. Built to serve the southeast entrance of the fair, the new line opened in 1909 and ran along the eastern flank of Capitol Hill and through the Montlake neighborhood before terminating at the campus.

As a result of this real estate activity and with the completion of these transportation improvements, the pace of residential development in the Montlake neighborhood increased exponentially in the 1910s and 1920s as lots filled with a variety of single-family homes. This growth continued until houses covered most of the neighborhood’s vacant lots by the 1940s but included almost no commercial development with the exception of a short strip along 24th Avenue East and a few other scattered sites. Young families with small children occupied many of these new homes. Initially, neighborhood children attended Stevens Elementary School located a significant distance up Capitol Hill at 18th Avenue East and East Galer Street. In 1914, the Seattle School District purchased the present school site; a single block bounded by 20th and 22nd Avenues East and East McGraw and East Calhoun Streets, and installed a one-room portable that housed students in grades one to three. The Portage School, as it was originally called, eventually offered first through sixth grades after the installation of three additional portables on the grounds. In 1924, the present two-story Georgian Revival brick structure was completed and was designed to accommodate all grades from one to eight. A planned auditorium/lunchroom addition was never constructed however. It was at this time that the name changed to the present Montlake Elementary School.
The establishment of the Montlake Elementary School and the subsequent construction of the permanent brick building resulted from heavy campaigning by the community, which sought to improve the neighborhood’s public amenities. After advocating for a new school building, local residents, under the organization of the Montlake Community Club, were instrumental in the acquisition and development of a public park for the neighborhood. Although Interlaken and Washington Parks bordered the Montlake neighborhood on two sides, the main features of these parks were the boulevards that meandered through them, making them unsuitable places for children to play. As the number of residents increased and the amount of vacant land decreased in the first decades of the twentieth century, it became apparent that an additional public park would be a desirable and needed improvement. However, neither the original 1903 Olmsted Brothers plan nor their 1908 supplemental report recommended the siting of a park or playground within the Montlake neighborhood. The 1908 report had advocated for the creation of playgrounds located near schools so teachers could direct the children’s activities. The idea of public recreation facilities in parks had only become popular late in the 19th and early in the 20th centuries, and the Olmsted Brothers were at the forefront of the movement. Because Montlake had no public school in 1908, the Olmsted Brothers did not identify the need for a playground in the neighborhood. As a result, no parks or playgrounds were developed in Montlake for many years as the Seattle Parks Department focused on implementing the Olmsted plan elsewhere in the city.

The issue gained greater urgency in the later 1920s when Montlake parents heard the Garfield High School principal talk about the problems of petty crime and juvenile delinquency in the community. In response, local residents concluded that a neighborhood playfield and field house would solve many of the problems by providing a place for recreational pursuits. Mrs. Russell Brackett, president of the Montlake PTA, enlisted the assistance of her husband, a realtor, to identify a site and obtain the acreage necessary for a playfield. A large vacant site fronting on the southern shore of Portage Bay seemed the perfect location, especially since it was only a block away from the Montlake Elementary School. The 15.8-acre site comprised some six blocks within Pike’s 2nd Addition to Union City located north of East Calhoun Street between 16th and 19th Avenues East as well as additional offshore blocks within the Lake Union Shore Lands. Spearheaded by the Montlake Community Club, local residents twice collected signatures for petitions requesting the acquisition of a playfield in the district and presented them to the Board of Park Commissioners in 1929 and 1930. After referring the matter to the City Council, the Park Board approved the petition on August 21, 1930. The following January, the City Council passed Ordinance No. 60590 that condemned the property and stipulated the potential funding mechanisms for its acquisition. These possibilities included a special assessment levied within a Local Improvement District (L.I.D.) approved by a majority of its residents, a City Council appropriation, or a combination of the two. However, condemnation proceedings remained stalled for almost two years due to strong opposition on several fronts.

Despite the support of neighborhood residents, there was substantial opposition from the property owners of the proposed site and from the nearby houseboat owners illegally moored along the shore facing eviction. Several members of the Park Board also objected to the acquisition of any additional property for playground purposes on the grounds that the City Council had not provided sufficient funds to maintain and develop park property already owned. Mrs. Alta M. Wheeler, the owner of most of the site, cultivated dahlias on her property to supply her flower shop, Dahlialand
Gardens, which was located several blocks to the south on Boyer Avenue East. Mrs. Wheeler’s primary objection was the low purchase price offered by the city. After a heated City Council hearing was held on the matter in the latter part of 1932, an appeal was made to the State Supreme Court, which said it had no jurisdiction over playgrounds. Subsequently, the City Council passed Ordinance No. 63275 on December 27, 1932, which finally approved condemnation of the property for park and playground purposes. Unfortunately, by this time, the city was reeling from the effects of the nationwide economic Depression that had begun several years earlier and did not have any funds to appropriate for the park’s acquisition. As a result, Montlake residents paid the entire $25,000 purchase price after approving the establishment of a L.I.D. However, the city did agree to appropriate $10,000 towards improvements at the new playfield, using money from a Seattle Park Bonds 1932 Construction Fund. These included construction of a drainage and water system and shelter house as well as necessary grading.

Montlake Playfield Field House and Depression-era Relief Agencies

During this period, the Seattle Parks Department followed a standard development program for newly acquired playfields that staged active construction over a five to ten year period. The first step was to complete the clearing, grading, surfacing and fencing of the site. At this point, general play areas could be laid out and used immediately by neighborhood children. Next, water and drainage systems were installed prior to planting and landscaping. The last and the most costly phase included the construction of shelter houses, the laying out of athletic fields, the building of courts and wading pools, and the installation of play equipment. At times, a temporary wood frame structure was built to satisfy an immediate need before a permanent masonry shelter house could be built to replace it. By the early 1930s, the Parks Department had completed extensive improvements within the existing park system but needed to determine a plan of action for the future, especially in an era of dwindling financial resources. In 1931, Park Engineer Eugene R. Hoffman prepared a report entitled *A Ten Year Program for the Seattle Park Department* that inventoried facilities and provided cost estimates of the needs of each park and playground in Seattle. Based upon a projected population for the Seattle metropolitan area in 1940, the program of development aimed at making better use of existing properties, adding to those properties that needed more space, and acquiring new properties in those areas of the city that were experiencing growth. The 1931 report noted the “urgent need” for a playfield in the Montlake district and recommended development of one on the site already under consideration.

This 1931 report became the basis for the projects included in the Seattle Park Bonds 1932 Construction Fund, which budgeted a $10,000 allowance for Montlake Playfield out of its $370,000 total despite the fact that the property had yet to be acquired. Once this obstacle had been overcome, the Montlake Community Club began lobbying the city to construct a field house despite the fact that this contrasted with the Parks Department’s standard policy of building shelter houses at the city’s playfields. At that time, there were six large field houses spread widely throughout the city at Hiawatha, Ballard, Collins, South Park and Rainier Playfields and Green Lake Park. These recreational facilities functioned as community centers, and most included combination gymnasiums and auditoriums with stages, clubrooms, quiet game rooms, showers, locker rooms and lockers, toilets, rest rooms, refreshment kitchens, drinking fountains, offices, and store rooms. The smaller shelter houses featured more limited facilities, including a large room for organized recreation activities, public restrooms, and office space for recreation instructors. It appears, though, that the Montlake Community Club was successful in its efforts to persuade the Park Board to build a larger
structure than the prevailing standard. Perhaps a shelter house seemed inadequate for the community’s needs in the absence of other similar public facilities, particularly the lack of an auditorium or large assembly hall at the nearby elementary school.

Although money from the Seattle Park Bonds 1932 Construction Fund was available, city government was experiencing significant financial difficulties, requiring that nearly all its capital improvement projects be halted. It was not until the fall of 1933 that the first federal relief agency, the Civil Works Administration (CWA), began to provide the city with assistance. Created on November 9, 1933, the CWA was intended to be a short-term program designed to carry the nation over a critical winter while other programs of the Federal Emergency Relief Administration (FERA) were being planned and developed. With the federal government paying most of the wages, the CWA aimed to put four million unemployed to work during the winter of 1933-34 on public works projects sponsored primarily by local state governments, which furnished the materials. Governor Clarence D. Martin and Director Charles F. Ernst headed the CWA program in Washington State. In King County, 3,500 were immediately put to work under the CWA during the Fall of 1933. By January, 17,173 were employed in a variety of public works projects, including road, bridge and airport construction and flood repairs on the Cedar River.

In December of 1933, the Board of Park Commissioners met to decide the Seattle Parks Department projects that would use labor furnished by the CWA and materials purchased with appropriations from the 1932 Bond Construction Fund. Green Lake Park received the largest expenditure, $24,000, to pay for a water system, a tool house, and plantings. The Park Board also approved new shelter houses at the Laurelhurst and Montlake Playfields, the only recreational structures funded at this time, with $8,340 earmarked for Laurelhurst and $6,700 for Montlake. In early December of 1933, the Montlake Community Club had sent the Park Board a letter supporting the use of CWA labor to build the field house as well as to develop the playfield. Although it was the middle of winter, work on both shelter houses began immediately in January of 1934, and construction proceeded simultaneously over the next three months. By early March, the brick veneered exteriors of both buildings were largely complete as evidenced in historic photographs. However, construction was halted at the end of March when CWA operations came to a close. In a letter dated March 27, 1934, Chief Engineer Arrigo M. Young of the CWA’s King County Division informed W.C. Hall, Junior Park Engineer, of the planned shutdown on March 29. Young also noted that the Parks Department would need to reapply in the future for assistance on completing the unfinished projects.

After the CWA program ended in the spring of 1934, these projects were eventually continued and completed under the auspices of the Washington Emergency Relief Administration (WERA), a relief agency operated by the Washington State government from 1933-37. In addition to creating work for the unemployed, WERA also provided other public welfare assistance, including aid to the aged, the homeless, and the impoverished. In August of 1934, W.C. Hall wrote a letter to WERA District Engineer A.M. Young on behalf of the Park Board, detailing the Parks Department list of projects to be completed in order of their importance. The “Laurelhurst Fieldhouse” was at the top of the list and the “Montlake Fieldhouse” was second. As the letter notes, some time over the course of 1934, the buildings began to be identified as field houses, replacing the earlier designation as shelter houses. This change reflected the fact that the new structures provided more spacious recreational facilities than the smaller shelter houses although they were not as large as the earlier field houses.
Although the Park Board Annual Report for 1934 stated that the two new field houses were nearly completed at the end of 1934, the Laurelhurst Field House was not dedicated until the spring of 1935, and the Montlake Field House was not dedicated until the fall of that year. By the time they were completed, both projects were substantially over budget, possibly indicating that the finished structures were larger and more elaborate than originally planned. Although both buildings were designed with Tudor Revival stylistic features, the Laurelhurst Field House displays a more modern and restrained interpretation of the style that lacks the half-timber embellishments found on the more traditional Montlake Field House. The use of the Tudor Revival style for Seattle park buildings was very popular in the 1920s and 1930s, mirroring its dominance in the residential architecture of the time. The eight shelter houses built in playfields throughout the city during the later 1920s and early 1930s display a simplified Tudor Revival style in their design. Construction of these shelter houses followed a policy to build only structures that would be pleasing in design and permanent in nature. Several comfort stations constructed during the same period employed a more finely detailed version of the style, reflecting their location in prominent parks in fashionable residential neighborhoods. In addition, the Tudor Revival style lent itself well to the use of brick veneer in the buildings’ masonry exteriors.

The Montlake Community Club assisted the Park Board in arranging the dedication ceremony, which took place at the new $20,000 field house on October 23, 1935 at 8:00pm. President John L. Harris represented the club and presided over the evening’s program. Honored guests included Mayor Charles L. Smith, Park Board Chairman Harry M. Westfall; City Councilmen James Scavotto and Austin E. Griffiths, as well as other civic and religious leaders. More than two hundred citizens attended the informal exercises, described in a newspaper article as a “neighborhood party,” and enjoyed a program of entertainment, refreshments and dedicatory addresses. Set at the southern edge of the playfield and fronting on East Calhoun Street, the one-story brick structure contained a spacious social room equipped with a large fireplace and a small kitchenette, an instructor’s office and a caretaker’s room. Separate locker rooms and restroom facilities were provided for men and women, but they shared a single shower room. Designated as a “B” type field house, the only major feature that it lacked was a gymnasium. Although Lloyd J. Lovegren has been identified as the architect of the Laurelhurst Playfield Field House, the architect of the Montlake Playfield Field House is not known at this time. It may have been an employee of the Parks Department or one of the draftsmen employed by the CWA.

In the year following the completion of the field house, the Parks Department developed the rest of the playfield. This included grading and seeding three acres of athletic fields, the installation of water and drainage systems, the construction of paths and a rock wall, and the construction of two asphalt tennis courts and an archery course. Although the estimated value of the improvements totaled nearly $18,000, the Parks Department paid less than $1,100 through the use of additional federal relief workers. This time, the Works Progress Administration (WPA) provided the laborers for the project. Created in May of 1935, the WPA consolidated and superseded several earlier programs, including the FERA. The Seattle Parks Department relied heavily on WPA labor to implement the recommendations of their 1931 report in the later 1930s and early 1940s. In contrast to this relatively small WPA project at Montlake Playfield, one of the largest was the development of the West Seattle Recreation Area, which included the West Seattle Golf Course, the West Seattle Stadium, and Camp Long. This massive undertaking comprised approximately one-third of the $1.1 million allotted. In addition to these improvements, the area of usable land at the playfield increased by two and a half acres when the Engineering Department hauled 40,000 cubic yards of dirt from the
construction of the Delmar Drive East arterial. This began a process of filling the playfield’s wetlands when “free” fill material became available. While the Parks Department was happy to accommodate the Engineering Department’s need to dispose of excavated material from Delmar Drive, it turned down a request by the Department of Health and Sanitation to use the playfield as a sanitary landfill.

Montlake Community Club

The completion of the field house not only provided a recreational facility for area residents; it finally gave Montlake neighborhood groups a place to hold their meetings. This included Boy Scouts, Girl Scouts, Camp Fire Girls, the Montlake PTA, the Music and Art Foundation, and the Montlake Community Club, which continues to meet there to the present day. With this base of operations, the Montlake Community Club then turned its attentions to additional neighborhood improvements. One of the club’s first tasks after the successful completion of the playfield improvements was the eviction of the illegally moored houseboats along the shore. After the Parks Department was unsuccessful in the removal of the last remaining houseboats, it asked the club for assistance when the city attorney’s office advised against taking legal action. The club’s efforts lasted several years before the situation was finally resolved. During the 1940s, one of the club’s primary goals was the establishment of a Seattle Public Library branch in the neighborhood. When the club first asked the library board for a local branch in 1943, they were told that the funds were not available. However, the library promised to supply staff and books if the community supplied the space. Under the club’s leadership and in conjunction with the Montlake PTA, the community campaigned to raise funds by citing the need to prevent juvenile delinquency and collected more than $2,000 within six months. After a former grocery store was leased, volunteers completed the necessary improvements before the Montlake Station opened on September 1, 1944 with 1,500 books and its own librarian. Eventually the Seattle Public Library formally took over the lease on the station on January 1, 1947.

Montlake Playfield Improvements

Although pleased to have the recreational facility, area residents still desired amenities found at the larger field houses, especially a gymnasium, and continued to lobby the Parks Department for such improvements. In the later 1940s, the possibility became more of a certainty when new funding for parks became available. In 1946, the State provided $1,000,000 for developments in Seattle parks and playgrounds. Two years later in 1948, Seattle voters approved a $2,500,000 Park Bond, the first in almost two decades and almost entirely programmed to improve the worn out park system. Unfortunately, little was allocated to the Montlake Playfield as the Parks Department directed its efforts elsewhere in the city. The $3,500 funded went towards the construction of a prefabricated steel building to the north of the existing field house in 1948 to house the operations of the Montlake Cooperative Play Group. In a December 1948 letter to the Park Board, the Montlake Community Club expressed its appreciation for the erection of the temporary building as it provided additional facilities. However, the club also reiterated its desire to have it replaced with a permanent structure that would “harmonize with the existing structure and be a credit to the community.” Although the Parks Department did not have the funding available to make permanent improvements to the field house during this period, it did seek to develop a public boat moorage basin on Portage Bay with funding from a private concessionaire. Ultimately, this ambitious plan was rejected because it was
determined that there was not enough public shoreline at Montlake, but a new facility was eventually developed at Lake Washington’s Leschi Park in 1949.

Plans for a Portage Bay public moorage resurfaced in the 1950s despite the expansion of private facilities nearby. They remained viable until the later 1950s when the State announced plans to construct a new floating bridge across Lake Washington with access roads along the southern shores of Portage and Union Bays linking it to Interstate 5. At the same time, the state planned to build a new north-south freeway, the R.H. Thomson Expressway. This limited access highway would run parallel to Interstate 5 through the Rainier and Madison Valleys and along the eastern side of Montlake before heading north to Bothell through a tunnel under Union Bay. Although the Montlake community was unsuccessful in stopping construction of State Route 520 through their neighborhood, residents succeeded in defeating the north-south expressway, primarily through the organizing efforts of the Montlake Community Club.

As a result of highway construction, much of the northern end of the Montlake Playfield was inaccessible in the early 1960s due to its use as staging area for contractors. Disruptions continued for much of the decade as new fill was brought in to increase the usable land area and improve drainage conditions. The playfield was also used as a transfer site for dirt excavated from area engineering projects, including the Ravenna sewer tunnel. Once these operations ceased, the playfield was regraded, and new drainage and sprinkler systems were installed. However, soil and drainage problems persisted, making the newly filled land unusable for long periods of time. New bond issues provided funds to purchase additional land at the playfield, but no additional improvements were funded, further frustrating neighborhood residents. Fortunately, funding became available in the late 1960s through the Forward Thrust program, a massive countywide bond measure that allocated $65 million for parks and recreation projects in Seattle. At the Montlake Playfield, the Forward Thrust program funded long awaited improvements. Almost $225,000 was spent on the development of a new baseball diamond and a new combination football/soccer field within a large oval running track. Another $350,000 was spent on the construction of the present gymnasium and recreation center completed in 1976 from designs by Seattle architect Harry B. Rich. The project also included the relocation and improvement of the children’s play area and the expansion of the off-street parking area to the west of the tennis courts. The Montlake Community Club closely monitored the entire process and actively participated in the Parks Departments planning and development efforts.

Since the completion of the gymnasium addition and the new athletic facilities in the mid-1970s, there have been few additional improvements at the Montlake Playfield. In the mid-1980s, interior modifications to the field house reconfigured the eastern end of the building by removing the showers and locker rooms and creating a pottery facility. However, this resulted in few alterations to the exterior. With its distinctive Tudor Revival detailing, this building remains significant for its design and for its associations with the CWA and the WERA and the development of Montlake Playfield.
BIBLIOGRAPHY OF RESOURCES

Historic Maps

“Map showing territorial growth of the city of Seattle (1891).” Seattle, Wash.: City Engineer, 1891. University of Washington Libraries Manuscripts, Special Collections, University Archives Division.

“Guide map of Seattle showing tide lands to be filled and canal to be constructed by the Seattle and Lake Washington Waterway Company (1895).” Seattle, Wash.: Seattle and Lake Washington Waterway Co., 1895. University of Washington Libraries Manuscripts, Special Collections, University Archives Division.

“Jackson Realty & Loan Co.’s new guide map of Seattle (1907).” Seattle: Jackson Realty & Loan Co., 1907. University of Washington Libraries Manuscripts, Special Collections, University Archives Division.

Plat Maps

Plat of Union City Addition, March 16, 1875, Vol. 1, p. 39, King County Recorder’s Office File #187503160039.

Plat of H.L. Pike’s First Addition to Union City, December 6, 1870, vol. 1. p. 65, King County Recorder’s Office File #187012060065.
Plat of Pike’s 2nd Addition to Union City, February 26, 1875, Vol. 1, p. 65, King County Recorder’s Office File #187502260065.

Plat of Interlaken, An Addition to the City of Seattle, December 9, 1905, Vol. 12, p. 76, King County Recorder’s Office File #19051209366272.

Plat of H.S. Turner Park Addition to the City of Seattle, January 3, 1907, Vol. 14, p. 48, King County Recorder’s Office File #19070103451117.

Plat of Montlake Park, An Addition to the City of Seattle, July 15, 1909, Vol. 18, p. 20, King County Recorder’s Office File #19090715625983.

Plat of H.S. Turner’s Interlaken, An Addition to the City of Seattle, January 18, 1911, Vol. 19. p. 76, King County Recorder’s Office File #19110118726809.

Drawings and Plans

Seattle Parks and Recreation Department

“North and West Elevations; Footing Plan,” Improvement of Montlake Park By Construction of A Shelter House, undated, Plan File #34601.

“South and East Elevations; Floor Plan,” Improvement of Montlake Park By Construction of A Shelter House, undated, Plan File #34602.

“Section and Section Details,” Improvement of Montlake Park By Construction of A Shelter House, undated, Plan File #34603.

“Door and Entrance Details,” Improvement of Montlake Park By Construction of A Shelter House, undated, Plan File #34604.

“Interior and Exterior Details,” Improvement of Montlake Park By Construction of A Shelter House, undated, Plan File #34605.

“Gable Details,” Improvement of Montlake Park By Construction of A Shelter House, undated, Plan File #34607.

Historic Photographs and Images

Seattle Municipal Archives Photograph Collection

“Montlake Playfield. C. W. A.,” Item No: 29931, Jan 9, 1934
“Montlake Playfield. C. W. A.,” Item No: 29932, Jan 18, 1934.

Montlake Playfield,” Item No: 29913, 1936.

“Montlake Playfield,” Item No 29936, Sep 1953.

“Montlake Playfield,” Item No 31508, n.d.

University of Washington Libraries. Special Collections Division

“Montlake Field House site, Seattle, January 5, 1934” Civil Works Administration Collection, State of Wash., E.R.A. - K.C.D., Project # 507, Jan. 5, 1934, Neg. # 77; Montlake Playfield House foundation; K.N.

“Montlake Field House under construction, Seattle, March 12, 1934,” Civil Works Administration Collection
State of Wash., E.R.A. - K.C.D., Project # 2507, March 12, 1934, Negative # 265; Montlake Field House, 80% complete; KN.

Unpublished Materials, Seattle Municipal Archives

Don Sherwood Parks History Collection

Subseries I: Annual Files
Folder 3/19 Correspondence and Financial Records 1927
Folder 3/22 Correspondence and Financial Records 1928
Survey of Recreational Facilities 1928
Correspondence and Financial Records 1929
Metropolitan Parks Proposal 1929
Correspondence and Financial Records 1930
Correspondence and Financial Records 1931
Ten Year Program for the Seattle Park Department 1931
Ten Year Program for the Seattle Park Department—Draft 1931
Correspondence and Financial Records 1932
Personnel 1932
Correspondence and Financial Records 1933
Construction and Maintenance 1934
Correspondence and Financial Records 1934
Correspondence and Financial Records 1935
Correspondence and Financial Records 1936
Montlake Center Strip (Drawings) 1909-1951
Montlake (West) Park/Yacht Club (Drawings) 1911-1978
Montlake (West) Park/Yacht Club, Newspaper Clippings 1965-1978
Montlake Playfield 1930-1949
Montlake Playfield 1950-1974
Montlake Playfield, Drawings 1935-1984
Montlake Playfield, Newspaper Clippings 1939-1975
Montlake Playfield, Preliminary Draft of Portage Bay Study 1950
Civil Works Administration 1933-1934
Local Improvement Districts 1876-1959
Parks/Schools Joint Use 1919-1970
WERA/CWA/WPA Projects 1933-1936
WPA Projects 1935-1941
WPA, Training of WPA Workers in the Field of Recreation 1937

Newspapers and Periodicals

Bryant, Hilda, “Montlake: A Politically Sophisticated Community,” Seattle Post-Intelligencer, Northwest

Books and Other Documents

King County Assessor’s Property Record Card, c. 1937-1972

Websites

City of Seattle Website, www.seattle.gov

Montlake Community Website, www.montlake.net.

Smith, Eugene. “Montlake: One Of Seattle’s Treasures.”

CURRENT PHOTOGRAPHS

1. **Montlake Playfield**, View Northwest of Montlake Community Center and Children’s Play Area
2. **Montlake Field House**, South Elevation
3. **Montlake Field House**, South Elevation
4. **Montlake Field House**, South Elevation, Detail
5. **Montlake Field House**, South Elevation, Detail
6. **Montlake Field House**, West Elevation, Gable Detail
7. **Montlake Field House**, West Elevation, Chimney Detail
8. **Montlake Field House**, North Elevation and Prefabricated Steel Addition
9. **Montlake Field House**, North Elevation and Prefabricated Steel Addition
10. **Montlake Field House**, North Elevation and Prefabricated Steel Addition
11. **Montlake Field House**, North Elevation, Window Details
12. **Montlake Field House**, North Elevation, Center Entrance Detail
13. **Montlake Field House**, North Elevation, Women’s Restroom Entrance Detail
14. **Montlake Field House**, East Elevation
15. **Montlake Field House**, East Elevation, Gable Windows Detail
16. **Montlake Field House**, East Elevation, Gable Windows Detail
17. **Montlake Community Center**, Gymnasium & Recreation Center
18. **Montlake Community Center**, Gymnasium & Recreation Center
19. **Montlake Community Center**, Gymnasium & Recreation Center and Children’s Play Area
The features of the Landmark to be preserved, include:

- the exterior of the building;
- the interior of the Shelter Room; and
- the site within 10 feet of the exterior walls of the building

Issued: January 31, 2005

Karen Gordon
City Historic Preservation Officer

cc: Ken Bounds, DOPAR
 David Goldberg, DOPAR
 Kathleen Conner, DOPAR
 Virginia Wilcox, LPB
 Yvonne Sanchez, DON
 Cathy Wickwire
 Diane Sugimura, DPD
 Cheryl Mosteller, DPD
 Ken Mar, DPD
National Register of Historic Places
Registration Form: Seattle Yacht Club – Main Station
United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "X" in the appropriate box or by entering the information requested. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property
 Historic name Seattle Yacht Club - Main Station
 Other names/site number

2. Location
 street & number 1807 Hamlin Street not for publication
 city or town Seattle
 State Washington code WA county King code 033 zip code 98112

3. State/Federal Agency Certification

 As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that this X nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property X meets does not meet the National Register criteria. I recommend that this property be considered significant X nationally _ statewide X locally. (_ See continuation sheet for additional comments.)

 [Signature of certifying official/Title]
 3.23.06
 Date
 [State or Federal agency and bureau]

 In my opinion, the property _ meets _ does not meet the National Register criteria. (_ See continuation sheet for additional comments.)

 [Signature of certifying official/Title]
 Date
 [State or Federal agency and bureau]

4. National Park Service Certification

 I, hereby, certify that this property is:
 [] entered in the National Register.
 [] See continuation sheet
 [] determined eligible for the National Register.
 [] See continuation sheet
 [] determined not eligible for the National Register.
 [] removed from the National Register.
 [] other (explain:)

 Signature of the Keeper
 Date of Action
5. Classification

Ownership of Property
(Check as many boxes as apply)

- [x] private
- [] public-local
- [] public-State
- [] public-Federal

Category of Property
(Check only one box)

- [x] building(s)
- [] district
- [] site
- [] structure
- [] object

Number of Resources within Property
(Do not incl. previously listed resources in the count.)

Contributing Non-Contributing

<table>
<thead>
<tr>
<th>buildings</th>
<th>sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>structures objects</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Name of related multiple property listing:
(Enter "N/A" if property is not part of a multiple property listing.)

N/A

Number of contributing resources previously listed in the National Register

None

6. Functions or Use

Historic Functions
(Enter categories from instructions)

Social: Clubhouse

Current Functions
(Enter categories from instructions)

Social: Clubhouse

7. Description

Architectural Classification
(Enter categories from instructions)

LATE 19TH AND 20TH CENTURY
REVIVALS: Colonial Revival

Materials
(Enter categories from instructions)

- foundation: Concrete
- walls: Wood
- roof: Asphalt
- other

Narrative Description
(Describe the historic and current condition of the property.)

SEE CONTINUATION SHEET
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

A Property is associated with events that have made a significant contribution to the broad patterns of our history.

B Property is associated with the lives of persons significant in our past.

C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.

D Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark "x" in all the boxes that apply.)

Property is:

A owned by a religious institution or used for religious purposes.

B removed from its original location.

C a birthplace or grave.

D a cemetery.

E a reconstructed building, object, or structure.

F a commemorative property.

G less than 50 years old or achieving significance within the past 50 years.

Areas of Significance
(Enter categories from instructions)

Social

Period of Significance
1920 - 1946

Significant Dates
1920

Significant Person
(Complete if Criterion B is marked above)

Cultural Affiliation

Architect/Builder
Graham, John Senior (Architect)
Sylhaasen & Sandhal (Builder)
Graham, John Junior (Architect)

9. Major Bibliographical References

Bibliography
(Cite the books, articles, and other sources used in preparing this form.)

SEE CONTINUATION SHEET

Previous documentation on file (NPS):

preliminary determination of individual listing (36 CFR 67) has been requested
previously listed in the National Register
previously determined eligible by the National Register
designated a National Historic Landmark
recorded by Historic American Engineering

Record#_____________________

Primary location of additional data:

State Historic Preservation Office
Other State agency
Federal agency
Local government
University
Other

Name of repository:

10. Geographical Data

Acreage of Property 1.24 acres

UTM References
(Place additional UTM References on a continuation sheet.)

1
Zone
Easting
Northing
10 51 912 52 77 110

2
Zone
Easting
Northing

3
Zone
Easting
Northing

4
Zone
Easting
Northing

Verbal Boundary Description
(Describe the boundaries of the property.) See continuation sheet.

Boundary Justification
(Explain why the boundaries were selected.) See continuation sheet.

11. Form Prepared By

name/title Ellen Mirro, intern; Larry Johnson, Principal
organization The Johnson Partnership
street & number 1212 NE 65th St
city or town Seattle

date October 2005
telephone (206) 523-1618

state WA
zip code 98115

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets
Maps

A USGS map (7.5 or 15 minute series) indicating the property's location.

Property Owner (Complete this item at the request of the SHPO or FPO.)

name The Seattle Yacht Club c/o John Decker, Decker Architects
street & number 3500 First Ave NW
city or town Seattle

telephone (206) 633-5297

state WA
zip code 98107
NARRATIVE DESCRIPTION:

Location
The Seattle Yacht Club Main Station is located at 1807 East Hamlin Street within the Montlake Neighborhood and partially fronting on Portage Bay in Seattle, Washington. The Club is prominently located on a broad point on Portage Bay and can be viewed from a number of transportation corridors and public viewing points that lie to the south and west of the property.

Neighborhood Character
The immediate neighborhood includes residential single-family structures, the majority built between the early 1920s and World War II. The U.S. Northwest Fisheries Research Center is located southeast of the site. The western portion of Montlake has two streets, Shelby and Hamlin, which lead from Montlake Boulevard to West Montlake Park. These streets contain mature street trees and a variety of single-family residences of either one or two stories. Most of the single-story structures are of Craftsman bungalow style and many of the two-story structures are of various revival styles popular in the mid-1920s. The U.S. Northwest Fisheries Research Center sits well back from Hamlin Street and consists of three buildings, a three-story brick masonry Art Deco style building and two newer contemporary structures from the 1960s.

Site
The Seattle Yacht Club site is a truncated rectangular lot measuring approximately 140' wide in the east-west direction by 60'-5" deep in the north-south direction. The site abuts Shelby Avenue North on the north, an unnamed alley on the east, and Washington State Department of Natural Resources land or lakefront on the south and west. The site slopes gently down approximately 10' from the north to the south. A circular drive serving the building's main entrance is located north of the building, a parking lot is located to the east, additional parking and lockers lie to the south, and marina floats and lawn extend from the western edge of the property line. The site is landscaped minimally on the northern, eastern, and western sides, while the southern side is paved from the property line to the façade.

Adjacent to the site are floats and covered moorage, which in their current configuration date from 1963, although a fire in 2001 destroyed about 10 percent of the structures, which were subsequently re-built. The moorage has historically been an integral part of the Seattle Yacht Club services available to its members, and the Seattle Yacht Club has leased the adjacent land from the Department of Natural Resources (DNR) following the relocation of the Main Station to Portage Bay in 1920, for the express purpose of providing the safe, convenient moorage to its members, and also for moorage for the Club-owned boats.

Also adjacent to the site, but not part of the nomination, are two items owned by the Seattle Yacht Club, a "yardarm" and a "historic anchor." They are located on Seattle Parks property. The Seattle Yacht Club has, at various times in the past, considered itself to own the property on which the yardarm and anchor
stand, but in the mid 1970s Seattle Parks made ownership clear, but gave the Yacht Club a maintenance agreement for that area on which their objects lie.

The yardarm is called a signal mast on the 1931 drawings by John Graham, Senior. It is 86 feet high and has a 32-foot wide yard crossing at a 45-foot elevation. It looks like a yacht mast, but is anchored to the ground with a concrete footing at the base of the mast and tied down by guy wires at three points. The main purpose of this yardarm is to carry the Seattle Yacht Club Burgee and other maritime signal flags.

Captain Stewart of the Alaska Steamship Company's Tanana brought the "historic anchor" to the Seattle Yacht Club in 1967. The Tanana's crew had brought up the anchor after their own anchor became fouled on it while anchored in 30 feet of water at the confluence of the Kvichak and Naknek rivers in Alaska. The provenance of the anchor is not known, but Captain Stewart remarked that it might have belonged to the Charles Moody, which had burned and sank in that vicinity. The anchor is thought to have been lost between 1885 and 1920. The anchor now sits between the yardarm and the Main Station Clubhouse on Seattle Parks Property.

Seattle Yacht Club: Building Structure & Exterior Features
The building in form is a two-story T-shaped wooden-framed structure composed of intersecting clipped gambrel-roofed wings with an original 1920 northern secondary wing, a tower, a colonnade, and a newer, 1967, two-story flat-roof service wing addition. The building presently measures overall approximately 92'-9" wide in the east-west direction by 108'-11" deep in the north-south direction. Both gambrel roofs have an 8 1/2-in-12 upper pitch and a 24-in-12 lower pitch. The original, 1920, 1 1/2 story secondary wing juts approximately 9'-4" northward from the face of building's northeastern corner, intersecting the east-west main gambrel roof. A one-story extension of the same width projects approximately 20'-10" further north in line with its higher section. Both sections have clipped gable roofs with 10-in-12 roofs. The octagonal tower is nestled into the crook created by the north wing and the main building and is approximately 14'-0" wide at its base, tapering to 12'-0" at its upper floor. The 1920 one-story classical colonnade projects approximately 15'-4" from the building's north face. The colonnade projects approximately 14'-6" from the building's western face and extends along the north face of the main building until it broadens slightly where it intersects with and wraps around the tower before meeting the north wing on its eastern end, creating a formal building entry. The newer, 1967, two-story addition joins the original flat-roofed section located at the building's southeastern corner and wraps around the building's southwestern corner projecting from the building's original southern face, also the face of the southern gambrel end, approximately 11'-6", and approximately 14'-6", aligning with the westernmost face of the colonnade to the north.

The height of the tower from the main floor line, near grade at the north main entry, is approximately 43'-3" to the top of the roof peak. The main east-west gambrel roof measures approximately 33'-4" from the main floor to the ridge, and the maximum height of the intersecting north-south gambrel is approximately 40'-6" above the lower floor line, which lies approximately at grade along the south building face. The main floor is approximately 12'-0" above the lower floor, and the second floor is approximately 12'-0" above the main floor. The ceiling height of the second floor is approximately 9'-0".
The building's exterior walls are covered entirely with white painted cedar shingles with an exposure of 5". All trim is also painted white. All sloped roofs are presently covered with asphalt/fiberglass composition shingles. All flat roofs, balconies, and decks are covered with bitumen "torch-down" membranes. All sloped roofs have metal gutters and down spouts.

The building's main entrance is located near the midpoint of the northern façade. The tapered octagonal tower designed to resemble a lighthouse dominates this façade. There is a glazed wooden paneled door located on the north face of the tower at the second floor level that provides access to a deck located above the colonnade. There are eight small six-light wooden-sash windows with brick mould trim located on various faces of the tower that provide light to the interior stair. An octagonal faux lens house surmounts the tower. The house has rectangular plate glass windows and a wooden guardrail with three horizontal rails. A small projecting cornice provides a transition to the peaked copper roof. A decorative weathervane is mounted at the roof peak. A recent shallow hipped roof addition is located on the western side of the tower. The addition extends up from the deck above the colonnade approximately midway up the tower and extends southward where it intersects with the northern face of the building and with the gambrel roof. This small addition accommodates an elevator that provides accessibility to the second floor.

The colonnade consists of a series of paired round Tuscan columns supporting a simple architrave, although square columns are placed in the corners to create clusters of columns, with two round and one square. These clusters occur at the two corners of the western projection, and at the western end on the western side of the entry. The eastern side of the entry has a cluster of four columns, two round and two square, that allow a slight offset providing near symmetry to the entry. Attached square columns are also used where the colonnade meets the building. The clusters create five bays across the colonnade. The colonnade has a ceiling of tongue-and-groove beaded ceiling. It has a flat-roof that is used as a deck or balcony with a guard railing composed of light framing with staggered horizontal rails. A light wood-framed exit stair leading down from the upper deck is located at the westernmost end of the colonnade. The colonnade is enclosed on its eastern end with a large wood-sash window and a pair of glazed entry doors with an arched transom window to create a projecting entry vestibule that accommodates the accessibility elevator. A fabric awning supported on metal posts presently provides weather shelter for the entry.

The north exterior wall beneath the colonnade has a pair of glazed doors that are on axis to the fireplace within the interior room and the center colonnade bay. The doors each have 12 lights and the pair is topped with a 12-light transom window. A large double-hung wood-sash 12-over-one window is located to the west of the French door set, centered on the colonnade next to the westernmost bay. There is a large shed dormer located on the western end of the main gable and centered between the tower and the western gable end. The dormer roof is the same slope as the upper gambrel pitch. The northern exterior wall of the dormer is in-line with the building's northern wall and has three equally spaced openings; the easternmost and center are filled with pairs of six-over-one wood-sash windows and the westernmost is filled with a pair of glazed and paneled wood doors. The lower exterior wall of the north wing has a tripartite window composed of 12-over-one wood-sash double-hung windows. The window has a raised architrave head casing featuring a centrally placed pediment. A small rectangular
The eastern façade reveals the end of the main gambrel, side of the southern large gambrel, the end of the flat-roofed south addition, and the sides of the northern wing. The main gambrel end has three floors of window or door openings. The upper most floor, or second floor, has five symmetrically placed windows, the two outermost are narrower one-over-one wood-sash double-hung windows and the three innermost are larger one-over-one wood-sash double-hung windows. The central window has a head trim composed of a broken pediment and central urn ornament. A small square gable end vent is located in the attic wall above the central window. The main floor has five windows; the northernmost four are placed directly under the northernmost four of the floor above. Within this cluster, the northernmost two are eight-over-one wood-sash double-hung windows, and the two southernmost are taller, with the southernmost of the pair a 12-over-one wood-sash double-hung window. The northernmost window is the same size, but presently has a vent located in its upper sash. The southernmost window, an eight-over-one wood-sash double-hung window, is located within an interior service stairway and has its sill at the main floor level. This window has a gable fabric awning mounted to the wall immediately above it. The lower floor, or lower floor level, has a paneled glazed service door on the southernmost side located slightly below grade and directly below the southern stairway window. A pair of eight-light hopper windows is located directly north of this door.

The original, 1920, flat-roofed corner section and the southern addition are in plane on the eastern façade, creating a flat monolithic two-story block at its southern end. There is a pair of one-over-one wood-sash double-hung windows on the northern side of the main floor level, a glazed store-door on the southernmost end of the lower floor level, and three plate-glass casement windows irregularly spaced to the north of the door. The lower floor door has a gable fabric awning mounted to the wall immediately above it. The flat roof above this section is used for mechanical equipment and venting from the kitchen/service areas below. The flat-roofed section has a guardrail consisting of wood uprights and wood rails with intermediate glazing. Three conjoined shed dormers, each with a different pitch, are located at the southeastern corner of the intersection of the gambrel roofs.

The façade of the northern wing also is in plane with the main gambrel's eastern end. The higher roof section houses the building's main stairway and has a centrally located eight-over-one wood-sash double-hung window immediately below the roof eave line, with its midpoint near second floor level. A paneled and glazed entry door is located immediately below this window accessing the mid-level landing between the lower floor and main floor levels. This doorway has a fabric gabled entry canopy extending eastward and supported on metal poles. The lower roofed northern section of the wing has three equally spaced window openings on the main floor level—the southernmost houses an eight-over-one wood-sash double-hung window, and the northernmost are a pair of 12-over-one wood-sash double-hung windows. The lower level has a pair of four-over-one (horizontally in-line) wood-sash double-hung windows located on the southern portion of this section of the façade.

The south façade consists of a two-story flat-roofed, 1967, addition placed in front of the large southern gambrel end. The central section of this addition, corresponding to the width of the gambrel roof end, projects slightly from the remaining façade and features a centrally placed recessed entry porch that provides access to the main circulation hallway of the lower floor level. Above the porch opening is an
architrave with a central flat arch. A sconce is located at the center of the arch and two additional sconces flank the porch opening. The porch has two symmetrically placed square columns on the face of the façade. The space between the columns is open while the two flanking openings are filled with wood screen lattice of ornate fretwork. A rectangular sign is mounted on the face of the wall above the arch. The easternmost section of the façade is blank with the exception of a grilled vent below the overhanging roof cornice. The main floor of the westernmost section of the façade has a row of large rectangular plate-glass windows along its entire width, which provide views from the second floor dining room. A fabric awning is mounted above these windows. The lower floor level portion of this section has three symmetrically placed one-over-one double-hung wood-sash windows. The flat roof of the addition has a wood and glass guardrail that continues around from the eastern façade. The gambrel face has a row of seven equally spaced plate-glass windows along its face. A fabric awning is mounted above these windows and a half-round gable end vent is centrally located within the attic portion of the gambrel face. A brick chimney extends above the roof on the western side of the main gambrel. Another taller stucco faced chimney or vent extends above the eastern side of the main gambrel. Roof mounted mechanical equipment is prominently visible on the eastern flat-roofed section.

The western façade retains the original, 1920, end of the north colonnade and the face of the main gambrel end on its northern half and the flat roofed two-story addition on its southern half. The 1967 addition wraps around the southwestern corner and continues with large rectangular plate-glass windows allowing views from the main floor dining room. The fabric awning also continues around the corner above these plate-glass windows. The roof of the addition serves as a deck for the second floor dining room and has the same wood and glass guardrail as the eastern and southern façades. A shed dormer has been added to the western gambrel roof to provide additional floor space for the second floor dining room as well as additional access to the deck. The deck surface has been covered with wooden deck pallets. The lower floor level of the addition has three equally spaced one-over-one double-hung wood-sash windows. The main east-west gambrel end retains a central large horizontal plate-glass window on the second floor, but is presently flanked by identically sized plate-glass windows. A fabric awning is mounted above these three windows. A square roof vent is centrally located in the attic area of the gambrel end. The main floor of this section has a central large plate-glass window equal in size to the windows above. This window is flanked by two large 12-over-one wood-sash double-hung windows. The northern colonnade has been described in detail in the description of the north façade. The lower floor level has a central pair of glazed doors providing egress from the lower floor meeting room (former Billiard Room). Two pairs of rectangular plate-glass windows flank the door opening. A small shed roof dormer has been added to the western roof slope of the northern wing.

Seattle Yacht Club: Building Plan & Interior Features

The main floor has its primary formal entry located on the north. The irregularly-shaped vestibule, dating from 1989, has an elevator to the right of a large opening slightly to the left that leads to the main, 1920, north-south corridor and the main stairway branching off to the left, or east, leading up to the second floor and down to the lower floor level. The club’s service areas are located to the left, or east, of the main corridor, with the kitchen located in the southeastern corner of the building. The club’s original,
1920, "Social Hall" is located to the right, or west, of the corridor and the dining room is reached by way of the a secondary corridor that branches to the right, leading to the dining room, or to the left, leading directly into the kitchen. All walls have painted 8" base trim and a simple architrave with an ogee ceiling molding. All floors within the main circulation area and public rooms are carpeted.

The Dining Room is a contemporary, 1967, space contained within the southwestern addition and features large rectangular plate-glass windows overlooking the club’s moorage to the southwest. Window trim is simple stained hardwood. A central faceted chandelier with a simple box coffer and cove lighting provides focus to the room. Recessed ceiling-mounted fixtures provide additional lighting.

To the right, or west, of the main corridor is the club’s original, 1920, "Social Hall." This room is approximately 44’ wide and 34’ deep. The room is divided into three bays by coffered beams running north-south across the room’s ceiling. (Note: the coffering covers 8’ x 14” steel beams that are supported by roof trusses at their mid-span.) The coffering and the room’s continuous architrave have a frieze of flabelliform ornamentation. The room focuses on a projecting fireplace on the south. The fireplace has as a simple Colonial revival chimney breast. A pair of upright brass sconces is mounted above the fireplace. Recessed lights within the ceiling provide additional room lighting. Four folding doors located to the right of the fireplace provide access to the Dining Room.

The main stairway, dating from 1920, is located to the east of the main corridor and has painted colonial balusters and newels. The newels are topped by round brass finials. The main stairway leads up to an upper floor landing that provides access to restrooms on the right, the tower vestibule straight ahead (west), and to a meeting room on the left (south). The octagonal vestibule is contained within the walls and open to the interior of the tower. A steep stair to the right (north), leads up to the top of the tower, the 1989 elevator is located directly ahead (west) and the upper dining room and a 1920s conference room (Commodore’s Room) is accessed by way of doorways on the left (south). The “L”-shaped Dining Room includes both the club’s original, 1920, "Card & Reading Room" and additional space, now the bar, on the south that was adapted from an original, 1920, storeroom and bedroom. The original fireplace of the "Card & Reading Room" remains, although a contemporary chimney surround has been installed. The upper southwestern deck created by the southwestern 1967 addition is accessed through pairs of glazed doors from the southwestern corner of the original "Card & Reading Room" and from the bar area on the west. Simple contemporary chandeliers supplemented by recessed ceiling-mounted fixtures provide lighting in the room. All public rooms on the second floor are carpeted.

The main stairway also leads to the lower floor corridor that quickly doglegs to the left, running north-south the entire length of the building, and ending at the southern lower floor entrance. Service areas are generally located to the left (east) of the corridor, the original, 1920, "Billiard Room" is located on the right (west) of the corridor, and the club’s administrative offices are located in the southwestern corner of the building dating from 1967. All public rooms and administrative offices are carpeted.

The former "Billiard Room" is located beneath the club’s original "Social Hall" and has the same overall dimensions as that room. The ceiling has simple coffers supported by a pair of square columns with simple upper brackets. The original projecting brick masonry fireplace has been painted. A pair of glazed exterior doors located on the room’s western wall, provide egress. Recessed ceiling-mounted
fluorescent fixtures provide lighting for the room.

Documented Building Alterations and Existing Condition

<table>
<thead>
<tr>
<th>Date</th>
<th>Architect</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1946</td>
<td>Ralf E. Decker, AIA</td>
<td>Increase size of western windows, interior alterations to the entry and powder room. (permit # 376145)</td>
</tr>
<tr>
<td>1957</td>
<td>unknown</td>
<td>Remove second floor bearing partition. (permit # 454395)</td>
</tr>
<tr>
<td>1967</td>
<td>John Graham and Company Architects</td>
<td>Southwestern Addition adding a new main floor dining room on the southwestern corner of the building and expanding the kitchen into the existing dining room. Also included modification to the upper floor areas to create an additional dining space, deck, and meeting room. Locker rooms were also removed from the lower floor and other lower floor areas were reconfigured. (permit # 500428)</td>
</tr>
<tr>
<td>1981</td>
<td>Brewer Westberg Architects</td>
<td>Modifications to the main floor "Social Room." (permit # 596317)</td>
</tr>
<tr>
<td>1989-90</td>
<td>George W. Heideman, AIA</td>
<td>Accessibility improvements including the addition of an elevator and the creation of an entry vestibule. (permit # 648158)</td>
</tr>
<tr>
<td>1990</td>
<td>unknown</td>
<td>Alterations to lower floor restrooms (permit # 651105)</td>
</tr>
</tbody>
</table>
National Register of Historic Places
Continuation Sheet –

STATEMENT OF SIGNIFICANCE:
The Seattle Yacht Club - Main Station is eligible for the National Register of Historic Places under
criterion "A" for its association to the broad patterns of social history in the city of Seattle. As an exclusive
club in Seattle, members have been prominent community figures. Not only have many members made
significant contributions to history outside of the Yacht Club, the Seattle Yacht Club, itself, has made a
significant impact on Seattle's cultural events. The significant contributions include boating and yachting,
sponsoring races, training young sailors, and providing a place for both professional and amateur boaters
and boat builders in Seattle to congregate. Boating was the most important form of transportation in the
Puget Sound region for the early settlers and native peoples as well. The Main Station Clubhouse is a
physical manifestation of the height of the yachting social scene in Seattle in 1920. The period of
significance begins in 1920 with the completion of the building and ends in 1946, the date when a variety
of alterations to the building begin to occur and membership is at an all time low due to WWII.

Seattle Yacht Club
The Seattle Yacht Club was organized in 1892, when the existing yachting groups in Seattle combined in
order to participate in a proposed Northwest International Yachting Association.\(^1\) Even at this early date,
yachting was a popular pastime and boating would remain an important method of transportation on
Puget Sound. The club's first clubhouse was a boathouse located in West Seattle near Duwamish Head.\(^2\)
The location was too exposed to winds and was too affected by wakes from passing steamers for many
members. The location lead to an almost immediate split of the organization, with members of smaller
vessels forming the Elliott Bay Yacht Club and returning the boat house to the Brighton pier in 1894. The
remaining members moved to a two-story Queen Anne style structure with a faux lighthouse attached to
its northern side.\(^3\) However, the building was soon abandoned, probably due to continuing moorage
problems, the continuation of the financial downturn of 1893, and the lack of membership to sustain it.\(^4\)

In 1909, Seattle architect John Graham Sr. was commissioned to design the new clubhouse for the Elliott
Bay Yacht Club. Graham designed a two-story Craftsman style building (see attached images) to be built on
pilings off-shore of a 200-foot strip of waterfront at the foot of what is now Charles Street, more southeast
of the Duwamish Head on the inside harbor in West Seattle.\(^5\) With a new clubhouse completed, later that
year the Seattle Yacht Club and the Elliott Bay Yacht Club recombined their organizations for a second
time.\(^6\) This created a stronger and more vital club.

\(^1\) James R. Warren, *The Centennial History of the Seattle Yacht Club—1882-1992* (Redmond, WA: Liang Communications,

\(^2\) Ibid., p.18.

\(^3\) Ibid., pp. 25 & 26.

\(^4\) Ibid., p. 19.

\(^5\) Ibid., p. 43.

\(^6\) Ibid., p. 48.
The Seattle Yacht Club along with other Puget Sound yacht clubs, began to conduct local sailing competitions and started competing against boats of the newly formed Royal Vancouver club starting in 1906. In 1909, a dispute concerning methods of measurements and which set of rules should be used for the Ted Geary-designed Spirit II ended racing with Canadian clubs. The feud lasted three years until in 1912, Sir Thomas Lipton, an English Baronet and yachtsman, while visiting Seattle proposed a new perpetual international challenge cup between American and British Columbian clubs. Subsequently, the first Northwest Lipton cup race occurred in 1914, with the legendary Sir Tom, designed by Ted Geary, winning over the Vancouver Yacht Club’s Turenga.

By 1913, the Seattle Yacht Club had grown to 371 members and had a fleet of 88 yachts. That same year property for the club’s first outstation, located on Manzanita Bay on the north side of Bainbridge Island, was purchased. Architect John Graham Sr. also drew the plans for the clubhouse there as well, but the project was never built.

The Yacht Club used the clubhouse in West Seattle until 1918, when, when with the advent of World War I, the U.S. government bought it. They utilized the facility for training U.S. merchant marines. Eventually the West Seattle clubhouse was moved to Lake Union where it still stands today. The Seattle Yacht Club operated without a clubhouse for two years, conducting business in the boardroom of the Dexter Horton Bank. During this time membership fell to 70 active members.

In 1919, the current Montlake site was acquired under the direction of Commodore Norval H. Latimer, then president of the Dexter Horton Bank. The creation of the ship canal in 1917 made the site on Portage Bay more accessible to the open waters of the sound and provided an ideal location for a new clubhouse. Vessels passing from Lake Union into Lake Washington and vice versa had to pass directly by the new site. The location offered many boating opportunities for its members on the two lakes. Former club commodore John Graham Sr. was once again commissioned to design the new clubhouse. He designed the building in a Colonial-Revival building with an attached faux lighthouse. The initial design shows a north-south running gambrel with the tower to the north. This design was later changed to

7 Ibid., pp. 36-39.
8 Ibid., pp. 64-66.
9 Ibid., p. 59.
10 Ibid., p. 63.
11 Ibid., pp. 71-74. After the war the Seattle Rod and Gun Club purchased the clubhouse. The Queen City Yacht Club bought the building in 1926, and removed it by barge to the eastern shore of Lake Union at the foot of Fairview Avenue North. The Queen City Yacht Club moved to its existing location across Portage Bay from the Seattle Yacht Club in 1938. The building is extant and, although altered, remains at its Lake Union location.
12 Ibid., p. 74.
13 Ibid., p. 74; and Pratt, p. 13.
14 Pratt, pp. 13-16.
the present T-shaped gambrel configuration. The local building firm of Sylliaasen & Sandahl was hired as the general contractor. The mechanical sub-contractor was Fritz Hellenthal, The electrical sub-contractor was Meacham & Babcock.

The club's fleet was moved to the site during the month of May 1919, and on May 1, 1920, the yacht club formally dedicated its new clubhouse. The club's membership limit was increased above the original 350, and the initiation fee was reduced in half to $25 dollars to encourage new members. By the end of the year the club had over 400 members.

"Opening Day" ceremonies featuring a boat parade through the Montlake Cut which became an annual event after, with the first 30 yachts participating in the first year, 1920. Also in 1920, the Pacific International Yachting Association was formed re-establishing international yacht racing, suspended in the Northwest because of World I. Throughout the 1920s, lavish entertainment at the club was regular and many members commissioned large yachts for pleasure cruises.

The Main Station Clubhouse houses all of the administration offices of the Seattle Yacht Club, it also serves and continues to serve, as a main gathering place for the members, their committees and activities. Privileges of membership include the use of the Main Station Clubhouse facilities and moorage, reciprocal privileges with other yacht clubs, the use of ten Seattle Yacht Club outstations, and guest privileges.

During the Depression the club lost many members, and many of the moorages became vacant. There were still events and races, but greater emphasis was placed on the smaller boats, catboats, and flats. Events at the club became less lavish. By 1931 the building was beginning to show signs of wear. That year the board decided to renovate the yacht club but was unable to raise the necessary funds.

In the 1940s, the yacht club attempted to rebuild membership. During the war years club members offered their yachts for patrol duty to the Coast Guard, and some owners served as reserve officers. In total, over 60 club boats were either loaned or sold to the government. Openings Day ceremonies were greatly reduced during the war years with fewer boats participating. Eventually Club membership

15 Pratt, p. 16.
16 Ibid., p. 16.
17 Warren, p. 78.
18 Ibid., p. 79.
19 Ibid., p. 78.
20 Ibid., p. 79.
21 Ibid., p. 107.
22 Ibid., p. 109.
23 Ibid., pp. 148-151.
increased after the war, with membership reaching 752 in 1949. The main station clubhouse received some alterations in 1946, including larger windows on the western façade and a redecorated lobby and powder room.

In the 1950s, the yacht club formed a women's group, added women's names to the roster, and incorporated more family events. Over 500 vessels participated in Opening Day celebrations in 1950, 700 boats in 1951, and 1,143 in 1956. According to Commodore Phil Smith in 1952, "The yacht club had its highest club spirit in years, the physical plant and club facilities are the finest on the west coast and moorage was safe and adequate (for the number of boats)." In 1955, the Seattle Yacht Club renewed its corporate charter for an unlimited number of years. Commodore T. Dayton Davies said in 1958, "The financial condition of the club remains in an exceedingly sound and healthy condition."

In 1961, opening day races were restricted by both I-90 and Evergreen Point Bridge (SR520) construction. Membership of the club however was still growing and moorage spaces was becoming tight. The clubhouse was reaching its 60-year mark. As a result in 1967, covered moorage was added and modernization of the main station clubhouse, including an addition to the southern end of the building, was completed. The design of these alterations was prepared by John Graham & Company, then headed by John Graham Jr., son of the original architect.

In 1966, one of the Canadian Dunsmuir Islands, commonly named Ovens Island, was acquired as an outstation. Property for an outstation on Henry Island in the San Juan Islands was acquired the next year, and the club made a 2,500-square-foot addition to the Port Madison outstation in 1967. In 1968, a clubhouse was constructed for the Henry island outstation, and additional upgrades to the main station moorage facilities were completed. Club membership became restricted to 1,500 in 1970. Seattle Yacht Club became free of debt and claimed assets above one million dollars.

24 Ibid., p. 168.
26 Ibid., pp. 174 & 175.
27 Ibid., p. 185.
28 Ibid., 189.
29 Ibid., pp. 200 & 201.
30 Ibid., p. 215.
31 Ibid., p. 222.
32 Ibid., p. 232.
33 Ibid., pp. 226 & 227.
34 Ibid., pp. 235 & 240.
36 Ibid., pp. 232 & 233.
Two years later in 1972, club membership reached 1,500, the proscribed limit.37 The Gig Harbor outstation land was purchased and Eagle Harbor moorage space was acquired for a new outstation in 1977.38 That same year land was purchased at Moss Point for another outstation, but the land was sold a few years later.39 During the 1970s, the club's Junior Program produced some of the best sailors on the coast, evidenced by the fact that two members, who were also on the University of Washington sailing team, were named All-American in 1977.40 In 1978, the Port Ludlow outstation land was purchased.41

In 1982, the Garden Bay outstation was purchased in Pender Harbor, Canada.42 In 1985, Eagle Harbor outstation slips, which had been leased since 1978, were purchased.43 In 1987, an agreement was reached between the club and the East Gig Harbor Improvement Association for the club to build a pier and a float there.44 The Seattle Yacht Club outstations provide moorage and facilities for the members while on recreational boating excursions. Sometimes outstations are used for organized events or boat races.

The Seattle Yacht Club also continues to sponsors the annual Opening Day ceremonies in May through the Montlake Cut and also the annual Special Peoples Cruise for the developmentally disabled every winter. Competitive sailing continues as a major focus for the club as it sponsors the Tri-Island Sailboat Series, the oldest sailboat series on Puget Sound, every year. Currently, the Seattle Yacht Club has nine outstations and four other clubhouses besides the main station on Portage Bay.45 The club, as of October 2005, has 1,247 Active members, 463 Active Intermediates (ages 21-40) members, 329 Life members, and 158 Junior (ages 16-20) members.46

Yacht Club Development and Buildings in North America
Early yacht clubs in the United States met in improvised quarters on members' vessels, rented rooms, or in makeshift sheds or boathouses near moorage. Among the earliest known yacht clubs is the the New York Yacht Club which was established in 1844. By 1846 the club was meeting in a small building designed by architect Andrew Jackson Davis.47 This Gothic Revival cottage was probably the first

37 Ibid., p. 260.
38 Ibid., p. 272.
39 Ibid., pp. 278 & 79.
40 Ibid., pp. 280 & 281.
41 Ibid., p. 281.
42 Ibid., p. 304.
43 Ibid., pp. 283 & 312.
44 Ibid., pp. 334 & 335.
45 Ibid., p. 79.
46 Bramstet, John, Membership Director, Seattle Yacht Club, telephone interview, October 26, 2005.
dedicated yacht club building in the United States. Other American yacht clubs were subsequently formed in the latter half of the nineteenth century on the East Coast, including the Portland Yacht Club in Maine, 1869; the Rhode Island Yacht Club, 1875; the Florida Yacht Club, 1878; the Hull Yacht Club, near Boston, Massachusetts, 1880; the Corinthian Yacht Club in Marblehead, Massachusetts, 1885; the Indian Harbor Yacht Club in Greenwich, Connecticut, 1889; and on the West Coast the San Francisco Yacht Club, 1869; the Santa Barbara Yacht Club, 1872; the San Francisco’s Corinthian Yacht Club, 1886; the San Diego Yacht Club in 1886; and the Seattle Yacht Club in 1892.

Yacht club clubhouses tended to be makeshift affairs throughout the turn of the nineteenth century with a few notable exceptions. In 1882, the Hull Yacht Club near Boston built a four-story Shingle style clubhouse on Boston Harbor, enticing new members with three bowling alleys, a billiard room, a dining room, and two reception rooms. The building, after being sold to private investors for speculation as a hotel, was deemed a fire hazard and dismantled in the mid-1930’s. In 1898, the Corinthian Yacht Club in Marblehead, Massachusetts, built a major Colonial-Revival clubhouse that, although altered, remains in use today. In 1901, the New York Yacht Club erected a grand Beaux-Arts building on West 44th Street in Manhattan designed by architects Whitney Warren and Charles D. Wetmore. In 1911, the Corinthian Yacht Club of San Francisco erected a flat-roofed Colonial-Revival clubhouse in Tiburon, the oldest extant clubhouse on the West Coast. The general prosperity of the early 1920s, and an increase in the popularity of yachting, led several clubs to build new more substantial structures. Many focused on the idea of using a light station as a basis for a design motif. Seattle architect John Graham Sr. Colonial-Revival building complete with a faux lighthouse for the Seattle Yacht Club in 1920 may have been the first. The San Diego Yacht club also built a lighthouse-inspired clubhouse at Coronado in 1923, later barging it across the bay to Shelter Island. The Santa Barbara Yacht Club built a Colonial-Revival clubhouse, also with a faux lighthouse, designed by yachtsman and local architect Winsor Soule, on Stern’s Wharf in 1926. This fascination with lighthouses was later brought to its logical conclusion when the St. Francis Yacht Club in San Francisco purchased a 1905 lighthouse and relocated it on Tinsley Island on the Sacramento Delta in the 1970s as an outstation.

50 Levitt.
As the yacht clubs turned to other social activities to attract new membership, post-Depression clubhouses began to resemble waterside restaurants rather than mainly providing meeting rooms and locker rooms. Older facilities were enlarged and modified to accept additional social events.

John Graham Sr. (1873-1955)
Seattle architect John Graham Sr. was born in Liverpool and acquired his professional skills in England through apprenticeship. He moved to Seattle in 1901, practicing architecture mainly in Seattle until 1940. An early project was the reconstruction of the Trinity Episcopal Church (1902-03) after the original 1891 church had been destroyed by fire. He was briefly associated with Alfred Bodley in 1904, before joining with architect David Myers in 1905, in a partnership that lasted until 1910. This partnership produced designs for three apartment buildings, the Kenny Presbyterian Home, and at least two large eclectic houses. Graham and Myers also designed several of the pavilions for the 1909 Alaska Yukon Exhibition, and designed the first clubhouse for the Elliott Bay Yacht Club (later the Seattle Yacht Club) that same year.

In 1910, John Graham Sr. became a sole practitioner and began designing buildings of major significance in Seattle. His first major commission was for the Joshua Green Building (1913), one of the first major buildings in the expansion of the business district north from Pioneer Square. This building incorporated the steel frame and terra cotta cladding. That same year Graham designed an assembly plant for the Ford Motor Company (1913, now Shurguard Storage) in Seattle. That led Graham to open an office in Detroit, Michigan where he supervised several other Ford assembly plants built around the United States between 1914 and 1918.

Graham’s design of the Fredrick and Nelson Department Store (1916-19) was the first of several finely detailed terra-cotta-clad commercial buildings in Seattle, the Dexter Horton Building (1921-24) being another example. His Bank of California Building (1923-24), also clad with light colored terra cotta, demonstrates superb classical detailing on the interior.

57 Ibid.
58 Ibid., pp. 90 & 92; Warren, p. 43
59 Hildebrand, p. 90.
60 Ibid., p. 90.
61 Ibid., p. 90 & 93.
62 Ibid., p. 91 & 92.
Graham also excelled in the development of the Art Deco style; the Bon Marché Building (1927-29, now Macy's), the Roosevelt Hotel (1928-29), and the Exchange Building (1929-31) all demonstrate mastery in detail and development of Art Deco motifs.63 Graham also collaborated with Bebb & Gould on the design of the U.S. Marine Hospital Campus (1931-34, now Pacific Medical Center, altered), considered one of the finest examples of the style in the Northwest.64 Despite embracing the new Moderne style, Graham could also fall back on his eclectic roots to please the University of Washington Board of Regents. Graham designed four major Collegiate Gothic buildings on the campus, beginning with the Physics Hall (1927-28, altered, now Mary Gates Hall).65

Between 1936 and 1942, while associated with engineer William Painter, Graham also operated from an office at Rockefeller Center in New York City.66 His son John Graham Jr. joined the firm New York office in the 1937, specializing in department store design.67 Over the next few years Graham began transfer the practice to his son, retiring from active practice in 1946.68 After his father's retirement, John Graham Jr. returned to Seattle and completely took over his father's firm, John Graham & Company. John Graham Jr. would lead the company until his death in 1991, the firm becoming one of the premier commercial architectural firms in the United States.69 Notable projects include: the Northgate Shopping Center (1946-50, altered) in Seattle, the Ala Moana Center (1960, altered) in Honolulu, The Space Needle (1960-62, with Victor Steinbrueck, altered) in Seattle, the Wells Fargo Building (1960-66, now 44 Montgomery Street Building) in San Francisco, and the Bank of California Building (1971-74, now Key Bank).70 John Graham & Company also designed the south addition to the Seattle Yacht Club, Main Station between 1962 and 1963.71

John Graham Sr. was an enthusiastic yachtsman, a competitive sailor in his early years, and an active member of the Seattle Yacht Club, serving as commodore for the club in 1913 and 1929.72 Graham designed the club's second clubhouse in 1909, the outstation clubhouse at Port Madison, and the main station clubhouse in 1920.73 Graham owned several boats and yachts during his life, including the Ted

63 ibid., p. 92.
64 ibid., p. 92.
65 ibid., p.94.
66 ibid., p. 92.
67 ibid., p. 92.
68 ibid., p. 92. This transfer may have been somewhat acrimonious. See Norman C. Blanchard and Stephen Wilen, Knee-Deep in Shavings: Memories of Early Yachting and Boatbuilding on the West Coast (Victoria, B.C., Canada: Horsdal & Schubart, 1999), p. 52.
70 ibid., p. 260.
71 The firm is identified on the plan set "Additions and Alterations to Seattle Yacht Club" dated 1963.
72 Warren, p. 95.
73 ibid., p. 48 & 63.
Geary-designed 45' yawl Ortuna, the 40' auxiliary schooner Sovereign, and the 65' Geary-designed motor yacht Mary.74 Graham also commissioned the 96' Geary-designed Blue Peter in 1928, but lost her during the Depression.75 Blue Peter is presently based in Seattle and is considered one of the premier classic yachts in the Northwest. Graham's last yacht was the Anchor Jensen-built 65' motor yacht Pelagic.76

Norval H. Latimer (1863-1923)
As commodore of the Seattle Yacht Club between 1917 and 1919, Norval H. Latimer spearheading the purchase of the Montlake property of the Yacht Club’s main station and oversaw the construction of the Yacht Club’s main station clubhouse.77 He also organized and administered the financing of the new clubhouse, and is generally credited along with John Graham Senior as the two men responsible for the construction of the Seattle Yacht Club's Main Station Clubhouse.78

Originally born in Berwick, Illinois, Norval H. Latimer moved to Seattle where he gained employment with the Dexter Horton Company in 1882.79 He became manager of the Dexter Horton Bank in 1889, and was elected president and became one of the directors of the newly reorganized Dexter Horton National Bank in 1910.80 Latimer was considered one of the foremost bankers in the state, serving as president of the Washington State Bankers Association.81 He also served as president of the Snoqualmie Power Company and the Diamond Ice Company.82 Latimer was active in the Artic Club, the Rainier Club, the Seattle Athletic Club, and the Tacoma Club.83

74 Blanchard, pp. 48-55.
75 Ibid., p. 49.
76 Ibid., p. 52.
77 Warren, p. 57; Pratt, p. 13.
78 Ibid., p.14
80 Ibid., p. 882.
81 Ibid., p. 882.
82 Ibid., p. 882.
83 Ibid., p. 882.
National Register of Historic Places
Continuation Sheet

Section number 9

Seattle Yacht Club – Main Station
King County, Washington

Bibliography

Boundary Description:
The nominated property includes Lots 1 through 7, Block 3, Montlake Park, according to plat thereof, recorded in Volume 18, page 20, in King County, Washington; together with those portions of the vacated alleys in said Block 3 which would attach by operation of law, said alleys having been vacated pursuant to City of Seattle Ordinance Numbers 89765 and 100408, a copy of the latter of which was recorded under Recording Number 7111500308.

Boundary Justification:
The nominated property encompasses the entire urban tax lot, which is under exclusive ownership of the Seattle Yacht Club and has historically been associated with the main clubhouse building. Other resources historically associated with the Seattle Yacht Club, such as the “Yardarm” and the “Historic Anchor” and slips, are not included within the boundary of the nominated property. The Seattle Yacht Club moorage is on leased property owned by the Department of Natural Resources and the yardarm and anchor are located on property owned by Seattle Parks that is under a maintenance agreement with the Seattle Yacht Club.
HISTORIC FIGURES AMONG MEMBERS OF SEATTLE YACHT CLUB, 1892-2006

N. H. Latimer; Banker, Financier, President of Dexter Horton Bank – one of the first banks in Seattle, 3-term Commodore of SYC. Latimer led the Club through the planning and construction of its present Portage Bay club house (1917-1919).

Col. C. B. Blethen; Yachtsman and Commodore of SYC in 1931. Owner and publisher of The Seattle Times. Some of his descendants continue as SYC club members.

Miller Freeman; Life Member, developer, publisher. Freeman was an active promoter of pleasure boating and ocean science. He established the University of Washington campus for Oceanography and Fisheries and published Pacific Motor Boat magazine with Daniel Pratt, editor.

Scott Calhoun; One time Seattle City Attorney and first attorney for the Port of Seattle. With Miller Freeman, Calhoun negotiated the agreement with the City for the SYC club house site.

L. E. "Ted" Geary; Arguably the West Coast’s best yacht designer and Commodore of SYC in 1930. A renowned naval architect and racing skipper, Geary also designed the first diesel-powered tug boat in North America, the Chickamauga (1915).

Robert Moran; Yachtsman, financier, ship builder. Moran was the managing owner of Moran Brothers Shipyard, Seattle, builders of the battleship Nebraska. He also built the schooner San Wan, and the retreat (now resort) at Rosario, Orcas Island, Washington.

Capt. James Griffiths; 3-term Commodore of SYC, sea captain, importer, financier and ship builder. Capt. Griffiths ran his ship yard at Winslow on Bainbridge Island (formerly Hall Bros.) and owned a number of the finest motor yachts. He arranged the first regular shipments of silk from the Orient with NYK Lines.

Henry Kotkins; Manufacturer, Seattle Port Commissioner and yachtsman. Kotkins owned and skippered the famous yawl Diamond Head for over forty years and founded Skyway Luggage.

John Graham, Sr.; Architect, yachtsman and 2-term Commodore of SYC. He designed numerous Seattle landmarks including The Bon Marche (now, Macy’s), the Dexter Horton Building and the present Portage Bay club house for SYC (1918-1919).

Stanley Sayers; Auto dealer and race boat innovator. Sayers’ then-revolutionary unlimited hydroplane Slo-Mo-Shun IV brought the Unlimited Hydroplane Gold Cup to Seattle in 1950.

Bill & Carl Buchan; Father and son sailboat racers, they both won Gold Medals in their respective classes in the 1984 Olympic Games at Los Angeles. Bill has also won the Star Class World Championship twice, Carl once.
Photographs

1) The Seattle Yacht Club Main Station
 King County, Washington
 Ellen Mirro
 8/25/05
 IMG_2590.JPG
 Seattle Yacht Club Main Station, viewing southeast at main entry

2) The Seattle Yacht Club Main Station
 King County, Washington
 Ellen Mirro
 8/25/05
 IMG_2580.JPG
 Seattle Yacht Club Main Station, viewing south at north facade

3) The Seattle Yacht Club Main Station
 King County, Washington
 Larry Johnson
 9/19/05
 IMG_0916.JPG
 Seattle Yacht Club Main Station, detail of tower viewing south

4) The Seattle Yacht Club Main Station
 King County, Washington
 Ellen Mirro
 8/25/05
 IMG_2583.JPG
 Seattle Yacht Club Main Station, viewing west at east facade

5) The Seattle Yacht Club Main Station
 King County, Washington
 Ellen Mirro
 8/25/05
 IMG_2584.JPG
 Seattle Yacht Club Main Station, viewing north at south facade

6) The Seattle Yacht Club Main Station
 King County, Washington
 Larry Johnson
 9/19/05
 IMG_0904.JPG
 Seattle Yacht Club Main Station, viewing east at west facade
7) The Seattle Yacht Club Main Station
King County, Washington
Larry Johnson
9/19/05
IMG_0890.JPG
Seattle Yacht Club Main Station, lower floor, former “Billiard Room,” viewing southwest

8) The Seattle Yacht Club Main Station
King County, Washington
Larry Johnson
9/19/05
IMG_0862.JPG
Seattle Yacht Club Main Station, main floor entry, viewing southeast

9) The Seattle Yacht Club Main Station
King County, Washington
Larry Johnson
9/19/05
IMG_0875.JPG
Seattle Yacht Club Main Station, main floor hall, viewing north

10) The Seattle Yacht Club Main Station
King County, Washington
Larry Johnson
9/19/05
IMG_0869.JPG
Seattle Yacht Club Main Station, main floor dining room, viewing southwest

11) The Seattle Yacht Club Main Station
King County, Washington
Larry Johnson
9/19/05
IMG_0855.JPG
Seattle Yacht Club Main Station, upper floor tower stair, viewing north

12) The Seattle Yacht Club Main Station
King County, Washington
Larry Johnson
9/19/05
IMG_0844.JPG
Seattle Yacht Club Main Station, upper floor dining room/lounge, viewing southwest
13) The Seattle Yacht Club Main Station Yardarm
 King County, Washington
 Ellen Mirro
 11/17/05
 IMG_4101.JPG
 Seattle Yacht Club Main Station Yardarm, viewing south from West Montlake Park

14) The Seattle Yacht Club Main Station Historic Anchor
 King County, Washington
 Ellen Mirro
 11/17/05
 IMG_4104.JPG
 Seattle Yacht Club Main Station Historic Anchor, viewing west

Historic photos of the property

15) The Seattle Yacht Club, West Seattle
 King County Washington
 Unknown photographer, property of Puget Sound Maritime Historical Society, Joe Williamson Collection
 7/3/1909
 negative #1741-94
 Seattle Yacht Club West Seattle, viewing southeast across Elliott Bay

16) The Seattle Yacht Club, West Seattle
 King County Washington
 Unknown photographer, property of Puget Sound Maritime Historical Society, Hudson Collection
 No date
 negative #879-59
 Seattle Yacht Club West Seattle, viewing northwest

17) The Seattle Yacht Club Main Station
 King County Washington
 Staff Photographer, Seattle Post-Intelligencer, property of Museum of History and Industry, Seattle Post-Intelligencer Collection
 Circa 1925
 image #PI21580
 Seattle Yacht Club Main Station, viewing east
18) The Seattle Yacht Club Main Station
King County Washington
Unknown photographer, property of Museum of History and Industry,
Pemco, Webster and Stevens Collection
Circa 1920
image #1983.10.1944
Seattle Yacht Club Main Station, viewing southeast

19) The Seattle Yacht Club Main Station
King County Washington
Tax Assessors Photograph, property of Puget Sound Regional Archives
Circa 1938
Folio #1794, parcel number 5605000305
Seattle Yacht Club Main Station, viewing southeast

20) The Seattle Yacht Club Main Station and surrounding
King County Washington
Staff Photographer, Seattle Post-Intelligencer, property of Museum of
History and Industry, Seattle Post-Intelligencer Collection
No date
Image # PI-21583
Seattle Yacht Club Main Station, Portage Bay moorage, West Montlake
Park, and houses, aerial viewing southwest

Attachments

Plans: John Graham Senior, Architect 6/29/1919
Plans: John Graham Senior, Architect 5/1/31
Plans: John Graham and Company, Architects 1/7/1963
Plans: Brewer Westberg, Architects 3/13/1979
Plans: George W. Heideman, Architect 3/15/1989
National Register of Historic Places
Inventory Nomination Form:
Chittenden (Hiram M.) Locks and
Related Features of the Lake
Washington Ship Canal
ATONAL REGISTER OF HISTORIC PLACES
INVENTORY -- NOMINATION FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS

1 NAME
HISTORIC
Chittenden (Hiram M.) Locks and Related Features of the Lake Washington Ship Canal

AND/OR COMMON

2 LOCATION
STREET & NUMBER

CITY, TOWN
Seattle

VICINITY OF
1st - Hon. Joel Pritchard

STATE
Washington

CODE
53

COUNTY
King

CODE
033

3 CLASSIFICATION

CATEGORY

AUTHORIZED

X BUILDING(S)

X STRUCTURE

_ SITE

_ OBJECT

OWNERSHIP

X PUBLIC

_ PRIVATE

_ BOTH

PUBLIC ACQUISITION

_ IN PROCESS

_ BEING CONSIDERED

STATUS

X OCCUPIED

_ UNOCCUPIED

_ WORK IN PROGRESS

ACCESSIBLE

_ YES: RESTRICTED

_ YES: UNRESTRICTED

PRESENT USE

_ AGRICULTURE

_ MUSEUM

_ COMMERCIAL

_ PARK

_ EDUCATIONAL

_ PRIVATE RESIDENCE

_ ENTERTAINMENT

_ RELIGIOUS

_ GOVERNMENT

_ SCIENTIFIC

_ INDUSTRIAL

_ TRANSPORTATION

_ MILITARY

_ OTHER: Recreation

4 OWNER OF PROPERTY

NAME
U. S. Army Corps of Engineers, Seattle District

STREET & NUMBER
North Pacific Division
4725 East Marginal Way South

CITY, TOWN
Seattle

VICINITY OF

STATE
Washington

98134

5 LOCATION OF LEGAL DESCRIPTION

COURTHOUSE, REGISTRY OF DEEDS, ETC.
Real Estate Division, Seattle District, U. S. Army Corps of Engineers

STREET & NUMBER
4725 East Marginal Way South

CITY, TOWN
Seattle

STATE
Washington

98134

6 REPRESENTATION IN EXISTING SURVEYS

TITLE
Inventory authorized by Executive Order 11593
"Protection and Enhancement of the Cultural Environment"

DATE
April 4, 1972

DEPOSITORY FOR SURVEY RECORDS
Department of the Army, Office of the Chief of Engineers

CITY, TOWN
Washington

STATE
D.C.

20314
DESCRIPTION

CONDITION

- EXCELLENT
- GOOD
- FAIR
- DETERIORATED
- RUINS
- UNEXPOSED

CHECK ONE

- UNALTERED
- ALTERED

CHECK ONE

- ORIGINAL SITE
- MOVED
- DATE

SUMMARY STATEMENT

By making a continuous waterway of man-made channels and inland bodies extending nearly eight miles between Puget Sound and Lake Washington, the Lake Washington Ship Canal opened up a vast fresh-water harbor to ocean-going vessels and thus complemented Seattle's deep-water port facilities in Elliott Bay. The project was conceived and planned over a period of years in cooperation with private enterprise and local government and was completed under auspices of the U.S. Army Corps of Engineers and dedicated in 1917. Its primary components are a fixed dam and double locks and a 17-acre reservation at Salmon Bay in the Ballard District; a channel slightly more than a mile long known as the Fremont Cut, which connects the Salmon Bay Waterway to Lake Union; and a half-mile long channel known as the Montlake Cut, which in turn joins Lake Union to Lake Washington. These engineering features have been little altered since their completion sixty years ago, except for repairs and a normal amount of upgrading, and they have remained under the jurisdiction of the Department of the Army. At the locks site, now officially designated the Hiram M. Chittenden Locks, approximately half of the structures supporting the operation of the locks have been added since the 1940s. However, the initial complex of ten or twelve concrete accessory buildings is intact. Moreover, for the most part, the Corps of Engineers Master Plan for the project provides for the preservation and enhancement of historical elements.

LEGAL DESCRIPTION

The Hiram M. Chittenden Locks of the Lake Washington Ship Canal are located in SE 1/4 Sec. 10, T.25N., R.3E., and in SW 1/4 Sec. 11, T.25N., R.3E., of the Willamette Meridian. The engineering feature straddles the Salmon Bay Waterway, and the accompanying government reservation is sited amidst the Ballard Tide Lands on the north shore and the Seattle Tide Lands on the south shore.

The Fremont Cut of the Lake Washington Ship Canal is located in NW 1/4, NE 1/4 and SE 1/4 Sec. 13, T.25N., R.3E., and in SW 1/4 Sec. 18, T.25N., R.4E., of the Willamette Meridian. The engineering feature traverses the Ross Addition and Denny and Hoyt's Addition to the Plat of Seattle.

The Montlake Cut of the Lake Washington Ship Canal is located in S 1/2 Sec. 16, T.25N., R.4E., of the Willamette Meridian. The engineering feature is bordered by the University of Washington tract on the north shore and, on the south shore, by the Montlake Park Addition to the Plat of Seattle.

GENERAL CHARACTERISTICS OF THE SITE

The locks and dam are situated athwart the foot of Salmon Bay, originally a tidal inlet, which gives into Shilshole Bay north of Magnolia Head in Puget Sound. To the south of the headland, in Elliott Bay, lies Seattle's principal harbor. Oriented northwest to southeast, the locks and dam span the narrowest section of the Salmon Bay Waterway, where it is some 400 feet across, approximately a mile and a half east of the entrance to Shilshole Bay. When these features raised and stabilized its water level, Salmon Bay ultimately became a freshwater body and the harbor of a sizable fishing fleet. As is pointed out in the Lake Washington Ship Canal Master Plan, lands adjoining the eight-mile waterway between Puget Sound and Lake Washington have been developed for commercial,
industrial, residential, park and other public purposes, but shoreline use of the canal is predominantly related to the maritime industry. As a consequence, boat ramps and marinas; piers, docks and wharves; marine repair shops and shipbuilding yards are typical developments in the near vicinity of the three separate parcels proposed for nomination. The first parcel of 49 acres embraces the locks and their guide piers, the spillway dam and fish ladder, and grounds owned in fee simple by the U.S. Army Corps of Engineers. The second and third parcels of 38.5 and 20 acres, respectively, are limited to the Corps' fee-owned holdings along the Fremont and Montlake Cuts.

The preponderance of the 17-acre reservation which accompanies the locks lies on the north shore of the waterway, where maintenance and administrative facilities are arranged on a modified grid perpendicular to the waterway. The westerly portion of the reservation rises to an elevation of 45 feet, and sited atop this plateau is the Lock-keeper's House, which currently serves as the residence of the District Engineer. In front of the house, a terraced embankment of dredge spoils falls off toward water grade in 5-foot intervals. A paved concourse parallel with the waterway extends the length of the lawn-covered plateau, and at its westerly end is a viewing platform or overlook with solid concrete railing. This secondary concourse is linked to a private gateway in the northwest corner of the reservation by curvilinear road segments which encompass the residential knoll. In this informally landscaped westerly section of about seven acres is a luxuriant array of mature ornamental and specimen trees, shrubs and bedding plants introduced by groundskeeper Carl S. English and others in the 1930s and 1940s.

The high ground of the reservation slopes off gradually on the east to level terrain about 20 feet in elevation. Here the maintenance campus is laid out along the main concourse, which is essentially on axis with the spillway dam. Included in this more-or-less formal complex of classically-styled concrete structures designed by the eminent local firm of Bebb and Gould are the administration building, which is the focal point, the machine shop, office and shop building, and mechanics shop. Each of these is clustered around a courtyard which opens onto the locks. Other initial structures, the gas and oil building, carpenter and blacksmith shops and transformer house, are sited to the north in the direction of the west gateway which serves as the visitors' entrance. In the 1940s a number of new structures, some of them temporary in nature, were added on the north and on the less public easterly margin of the maintenance core. Among the newer structures are the boathouse, greenhouse, steel shop, and two large metal-clad warehouses, one of which currently serves as a district garage. An employees' parking lot was developed inside the east entrance and was well screened by plantings. The Master Plan calls for its removal eventually. The grounds are lighted by electroliners on tapered and chamfered concrete standards. However, the original single globe fixtures have been replaced with modern lamps. Public parking is provided outside reservation boundaries along Burlington Northern Railway right-of-way. Reservation boundaries which are not contiguous with the waterway are lined with security fencing.

Little over an acre of the reservation is located at the far end of the spillway dam, on the south shore of the waterway, where a rehabilitated fish ladder and new underwater
fish viewing room were completed a year ago. Adjoining the westerly end of this segment of the reservation is city-owned land which is being developed for day-use park purposes. In turn, Commodore Park will be linked by trails to the city's Discovery Park, which occupies portions of the Fort Lawton Military Reservation on Magnolia Bluff.

Lake Union is a comparatively small body covering an area of nearly one and a half square miles. Further to the interior, Lake Washington, on the other hand, has an area of 39 square miles and depths that exceed 200 feet. The Fremont Cut, like the Salmon Bay Waterway which it connects to Lake Union, also is angled to the southeast. It follows, generally, the course of an old stream bed between the Fremont District on the north shore and the base of Queen Anne Hill on the south. Taking its name from the former district, the channel is 5800 feet in length and 100 feet wide, although the Corps of Engineers' fee-owned right-of-way is 300 feet wide. The authorized depth of the channel is 30 feet. Concrete revetments on either side of the channel are here and there bolstered by rip-rap. The low banks are lined with single rows of Lombardy poplars which have been aptly described as "colonnades" because they are nearly uninterrupted from the Northern Pacific Railway Bridge on the westerly end to the Fremont Drawbridge on the east. Subsidiary landscaping of an informal nature was undertaken along the banks as a beautification project by the Seattle Garden Club in the 1950s.

The Montlake Cut follows a compass-oriented easterly course of 2500 feet through a narrow neck of land between Lake Union's Portage Bay and Union Bay in Lake Washington. The channel takes its name from the residential district on the south shore. The Montlake District is connected to the University of Washington campus on the north shore via the Montlake Drawbridge, which crosses the canal at right angles near the center. The channel width is 100 feet, although the right-of-way controlled by the Corps of Engineers is typically 325 feet wide. It is dredged to an authorized depth of 30 feet. The tops of the concrete revetments are used as waterside walks, and there are trails also about midway up either steep embankment rising to a height of about 65 feet. On the south shore a recreational trail was recently improved and developed by the Corps of Engineers in cooperation with the Seattle Garden Club. It extends from West Montlake Park on the extreme west end of the channel to Horace McCurdy Park on the east end, and it continues through and beyond the marches of Foster Island to Washington Park.

HIRAM M. CHITTENDEN LOCKS

Construction of the locks and dam was carried out within the protection of two independent coffer dams. The locks were constructed without piles on a bed of hard clay. Concrete work, generally held to have been of exceptionally durable quality, was composed of one part Portland cement, three parts sand, and six parts gravel. The concrete was mixed, lowered into the forms by bottom dump buckets, spread in layers and spaded, but no tamping was required. Particular care was taken to protect the concrete from the action of salt water during the curing process. Detailed descriptions of construction and operating methods are given in W. J. Barden and A. W. Sargent's 1925 paper published by the American Society of Civil Engineers, which is listed among the bibliographical references.
The following general description is quoted from Lake Washington Ship Canal Master Plan, Design Memorandum 5 (Seattle: Seattle District, U. S. Army Corps of Engineers, April 1976), Section 2, page 7, and Section 4, page 1.

The locks provide a navigation passage between the freshwater portion of the project, at a mean elevation of 21 feet above sea level, and Shilshole Bay, the level of which is determined by tidal action. Depending on the tide, the lift provided by the locks varies from 6 to 20 feet. The structure incorporates two locks, the larger of which is 825 feet long between the upper and lower miter gates, and 80 feet in width. This lock can be divided into two smaller chambers by an intermediate miter gate. Ocean-going vessels, up to 30 foot draft, can be accommodated through this lock. A salt-water barrier, hinge-mounted to the floor of the lock, is air-operated via manual push-button controls located in the central control tower. The barrier is manually left in a raised position to reduce the intrusion of saltwater into Salmon Bay but is lowered to permit passage of deep-draft vessels. Saltwater which passes into Salmon Bay but is lowered to permit passage of deep-draft vessels. Saltwater which passes into Salmon Bay during lockage settles into a saltwater basin immediately upstream of the large lock. A saltwater drain conduit returns the saltwater by gravity to Shilshole Bay. The saltwater drain conduit inlet is at the bottom of the saltwater settling basin. Flow through the conduit is controlled by an electrically-operated sluice gate at the fishladder.

The small lock, adjacent to and south of the large lock, has a chamber 150 feet long by 30 feet wide, and is used by smaller vessels with drafts up to 16 feet. Floating mooring bitts on both the south and north walls limit the usable width to 28 feet.

The dam which forms the barrier between the small lock wall and the south shore is 235 feet long and has six 32 foot wide spillway openings in which steel radial gates are installed. The three spillway gates located near the south shore are raised and lowered by an electrically-operated, movable hoist, while the three spillway gates located near the locks are equipped with individual electrically-operated gate hoists. Maximum discharge capacity of the spillway at full gate opening is approximately 10,000 c.f.s. (Note: The three south gates are scheduled for automation, and the hoist house will have to be removed.)

A rehabilitated fish ladder on the south shore, complete with a fish viewing room, was recently opened to the public . . . The original fish ladder at the locks was constructed in 1917 . . . It has been undergoing rehabilitation since 1973, at which time the underwater fish viewing room, pedestrian ramps and rest room facilities were planned.

ACCESSORY STRUCTURES

1. Lockkeeper's House (1913). First permanent building completed on the reservation. Two sheets of drawings for the building among project records stored on the site are dated December 1912. Not prepared by local architect Carl F. Gould as once supposed, the plans evidently were the concept of C. A. D. Young, "Jun. Engineer". A simple, rectangular construction with stuccoed hollow tile walls. Originally measured 26 x 35 feet. Two
stories with shingled gable roof and overhanging eaves with exposed rafters. Certain details apparently derived from the Craftsman Bungalow. Cross-axial frontal gable; shed-roofed rear dormer. Brick end chimneys with corbelled caps. Porches have hipped roofs with shaped outriggers. Regular fenestration. Single and coupled double-hung sash windows with nine lights over one.

In 1966 the interior was remodeled; partitioning was revised and one of the fireplaces was removed. Externally, the upgrading was discreet. Among the results: new roof cover of composition shingles, conversion of front ground story windows to bay windows within original openings, addition of a bedroom and carport to the rear pantry and stoop. In 1967 the house was dedicated as the official residence of the Seattle District Engineer and renamed in honor of Colonel James B. Cavanaugh, U. S. Army Corps of Engineers District Engineer during the construction of the Lake Washington Ship Canal 1911-1917. The Master Plan calls for no further changes except possible additional buffer planting to increase privacy.

2. Administration Building (1914-1915). The solitary initial multi-purpose public building on the reservation and the focal point, it called for extraordinary design effort. Ten sheets of plans and elevations dated 1914 and prepared by Carl F. Gould of the eminent local firm of Bebb and Gould are among project records stored on the site. Rectangular plan measuring 47 x 67 feet. Reinforced concrete construction. Two stories and basement. Tile-clad hipped roof with central deck. Second Renaissance Revival Style. Basement contains the pumping plant for unwatering or emptying the locks for annual repairs and the original electrical distribution panel, which is intact but functionally superseded. Ground story has cross-axial corridors with central lobby space and principal offices in each corner. Lobby is open to second story gallery. Oval ceiling light of textures and colored glass. Terrazzo floor with geometric trim of Alaska and verde antique marble. Centered in lobby floor is a brass plaque in the form of the battlemented structure which serves as the logogram of the U. S. Army Corps of Engineers. Further federal iconography is found in the lobby entablature, which is decorated with shields, and in the wrought iron gallery railing, where cast iron American eagle emblems are centered in each section. Interior walls and ceilings, including coved cornices, are plaster-finished. Woodwork, including door and window trim, baseboards, pilasters, ogee wall panel moldings, and Ionic stave columns flanking the main entry vestibule, is varnished oak. Second story storerooms open onto the central gallery.

Each exterior elevation has tripartite organization. Walls are topped with a decorative concrete parapet. Second story windows are covered with cast-iron grilles. Ground story arced windows and central pedimented doorways are in panels of concrete set off from the major wall surface by special texturing with a bush hammer. The main entry on the southwest, or waterway face is recessed behind a two-story portal arch and surrounded by plate glass fronted by cast iron grilles. Surmounting either bulkhead of the concrete steps of this entrance are light globes mounted on fluted concrete drums with dolphin-supported bronze fittings. These are noteworthy because they are the only external lighting fixtures on the reservation which have remained wholly intact.
The building has been only superficially altered, mostly on the interior. The Master Plan calls for some restoration and upgrading, including the replacement of window sash to match the original, cleaning and sealing masonry, and refinishing woodwork as required. While primary visitor-information functions will be shifted elsewhere, the building's basement pumping plant will be open to the public as an exhibit area. A basement stairway access from the exterior and additional interior lighting are among the few improvements planned.

3. Operating Houses, Nos. 1, 2, 3, and 4 (1914). Nos. 1 through 3 are on the north lock wall. No. 4 is situated on the middle lock wall. Single-story structures of reinforced concrete measuring 14 x 21 feet. Rectilinear domed roofs. Wrap-around corner window bays with transom grilles. Original purpose was to control locks. Functionally superseded by central Control Tower but still operable. Master Plan calls for retention and reconditioning.

5. Transformer House (1914). Single story structure of reinforced concrete measuring 25 x 33 feet. Built up roof. Contains transformers and emergency generator. The only one of the original accessory buildings to have a compass orientation rather than conforming to the grid perpendicular to the waterway. Openings of the west facade are outlined with continuous plain moldings under segmental arch heads. Entablature, belt molds and base in the classical tradition conform to the simple utilitarian style of the original group of accessory buildings. Pedimented hood over central doorway. Master Plan calls for minor restoration and cleaning.

6. Office and Shop Building (1916). Warehouse of the original group of accessory buildings. Reinforced concrete construction measuring 36 x 80 feet. Two stories. Built up roof. Details in classical tradition conform with established pattern. Later single story paint shop additions on north end doubled the building's length. Aluminum window sash has been substituted for original and is to be replaced.

7. Machine Shop (1916). Reinforced concrete construction measuring 30 x 85 feet. Two stories. Built up roof. Entablature, belt molds and base in classical tradition conform to the simple utilitarian style of the original group of accessory buildings. Aluminum window sash has been substituted for original and is to be replaced.

<table>
<thead>
<tr>
<th>CONTINUATION SHEET</th>
<th>ITEM NUMBER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Carpenter and Blacksmith Shops (1921). Reinforced concrete construction measuring 31 x 91 feet. Two stories. Built up roof. Entablature, belt molds and base in classical tradition conform to the pattern established by the original accessory buildings. This building appears to have replaced temporary frame structures on the site. Master Plan calls for interior renovation as a visitors' interpretive center, and nearly all improvements will be confined to the interior. However, the exterior will be cleaned and sealed and doors and window sash will be replaced along original lines.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Gatehouse (1949). Single story 7 x 7 foot wood frame structure at visitors' entrance. Master Plan calls for eventual removal and replacement with a new guard office to be coordinated with a re-designed entry way.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Master Plan calls for removal to allow development of less visible parking area.

20. Control Tower (1969). On middle lock wall. 19 x 24 feet. Base, or ground story of reinforced concrete. Overhanging, glass-enclosed steel-gramme observation story. Purpose is to centralize control of locks. Master Plan calls for retention as primary communications and navigation control structure. However, extensive modifications are contemplated to make its angular lines visually conformable with the early concrete buildings.
SIGNIFICANCE

PERIOD

- PREHISTORIC
- 1400-1499
- 1500-1599
- 1600-1699
- 1700-1799
- 1800-1899
- 1900-

AREAS OF SIGNIFICANCE -- CHECK AND JUSTIFY BELOW

- ARCHAEOLOGY-PREHISTORIC
- ARCHAEOLOGY-HISTORIC
- AGRICULTURE
- ARCHITECTURE
- ART
- COMMERCE
- COMMUNICATIONS
- COMMUNITY PLANNING
- CONSERVATION
- ECONOMICS
- EDUCATION
- ENGINEERING
- EXPLORATION/SETTLEMENT
- INDUSTRY
- INVENTION
- LANDSCAPE ARCHITECTURE
- LAW
- LITERATURE
- MILITARY
- MUSIC
- PHILOSOPHY
- POLITICS/GOVERNMENT
- RELIGION
- SCIENCE
- SCULPTURE
- SOCIAL/HUMANITARIAN
- THEATER
- TRANSPORTATION
- OTHER (SPECIFY)

SPECIFIC DATES 1906-1917

STATEMENT OF SIGNIFICANCE

District Engineers: Hiram M. Chittenden (planning and promotion) and James B. Cavanaugh (supervisor of construction). A. W. Sargent was Assistant Engineer in Charge of Construction during the construction phase 1911-1917.

SUMMARY STATEMENT

The Lake Washington Ship Canal is significant to Seattle, the state and the nation as a major engineering achievement completed under government auspices which added more than 90 miles to the city's waterfront accessible to ocean-going vessels. Following decades of visionary planning and failed attempts along such lines, the project realized by the U. S. Army Corps of Engineers in 1917 connected Puget Sound with a series of inland bodies free from tidal fluctuations and destructive marine life. The resulting freshwater harbor extending over some 25,000 acres combines with Seattle's saltwater harbor in Elliott Bay to provide navigational facilities rated among the finest of any port in the country.

The workable plan for the canal and locks was delineated and promoted by Major Hiram M. Chittenden, Seattle District Engineer 1906-1908. Both the project endorsed by the Department of the Army and various alternative schemes were embraced by the business community with an enthusiasm which epitomized the booster spirit of Seattle in the early years of the century. That ocean-going freighters and barges could be permitted to load and unload near industrial sites developing on the shores of Lake Union and Lake Washington was felt to enhance the city's growing image as the transportation center of the Puget Sound region and a break-of-bulk point for domestic, coastal and international trade. The project was executed under the supervision of Colonel James B. Cavanaugh, District Engineer 1911-1917, and Arthur W. Sargent, Assistant Engineer in charge of construction. Among local figures closely associated with the project were Charles Herbert Bebb and Carl F. Gould, partners in a leading architectural firm which laid out the maintenance campus on the government reservation at the locks.

With its fixed dam and double locks and right-of-way stretching nearly eight miles, the Lake Washington Ship Canal for many years was generally regarded second in scope only to the multiple locks and 50-mile-long canal completed across the Isthmus of Panama by the U. S. government 1904-1914. While the size of Seattle's locks has since been superseded in the continental United States (on the Ohio and Mississippi River, for example), few, if any, of the later locks are believed to handle more vessels in a given year. The facilities officially designated the Hiram M. Chittenden Locks in 1956 are operated on a 24-hour daily basis. While naval and commercial craft, fishing boats and log rafts play a significant role in locks usage, pleasure craft, which have proliferated since the Post War years, now make up the bulk of traffic.
BACKGROUND OF THE PROJECT

As is repeatedly pointed out, the notion of a navigable waterway joining Puget Sound to Lake Union and Lake Washington is nearly as old as settlement in the area. Seattle pioneer Thomas Mercer is credited with the first documented public expression on the subject. In 1854, during a Fourth of July picnic, he cited the advantages of such a canal and, referring to the union of lakes and bays, he proposed names ultimately associated with the inland bodies.

The concept first received federal recognition in 1867 when a Board of Engineers for the Pacific Coast, headed by Lieutenant Colonel Barton S. Alexander, was charged with recommending a site for a naval station in Puget Sound waters. One location under consideration was the freshwater basin of Lake Washington, access to which would require the construction of a ship canal. From that point forward sporadic attempts were made by local citizens to gain the support of the Department of the Army and Congress for construction of the canal. Private improvement companies were formed, foundered and dissolved. Meanwhile, the selection of a route - whether northerly via Salmon Bay and Lake Union, or to the south via the mouth of the Duwamish River - remained controversial.

In 1890 Congress made its first appropriation for the proposed commercial waterway in Seattle, and a survey was authorized to locate the most feasible route. The government survey report, dated December 15, 1891, considered five possibilities, of which the present general route beginning at Shilshole Bay was preferred as having the best alignment and potential for being the least costly. The City of Seattle and King County proceeded to acquire right-of-way while further investigations and reports on appropriate routings were made.

The involvement of the U. S. Army Corps of Engineers in the project on a lasting basis is marked from the beginning of Major Hiram Chittenden's term as District Engineer. In 1906 Congress authorized the construction by private capital of a canal with a single timber lock at Salmon Bay proposed by local citizen James A. Moore. In a report on the Moore proposal dated December 1906, Chittenden itemized the government's interest in the matter. In essence, the government would be concerned with the commercial promise of a navigable waterway and would benefit indirectly from the lowering of the waters of Lake Washington. The latter would facilitate flood control and drainage of swamp lands. In his report Chittenden also recommended significant changes in the nature and placement of the lock, advocating a double lock of more permanent masonry construction. If located at the narrows near the outlet of Salmon Bay, it would raise Salmon Bay out of tidal influence and lower Lake Washington waters to the level of the intervening body, Lake Union. Chittenden provided arguments which reversed the Army's prior negative findings on the feasibility of the project. The absence of tidal action would simplify cargo loading and unloading on the inland waters; Lake Union would offer a placid winter refuge for the fishing fleet, and fresh water would cleanse destructive teredos and barnacles from the hulls of ocean-going vessels without the expense of dry-docking. Thus, the notion that the federal government would assume primary responsibility for the undertaking was firmly implanted.
The existing project was based on the detailed annual report on the proposed Lake Washington Canal filed by Chittenden in December 1907. Because the government-endorsed northerly route was attacked by Ballard lumber mill operators who did not wish to relinquish their tideland sites and by partisans of the southerly route through newly filled and platted tidelands along the Duwamish estuary, the canal routing controversy dragged on for several years. The stalemate was eventually broken, but not before Chittenden's forced retirement due to disability early in 1910. Reginald H. Thompson, the City Engineer who master-minded Seattle's grandest public improvement schemes, and the Chamber of Commerce were important advocates of Chittenden's initial recommendations. The cause was finally won in June 1910, when Congress appropriated $2,275,000 for construction according to specifications in the District Engineer's annual report of 1907.

Construction was commenced under the direction of a successor, Colonel James B. Cavanaugh, in September 1911. Ground was broken for the locks on November 10 of that year. In February 1913 the first concrete was deposited in the forms. The gates of the completed locks were closed July 12, 1916, and the filling of Salmon Bay began. Lake Washington was lowered to the level of Lake Union by October of that year. The Fremont Cut was opened between Salmon Bay and Lake Union in the same month. On May 8, 1917 the Montlake Cut between Lakes Union and Washington was opened in the near vicinity of the abandoned portage excavated by the Lake Washington Improvement Association. The entire project was dedicated with due ceremony on July 4, 1917, during which time the 184 foot Roosevelt, the flagship of Commodore Robert E. Perry's Arctic Expedition of 1907, led a parade of traffic through the locks.

At the time of the dedication the cost of the project was reported to have reached a total of $5,000,000. In addition to right-of-way acquisition costs, the City of Seattle bore the expense of building new bridges, sewer and water tunnels and regrading streets where necessary. The major costs were divided between the State of Washington and King County, for acquisition of right-of-way and excavation and construction upstream from the locks, and the federal government, which constructed the locks and accessory works.

HIRAM M. CHITTENDEN - CHAMPION OF THE LAKE WASHINGTON SHIP CANAL

Hiram M. Chittenden (1858-1917), a native of New York, was graduated from West Point with high honors as a second lieutenant of engineers in 1884. Thereafter he completed a three year course in the Engineer School of Application, was made a first lieutenant, and was ordered to Omaha as engineer officer of the Department of the Platte. Thus embarked upon a lifetime career as an army engineer, he would soon gain recognition as a conservationist and historian. Chittenden first achieved national acclaim in 1897 for a massive report advocating federal construction of irrigation dams which is said to have become the basis of the Newland Act of 1902. After serving in the Spanish-American War he was returned to Yellowstone Park, where he took charge of completing the road system he earlier had helped lay out. In 1904 he was promoted to the rank of major, and soon after was appointed to the federal commission to locate the boundaries of Yosemite Park. Chittenden was an early advocate of the concept of multiple-purpose
resource use which is widely applied today. Among his substantial publication credits are The Yellowstone National Park (1895), The History of Early Steamboat Navigation on the Missouri River (1903), The Life, Letters and Travels of Father Pierre Jean de Smet (1905), and, his monumental work, The American Fur Trade of the Far West (1902).

Among the projects which Chittenden directed during his active period as Seattle District Engineer, 1906-1908, next in importance to the Lake Washington Ship Canal was planning and construction of 14 miles of the 25 mile tourist road from the western boundary of Mount Rainier National Park to Camp of the Clouds. From his predecessor he inherited the on-going task of constructing fire control towers for the coastal artillery batteries at Forts Flagler, Casey and Worden which comprised the defenses for Seattle and its harbor in Elliott Bay.

Throughout his later years Chittenden suffered from a debilitating paralysis (locomotor ataxia), but his astonishing capacity for work seldom flagged. By the middle of 1908, however, his condition had worsened to such an extent that he was forced to withdraw from normal duty. At the urging of several of his associates in the Ship Canal project, including City Engineer Reginald Thompson, Secretary of the Interior Richard Ballinger, a former Seattle Mayor, and others interceded on his behalf and succeeded in securing Chittenden's promotion to the rank of brigadier-general prior to his disability retirement on February 10, 1910. Despite his frail health, Chittenden continued to write (War or Peace, Flood Control, and a revised and expanded edition of his guidebook to Yellowstone National Park) and to take part in public life as president of the Seattle Port Commission, 1911-1915.

A NOTE ON THE ARCHITECTURAL FIRM OF BEBB AND GOULD

Charles Herbert Bebb (1856-1942) and Carl F. Gould (1873-1939) were leaders of the architectural community in Seattle. Their selection to lay out and design the complex of concrete accessory buildings on the government reservation at the ship canal locks was fitting. The ten or more initial buildings on the site have a range of refinement along classical lines, but they are solid and straightforward in a manner appropriate to their function and setting along the massive lock walls.

Bebb, a native of England, was educated at Kings College, London, and the University of Lausanne, Switzerland, where he studied engineering. He emigrated to the United States in 1880 and was first employed as a construction engineer by the Illinois Terra Cotta Company of Chicago. From 1885 to 1890 he served as supervisor of construction for the eminent architectural firm of Adler and Sullivan. Bebb was the first Washington architect to be elected a Fellow of the American Institute of Architects. He helped organize the Washington State Chapter of the AIA in 1894 and served several terms as its president. From 1911 to 1935 Bebb served as Consulting Architect for the State Capitol Group in Olympia. In 1915, a year or two after he and Gould commenced a long and fruitful partnership, the firm was given charge of the University of Washington Campus Plan. Gould helped found the University of Washington's School of Architecture and was first chairman of the department.
Gould, a native of New York City, was graduated from the Harvard School of Architecture in 1898 and thereafter spent four years (1899-1903) at the Ecole des Beaux Arts in Paris. On his return to the United States he was employed by the eminent New York architects McKim, Mead and White. Later, he became a member of the New York firm of Carpenter, Clair and Gould. He arrived in Seattle around the time of the Alaska-Yukon-Pacific Exposition of 1909, or shortly before. Gould too became active in the affairs of the Washington State Chapter of the AIA. Among other noted works by Bebb and Gould in Seattle are the Modernistic Seattle Art Museum (1932), the annex of the Rainier Club (1929), the U. S. Marine and Virginia Mason Hospitals, and the Olympic Hotel, designed in cooperation with the George B. Post Company of New York.
MAJOR BIBLIOGRAPHICAL REFERENCES

Interview, February 9, 1977: Jim Newman, Environmental Planner, Seattle District, U.S. Army Corps of Engineers.
Lake Washington Ship Canal Master Plan, Design Memorandum 5 (Seattle: Seattle District, U.S. Army Corps of Engineers, April 1976). Includes summary history, early view and

GEOPGRAPHICAL DATA
ACREAGE OF NOMINATED PROPERTY
Locks, 49.09; Fremont Cut, 38.5; Montlake Cut, 20.3.
Total acreage of three parcels: 107.89.

UTM REFERENCES

ZONE EASTING NORTHING

ZONE EASTING NORTHING

VERBAL BOUNDARY DESCRIPTION

See attached sheet

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES

<table>
<thead>
<tr>
<th>STATE</th>
<th>CODE</th>
<th>COUNTY</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORM PREPARED BY

NAME/TITLE
Elisabeth Walton Potter, Historic Preservation Specialist

ORGANIZATION
Office of Archaeology and Historic Preservation

DATE
March 1977

STREET & NUMBER
111 West 21st Avenue

TELEPHONE
(206) 753-4117

CITY OR TOWN
Olympia

STATE
Washington

98504

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION

THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:

NATIONAL ___ STATE ___ LOCAL ___

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

STATE-HISTORIC PRESERVATION OFFICER SIGNATURE

TITLE

DATE

FOR NPS USE ONLY

I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DATE

DIRECTOR, OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION

ATTEST:

DATE

KEEPER OF THE NATIONAL REGISTER
plot plans of the project. For the most part, proposed developments are designed to preserve and promote public appreciation of the historical features.

Chittenden, Gen. H. M., U.S. Army, Retired, The Lake Washington Canal: What it Will Mean to the People (Seattle: Chamber of Commerce, ca. 1914). 4 pages. Written during his term as president of the Port Commission of Seattle, this is a synthesis of arguments in favor of the project which Chittenden earlier developed as the Army Corps of Engineers' Seattle District Engineer. Published as a promotional leaflet by the Chamber of Commerce, the canal's most ardent supporter in the private sector.

VERBAL BOUNDARY DESCRIPTION

Hiram M. Chittenden Locks

Beginning at a point on the SW corner Lot 1, Block 13 of Ballard Tide Lands; thence southeasterly along the southerly lot lines of Lots 1 through 5 of said Block 13 to the SE corner of Lot 5 of said Block; thence north to the southerly boundary of the Great Northern Railway* right-of-way; thence northeasterly along said railway right-of-way boundary to a point approximately 7 feet east of the projection north of the east lot line of Lot 2, Block 11, Ballard Tide Lands; thence north 17.5 feet to the southerly boundary of the Great Northern Railway right-of-way; thence northeasterly along said railway right-of-way boundary to the projection north of the east lot line of Lot 4, Block 11, Ballard Tide Lands; thence south along said projected line to the SE corner of Lot 4; thence east in a perpendicular direction along the U.S. Pierhead Line 1050 feet to the projection south of the west boundary of 26th Avenue N.W.; thence south across the Salmon Bay Waterway 750 feet to the State Harbor Line; thence west along the State Harbor Line and northerly along the north lot lines of Lots 1 through 4 of Block 7, Seattle Tide Lands to a point approximately 45 feet west of the projection north of the east boundary of 31st Avenue W.; thence southwesterly in a line perpendicular to the Waterway 100 feet; thence northwesterly in a line parallel with the Waterway 535.88 feet; thence north approximately 105 feet to the U.S. Pierhead Line; thence northwesterly along said Pierhead Line to the projection south of the east boundary of 34th Avenue N.W.; thence north along said projected line approximately 350 feet across the Salmon Bay Waterway to the point of beginning.

* Burlington Northern Railway current owner

Fremont Cut Parcel

Beginning at a point on the northerly State Harbor Line of the Lake Washington Ship Canal approximately 25 feet southeast of the Northern Pacific Railway Bridge right-of-way (which point is the SW corner of Lot 8, Block 1, Seattle Tide Lands); thence southeasterly along said State Harbor Line 5540 feet to a point approximately 280 feet southeasterly of the Fremont Bridge right-of-way; thence southwesterly 300 feet across the canal to a point on the southerly State Harbor Line which is approximately 105 feet southeasterly of the Fremont Bridge right-of-way; thence northwesterly along said State Harbor Line 5810 feet to a point 7.98 feet southeasterly of the NE corner of Lot 12, Block 13, Ross Addition; thence southeasterly in a line parallel with the northerly lot line of said Lot 12 approximately 200 feet; thence northeasterly 266.59 feet to the point of beginning.

Montlake Cut Parcel

Beginning at the SE corner of Block 18-A of the 2nd Supplement, Lake Union Shore Lands; thence south to a point 48.56 feet south of the north U.S. Bulkhead and Pierhead
Line of the Lake Washington Ship Canal; thence in a southeasterly direction 552.73 feet to a point 151.76 feet south of said U.S. Bulkhead and Pierhead Line; thence east along a line parallel with said U.S. Bulkhead and Pierhead Line 2069.44 feet; thence in a southwesterly direction approximately 485 feet across the canal to a point on the south boundary line of Section 16, T.25N., R.4E., W.M., approximately 240 feet east of the quarter corner of Section 16; thence west along said Section boundary line 2229.76 feet; thence in a northwesterly direction approximately 510 feet across the canal to a point on the north U.S. Bulkhead and Pierhead Line approximately 55 feet west of the point of beginning; thence east along said U.S. Bulkhead and Pierhead Line to the point of beginning.
NATIONAL REGISTER OF HISTORIC PLACES
PROPERTY MAP FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- ENCLOSE WITH MAP

1 NAME
HISTORIC
Chittenden (Hiram M.) Locks and Related Features of the Lake Washington Ship Canal

AND/OR COMMON

2 LOCATION
CITY, TOWN Seattle VICINITY OF
COUNTY King STATE Washington

3 MAP REFERENCE
SOURCE Kroll Map Company Atlas of Seattle. Pages 10E and 11W (Locks); 21W, 21E and 22W (Fremont Cut); 24W and 24E (Montlake Cut).
SCALE 1 inch = 200 feet
DATE undated

4 REQUIREMENTS
TO BE INCLUDED ON ALL MAPS
1. PROPERTY BOUNDARIES
2. NORTH ARROW
3. UTM REFERENCES
NAME
CHITTENDEN (HIRAM M.) LOCKS AND RELATED FEATURES OF THE LAKE WASHINGTON SHIP CANAL

LOCATION
CITY/TOWN SEATTLE VICINITY OF
COUNTY KING STATE WASHINGTON

PHOTO REFERENCE
PHOTO CREDIT ELISABETH WALTON POTTER DATE OF PHOTO FEBRUARY 1977
NEGATIVE FILED AT WASHINGTON STATE OFFICE OF ARCHAEOLOGY AND HISTORIC PRESERVATION P.O. BOX 1128, OLYMPIA, WA 98504

IDENTIFICATION
DESCRIBE VIEW, DIRECTION, ETC. IF DISTRICT, GIVE BUILDING NAME & STREET
PHOTO NO. 2 THRU 10

2 OF 13 SALMON BAY WATERWAY. LOOKING NORTHWEST FROM SOUTH BANK PAST CITY OF SEATTLE'S COMMODORE PARK DEVELOPMENT TOWARD SHILSHOLE BAY AND PUGET SOUND.

3 OF 13 HIRAM M. CHITTENDEN LOCKS. LOOKING SOUTHEAST AT LARGE LOCK. CONTROL TOWER (1969) ON RIGHT.

4 OF 13 HIRAM M. CHITTENDEN LOCKS. LOOKING NORTH FROM LOCK WALL AT ADMINISTRATION BUILDING (1914) AND OPERATING HOUSE NO. 2 (1914). MACHINE SHOP (1916) IS IN THE DISTANCE.

5 OF 13 HIRAM M. CHITTENDEN LOCKS. ADMINISTRATION BUILDING (1914), NORTHWEST AND NORTHWEST ELEVATIONS.

7 OF 13 HIRAM M. CHITTENDEN LOCKS. LOOKING SOUTHEAST AT OPERATING HOUSE NO. 1 (1914), EMERGENCY DAM HOIST HOUSE AND EMERGENCY DAM STORAGE (1922).

8 OF 13 HIRAM M. CHITTENDEN LOCKS. TRANSFORMER HOUSE (1914), WEST FACE. DISTRICT GARAGE (1941) IN BACKGROUND. STEEL SHOP (1941) ON RIGHT.

9 OF 13 HIRAM M. CHITTENDEN LOCKS. CARPENTER AND BLACKSMITH SHOPS (1921), SOUTHWEST CORNER VIEW.

10 OF 13 HIRAM M. CHITTENDEN LOCKS. LOCKS SUPERINTENDENT'S RESIDENCE (1913), SOUTHWEST VIEW.
LAKA WASHINGTON SHIP CANAL, SEATTLE
KING COUNTY, WASHINGTON

HIRAM M. CHITTENDEN LOCKS
LOOKING EAST TOWARD SALMON BAY, BALLARD BRIDGE,
AND CANAL TO LAKE UNION BEYOND.

M(?) AND S. PHOTO NO. 59124 CIRCA. 1919-1920

LEFT TO RIGHT IN LOCKS COMPLEX:
TRANSFORMER STATION, TEMPORARY SHOP BUILDINGS,
LOCKSV SUCHEE TAINANT'S RESIDENCE, MACHINE SHOP,
OFFICE AND SHOP BUILDING; ADMINISTRATION BUILDING,
_LARGE AND SMALL LOCKS, SPILLWAY DAM.

COPYED 2-77 FROM ORIGINAL IN SPECIAL COLLECTIONS
OF THE UNIVERSITY OF WASHINGTON LIBRARY
plot plans of the project. For the most part, proposed developments are designed to preserve and promote public appreciation of the historical features.

Chittenden, Gen. H. M., U.S. Army, Retired, The Lake Washington Canal: What it Will Mean to the People (Seattle: Chamber of Commerce, ca. 1914). 4 pages. Written during his term as president of the Port Commission of Seattle, this is a synthesis of arguments in favor of the project which Chittenden earlier developed as the Army Corps of Engineers' Seattle District Engineer. Published as a promotional leaflet by the Chamber of Commerce, the canal's most ardent supporter in the private sector.

1 NAME
 HISTORIC Chittenden (Hiram M.) Locks and Related Features of the Lake Washington Ship Canal
 AND/OR COMMON

2 LOCATION
 CITY/TOWN Seattle
 VICINITY OF
 COUNTY King
 STATE Washington

3 PHOTO REFERENCE
 PHOTO CREDIT M(?) & S No. 59124
 DATE OF PHOTO circa 1919-1920
 Copied February 1977 from original in collections of the University of Washington Library
 NEGATIVE FILED AT
 University of Washington Library, Special Collections, Seattle, WA 98105

4 IDENTIFICATION
 DESCRIBE VIEW, DIRECTION, ETC. IF DISTRICT, GIVE BUILDING NAME & STREET
 PHOTO NO. 1 of 13
 Lake Washington Ship Canal and Hiram M. Chittenden Locks. Looking east toward Salmon Bay Waterway, Ballard Bridge and canal to Lake Union beyond. Left to right in government locks reservation: Transformer House (1914), temporary carpenter and blacksmith shops, Residence of the Locks Superintendent (1913), Machine Shop (1916), Office and Shop Building (1916), Administration Building (1914), large lock, small lock, and spillway dam.
NAME
Chittenden (Hiram M.) Locks and Related Features of the Lake Washington Ship Canal

AND/OR COMMON

LOCATION
CITY, TOWN Seattle
VICINITY OF
COUNTY King
STATE Washington

PHOTO REFERENCE
PHOTO CREDIT Elisabeth Walton Potter
DATE OF PHOTO February 1977
NEGATIVE FILED AT Washington State Office of Archaeology and Historic Preservation
P.O. Box 1128, Olympia, WA 98504

IDENTIFICATION
PHOTO NO. 11 thru 13

11 of 13 Lake Washington Ship Canal. General view of Fremont Cut, looking northwest from the Fremont Bridge.

12 of 13 Lake Washington Ship Canal. General view of Montlake Cut, looking east from south bank of canal toward Montlake Bridge and Union Bay beyond.

13 of 13 Lake Washington Ship Canal. Montlake Cut, looking west from south bank of canal at Montlake Bridge with draw spans open for sailboat.
Hiram M. Chittenden Locks and Related Features of the Lake Washington Ship Canal

Seattle, Washington

Site Plan: Hiram M. Chittenden Locks 1" = 200'

1. Lockkeeper's House
2. Administration Bldg.
3. Operating House
4. Mechanics Shop
5. Transformer House
6. Office and Shop Bldg.
7. Machine Shop
8. Gas and Oil Bldg.
9. Carpenter/Blacksmith shops
10. Emergency Dam Hoist House
11. Steel Shop
12. Warehouse
13. Garage
14. Comfort Station
15. Boat House
16. Greenhouse
17. Gatehouse
18. Storage Shed
19. Quonset Hut
20. Control Tower

*Not shown because of size
National Register of Historic Places
Inventory Nomination Form: Historic Bridges and Tunnels

- Montlake Bridge
- Arboretum Aqueduct
United States Department of the Interior
Heritage Conservation and Recreation Service

National Register of Historic Places
Inventory—Nomination Form

See instructions in How to Complete National Register Forms
Type all entries—complete applicable sections

1. Name

historic: Historic Bridges and Tunnels in Washington State

and/or common:

2. Location

street & number: see individual inventory forms

not for publication:

city, town:

vicinity of: congressional district:

3. Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Ownership</th>
<th>Status</th>
<th>Present Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>X: district</td>
<td>public</td>
<td>occupied</td>
<td>agriculture</td>
</tr>
<tr>
<td>building(s)</td>
<td>private</td>
<td>unoccupied</td>
<td>commercial</td>
</tr>
<tr>
<td>structure</td>
<td>X: both</td>
<td>work in progress</td>
<td>educational</td>
</tr>
<tr>
<td>site</td>
<td>Public Acquisition</td>
<td>accessible</td>
<td>entertainment</td>
</tr>
<tr>
<td>object</td>
<td>in process</td>
<td>yes: restricted</td>
<td>government</td>
</tr>
<tr>
<td>thematic group</td>
<td>being considered</td>
<td>yes: unrestricted</td>
<td>industrial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no</td>
<td>military</td>
</tr>
</tbody>
</table>

4. Owner of Property

name: Multiple Ownership

street & number:

city, town:

vicinity of:

4. Location of Legal Description

courthouse, registry of deeds, etc.: State Department of Transportation;

county courthouses:

city halls:

5. Representation in Existing Surveys

title: Historic Bridge Survey

has this property been determined eligible? yes no

date: January 1979 - April 1980

federal X state county local

depository for survey records: State Office of Archaeology and Historic Preservation

city, town: 111 West 21st Avenue, Olympia

state Washington 98504
Bridges Already Listed in the National Register of Historic Places:

- Baker River Bridge
- Cascade Tunnels: Stevens Pass Historic District
- Devil's Corner
- Grays River Covered Bridge
- Jack Knife Bridge
- Lower Custer Way Crossing: Tumwater Historic District
- Monroe Street Bridge
- Rock Island Railroad Bridge
- Waitsburg Bridge: Waitsburg Historic District

Bridges Determined Eligible for Listing in the National Register of Historic Places:

- Lacey V. Murrow Bridge
- Pasco-Kennewick Bridge
- Prosser Steel Bridge
- Washington Street Bridge
- Orient Bridge
- "F" Street Bridge
- West Monitor Bridge
7. Description

<table>
<thead>
<tr>
<th>Condition</th>
<th>Check one</th>
<th>Check one</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>deteriorated</td>
<td>original site</td>
</tr>
<tr>
<td>good</td>
<td>ruins</td>
<td>moved</td>
</tr>
<tr>
<td>fair</td>
<td>unaltered</td>
<td>date</td>
</tr>
<tr>
<td></td>
<td>altered</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unexposed</td>
<td></td>
</tr>
</tbody>
</table>

Describe the present and original (if known) physical appearance

The legacy of existing bridges throughout the State of Washington is one of diverse structural types - as diverse as the vast and varied terrain that they were built to traverse. The primary intent of this nomination is to outline the legacy set forward by these extant structures, and to place them within the context of bridge engineering history, or within the context of their role in the social, economic, and industrial development of the locality, state, region, or nation.

The nomination is the result of a systematic inventory of historic bridges throughout the State, conducted by the State Office of Archaeology and Historic Preservation (SOAHP) in cooperation with the Washington State Department of Transportation (WSDOT) and the Historic American Engineering Record (HAER) of the Department of the Interior. The inventory, which was authorized by the Surface Transportation Act of 1978 (Public Law 95-599), was funded by the WSDOT. As a result, emphasis was placed on the recording of highway bridges. However, railroad bridges and other privately-owned bridges also were inventoried.

Before the information retrieval process could begin, it was necessary to establish bottom-line criteria for the selection of historic bridges. In consultation with HAER, the SOAHP decided that all existing bridges built during or prior to 1940 would be considered for inclusion in the HAER inventory. Although this cut-off date includes bridges less than the National Register's age guideline of 50 years, it was believed that it was essential to give the WSDOT leeway to facilitate future long-range planning decisions. In addition, Washington State's context of history is much more recent than that of other areas in the United States, and it is important that the boundaries of the historic bridge inventory reflect that context. These same boundaries were used to select the bridges eligible for listing in the National Register. Because it was not possible to photograph every culvert in the State, and there are only a few rare examples of bridges less than 50 feet in length that possess engineering or historical significance, it was decided that in almost all instances only bridges greater than 50 feet in length would be included in the inventory.

In conducting the historic bridge inventory (which provided the information base for the nomination) the SOAHP attempted to evaluate all bridges built during or prior to 1940, and greater than 50 feet in length, and to place each of them in one of the following three categories:

Category I.

The first category of bridges includes those bridges eligible for listing in the National Register of Historic Places. It must be emphasized that Category I bridges were not selected until the inventory was completed. The bridges were evaluated according to the general criteria stated in 36 C.F.R. Part 60.6. More specifically, those bridges included in the nomination are bridges that:

1. are significant in the history of bridge engineering, in the history of bridge design principles, and in the development of bridge construction techniques;

2. are significant in the social, economic, and industrial development of the locality, state, region, or nation;

3. are significant examples of bridges designed or built by renowned engineers;
United States Department of the Interior
Heritage Conservation and Recreation Service

National Register of Historic Places
Inventory—Nomination Form

Continuation sheet
Item number 7
Page 2

4. are significant examples of structural designs associated with the efforts of historic individuals or groups;

5. are significant examples of an early bridge engineering effort commonly used throughout the State of Washington for a specific purpose or reason;

6. are significant early examples, or significant representative examples, of a specific bridge type;

7. are rare examples of a specific bridge type within the state;

8. possess architectural or artistic significance.

Category II includes those properties which are of historical and engineering interest, are worthy of recording through photographic and written documentation, but are not eligible for inclusion in the National Register of Historic Places. It includes the following bridge types which were constructed during or prior to 1940, and are greater than 50 feet in length: trussed bridges; arches; moveable bridges; suspension bridges; aqueducts; cantilever bridges; tunnels; steel and cast and wrought iron girders; steel viaducts. Concrete and timber slabs, beams, girders, viaducts, or trestles are included in Category II only when they are of unusual length or height; when they are socially and economically significant to the locality, state, or region; when they are particularly early examples of the bridge type; when they possess architectural or artistic significance; or when innovative design principles or building techniques have been used in bridge construction.

Category III consists of all other bridges that were constructed during or before 1940 and are greater than fifty feet in length, but are not of such quality as to be included in either Category I or II. Category III includes all concrete and timber slabs, beams, girders, viaducts, and trestles unless they are particularly early examples of the bridge type, or are of unusual length or height, or are socially and economically significant to the locality, state, region, or nation, or demonstrate the use of innovative design principles or construction techniques, or possess architectural or artistic significance.

An Historic American Engineering Record inventory card was prepared for all properties identified under Category I and II. A brief form outlining basic structural information was used to record Category III bridges. Although the individual Category III bridges are not significant enough to warrant substantial documentation, they have furnished valuable statistics on when and where builders, contractors, and fabricators worked which provided insights into bridge construction history throughout the State, and helped to formulate the context in which Category I and II bridges were built.

The examination of the WSDOT computer print-out list was the first step in the lengthy information gathering process. The list provided basic structural data on all state, county, and city-owned highway bridges that were built during or prior to 1940, and were greater than 20 feet in length. By Federal standards, any structure less than 20 feet long is not considered a bridge. Although it had been decided that the historic bridge inventory would include bridges greater than 50 feet in length, the computer print-out provided enough information to determine which bridges less than 50 feet in length had potential engineering significance, and should be included in the inventory.
The inventory and evaluation process was conducted on a county-by-county basis. After the raw structural data was attained, the state, county, and local highway commission files were tapped for information regarding the names of bridge builders, contractors, fabricators, and designers. The files provided recent photographs, occasionally old construction photographs, original contractual agreements, plans and drawings, and more extensive structural and design information on the bridges listed on the computer print-out sheet. This information formed the basis for determining whether the bridge would fall into Category II or III. When the inventory was completed, Category I bridges were selected from those bridges listed in Category II.

In addition to researching the state, county, and local highway commission files, bridge lists were acquired from the Burlington Northern Railroad, Inc., the Chicago, St. Paul, Milwaukee, and Pacific Railroad, and the Union Pacific Railroad. Information also was gathered on Forest Service bridges, as well as privately-owned bridges, including abandoned logging structures. However, the information gathering process for the privately-owned bridges was arbitrary, and by no means comprehensive. Because the majority of the railroad bridge records are lodged in the midwest, and there are no records remaining for many of the other privately-owned bridges, it was often necessary to rely heavily on contemporary articles about the bridges, rather than on original blueprints.

Contemporary newspaper articles, engineering journals, and bridge engineering books provided valuable source material. The national journals, Engineering News-Record and Railway Age Gazette, and the regional magazine, Western Construction News, were systematically examined for articles on the construction of bridges in Washington.

After the inventory cards were completed, and the highway commission files were integrated with the literature source material, statistical information was compiled to define the statewide context for the individual bridges. Approximately 1400 bridges were inventoried, 218 of which are railroad bridges. Ninety-five bridges have been included in the nomination, and about 500 have been listed on the HAER Inventory. Of the 1400 bridges, roughly seven percent were constructed before 1910, and approximately 20 percent were built before 1920. There are only five bridges on the inventory that were constructed before 1900.

When the 95 bridges included in the nomination are discussed individually, they will be compared to other bridges within the State of a similar type. However, the following tables provide a general overview and a statewide context, by relating the bridge types included in the nomination to all bridges surveyed:
United States Department of the Interior
Heritage Conservation and Recreation Service
National Register of Historic Places
Inventory—Nomination Form

RAILROAD BRIDGES: BREAKDOWN OF TYPES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONCRETE</td>
<td>CONTINUOUS CONCRETE</td>
<td>STEEL</td>
<td>CONTINUOUS STEEL</td>
<td>Prestressed Concrete</td>
<td>Prestressed Continuous Concrete</td>
<td>Timber</td>
</tr>
<tr>
<td>020</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-01</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

@ Surveyed
& Listed in National Register

Total number of railroad bridges surveyed: 218
Total number of railroad bridges recommended for listing in the National Register: 29
(includes those already listed, and those determined eligible)
Highway Bridges: Breakdown of Types

<table>
<thead>
<tr>
<th>TYPE</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONCRETE</td>
<td>CONTINUOUS CONCRETE</td>
<td>STEEL</td>
<td>CONTINUOUS STEEL</td>
<td>PRESTRESSED CONCRETE</td>
<td>PRESTRESSED CONTINUOUS CONCRETE</td>
<td>TIMBER</td>
</tr>
<tr>
<td>020</td>
<td>21 & 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-01</td>
<td>33 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-02</td>
<td>48 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-03</td>
<td>7 9 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-04</td>
<td>83 1 87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-05</td>
<td>8 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-06</td>
<td>5 1 3 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-07</td>
<td>1 1 2 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-08</td>
<td>1 2 14 3 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-09</td>
<td>1 1 1 1 233 9 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>111 8 14 1 3 3 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11</td>
<td>8 5 2 1 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13</td>
<td>15 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td>16 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15</td>
<td>17 1 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-17</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td>20 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

@ Surveyed
& Listed in National Register

Total number of highway bridges surveyed: 1173
Total number of highway bridges recommended for listing in the National Register: 58 (includes those already listed, and those determined eligible)
KEY TO BRIDGE TYPES

<table>
<thead>
<tr>
<th>FIRST DIGIT</th>
<th>SECOND AND THIRD DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Concrete</td>
<td>01 Slab</td>
</tr>
<tr>
<td>2 Concrete Continuous</td>
<td>02 Stringer/Multi-beam or girder</td>
</tr>
<tr>
<td>3 Steel</td>
<td>03 Girder and Floorbeam system</td>
</tr>
<tr>
<td>4 Steel continuous</td>
<td>04 Tee beam</td>
</tr>
<tr>
<td>5 Prestress concrete</td>
<td>05 Box beam or girders - multiple</td>
</tr>
<tr>
<td>6 Prestress concrete continuous</td>
<td>06 Box beam or girders - single or spread</td>
</tr>
<tr>
<td>7 Timber</td>
<td>07 Frame</td>
</tr>
<tr>
<td>8 Masonry</td>
<td>08 Orthotropic</td>
</tr>
<tr>
<td>9 Aluminum, wrought iron or cast iron</td>
<td>09 Truss-deck</td>
</tr>
<tr>
<td>0 Other</td>
<td>10 Truss-through</td>
</tr>
<tr>
<td></td>
<td>11 Arch-deck</td>
</tr>
<tr>
<td></td>
<td>12 Arch-through</td>
</tr>
<tr>
<td></td>
<td>13 Suspension</td>
</tr>
<tr>
<td></td>
<td>14 Stayed girder</td>
</tr>
<tr>
<td></td>
<td>15 Movable-lift</td>
</tr>
<tr>
<td></td>
<td>16 Movable-bascule</td>
</tr>
<tr>
<td></td>
<td>17 Movable-swing</td>
</tr>
<tr>
<td></td>
<td>18 Tunnel</td>
</tr>
<tr>
<td></td>
<td>19 Culvert</td>
</tr>
<tr>
<td></td>
<td>20 Other or Combination</td>
</tr>
</tbody>
</table>
8. Significance

<table>
<thead>
<tr>
<th>Period</th>
<th>Areas of Significance</th>
<th>Builder/Architect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prehistoric</td>
<td></td>
</tr>
<tr>
<td>1400–1499</td>
<td>archeology-prehistoric</td>
<td></td>
</tr>
<tr>
<td>1500–1599</td>
<td>agriculture</td>
<td></td>
</tr>
<tr>
<td>1600–1699</td>
<td>architecture</td>
<td></td>
</tr>
<tr>
<td>1700–1799</td>
<td>art</td>
<td></td>
</tr>
<tr>
<td>1800–1899</td>
<td>commerce</td>
<td></td>
</tr>
<tr>
<td>1900–</td>
<td>communications</td>
<td></td>
</tr>
</tbody>
</table>

Specific dates

Statement of Significance (in one paragraph)

PREFACE: EXPLANATION OF METHODOLOGY

The existing historic bridges and tunnels throughout Washington transmit a legacy that is multifaceted. The structural systems of the individual bridges poignantly reveal the evolution of bridge design and technology from both a national and regional perspective. In addition, each individual structure cannot be isolated from the transportation system of which it is an integral part. The significance of the bridges and tunnels has been interpreted within this dual context.

Early bridge construction within the state is tightly linked to the development of the railroads within the State. There are seventeen bridges and tunnels in the nomination that have been a significant part of the State's early railroad development, and were discussed within this context. Four structures were treated from the perspective of their association with the early highway bridge construction over the Columbia River. And five structures were discussed in terms of their role in logging and mining transportation systems. Most of the twenty-six bridges and tunnels that were evaluated primarily in terms of the transportation systems of which they were a significant part, also were discussed in terms of their structural significance.

The nomination does include a number of structures that are less than fifty years old. As was stated earlier, the nomination mirrors the criteria set by the initial inventory. There is only one structure that was constructed after 1940, the cut-off date set by the inventory. This is a 250 foot log cable-stayed girder bridge, and is one of the first of its type to be constructed within the United States. Its parts are composed of untreated logs which are extremely susceptible to the ravages of time. Consequently, it is essential that this unusual structure is acknowledged and documented without delay.
National Register of Historic Places Inventory—Nomination Form

TABLE OF CONTENTS

I. BRIDGES THAT REFLECT RAILROAD DEVELOPMENT IN WASHINGTON STATE

A. Northern Pacific Railroad
 - Pasco-Kennewick Railroad Bridge 1
 - Stampede Pass Tunnel 2

B. Great Northern Railroad
 - Rock Island Railroad Bridge 3
 - Cascade Tunnel 1911-1913 4
 - Cascade Tunnel 1925-29 5
 - Penstock Bridge ... 6

C. Spokane, Portland, and Seattle Railway
 - Klickitat River Bridge 7
 - Box Canyon Viaduct ... 8
 - Cow Creek Viaduct ... 9
 - Vancouver-Hayden Island Bridge 10

D. Oregon Trunk Railway
 - Celilo Bridge ... 11

E. Union Pacific Railroad
 - Joso Viaduct .. 12

F. Milwaukee Railroad
 - Beverly Railroad Bridge 13

II. BRIDGES THAT REFLECT EARLY HIGHWAY DEVELOPMENT IN WASHINGTON STATE

- Wenatchee/Columbia River Bridge 14
- Vancouver-Portland Interstate Bridge 15
- Pasco-Kennewick Bridge 16
- Longview Bridge ... 17

III. SPECIALIZED STRUCTURES: MINING AND LOGGING BRIDGES

- Little Sheep Creek/Red Mountain Railroad Bridge 18
- Winslow Railroad Bridge 19
- Vance Creek Bridge ... 20
- High Steel Bridge ... 21
- Chow Chow Bridge .. 22

IV. REPRESENTATION OF BRIDGE TYPES

A. Trestles: Timber
 - Wilburton Trestle ... 23
B. Trusses:
 1. Timber
 Dungeness River Railroad Bridge 24
 McClure Bridge 25
 North 4th and Dock Street Bridge 26
 2. Covered
 Grays River Covered Bridge 27
 Manning-Rye Covered Bridge 28
 Doty Bridge 29
 Weyerhaeuser/Pe Ell Bridge 30
 3. Steel
 Spokane River Bridge 31
 Wishkah River Bridge 32
 F Street/Palouse Bridge 33
 West Monitor Bridge 34
 Curlew Bridge 35
 Orient Bridge 36
 Prosser Steel Bridge 37
 Middle Fork Nooksack River 38
 White River Bridge 39
 Idaho and Washington Northern Railroad Bridge 40
 Elwha River Bridge 41
 4. Cantilever
 Snake River/Lyons Ferry Bridge 42
 George Washington Memorial/Aurora Avenue Bridge 43
 Grand Coulee Bridge 44
 Deception Pass Bridge 45

C. Moveable Bridges:
 1. Swing
 Puyallup Waterway Crossing 47
 2. Bascule
 Salmon Bay Great Northern Railroad Bridge 48
 Jack Knife Bridge 49
 University Bridge 50
 Ballard Bridge 51
 Fremont Bridge 52
 Montlake Bridge 53
 Hoquiam River Bridge 54
 14th Avenue South Bridge 55
3. Vertical Lift
 City Waterway Bridge 56
 Steilacoom Creek Bridge 57

4. Floating Bridge
 Lacey V. Murrow Floating Bridge 58
 Mount Baker Ridge Tunnel 59

D. Arches
 1. Steel
 12th Avenue South Bridge over Dearborn Street 60
 Ravenna Park Bridge 61
 Fairfax Bridge .. 62
 North Queen Anne Bridge 63
 Canoe Pass Bridge 46

2. Concrete
 Washington Street Bridge 64
 Arboretum Sewer Trestle 65
 Monroe Street Bridge 66
 Latah Creek/Sunset Boulevard Bridge 67
 Rosalia Railroad Bridge 68
 Lower Custer Way Bridge 69
 Baker River Bridge 70
 Waitsburg Bridge ... 71
 Cowen Park Bridge 72
 East 34th Street Bridge Pacific to A Street 73
 East 34th Street Bridge East B to East D Street 74
 Indian Timothy Memorial Bridge 75
 Goldsborough Creek Bridge 76
 North Hamma Hamma River Bridge 77
 South Hamma Hamma River Bridge 78
 Duckabush River Bridge 79

E. Concrete Beams, Girders, and Trusses
 North 23rd Street Bridge 80
 North 21st Street Bridge 81
 Johnson Bridge ... 82
 Capitol Boulevard Crossing 83
 Purdy Bridge .. 84
 Schmitz Park Bridge 85
 McMillin Bridge ... 86
F. Suspension Bridges

Devil's Corner ... 87
Yale Bridge .. 88
Tacoma Narrows Bridge 89
9. Major Bibliographical References
Refer to individual inventory forms for additional references.

10. Geographical Data
Acreage of nominated property ____________ refer to individual inventory forms.
Quadrangle name ____________ Quadrangle scale ____________
UMT References

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verbal boundary description and justification

List all states and counties for properties overlapping state or county boundaries

<table>
<thead>
<tr>
<th>state</th>
<th>code</th>
<th>county</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>state</th>
<th>code</th>
<th>county</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Form Prepared By
name/title Lisa Soderberg, Historian
organization Office of Archaeology and Hist. Pres. date August 1980
street & number 111 West 21st Avenue telephone (206) 754-2395
city or town Olympia state Washington 98504

12. State Historic Preservation Officer Certification
The evaluated significance of this property within the state is:

national state local

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the Heritage Conservation and Recreation Service.

State Historic Preservation Officer signature

<table>
<thead>
<tr>
<th>title</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HISTORIC BRIDGES AND TUNNELS
IN WASHINGTON STATE

Lisa Soderberg
Washington State Office of
Archaeology and Historic
Preservation
Olympia, Washington
November, 1980
I. BRIDGES THAT REFLECT RAILROAD DEVELOPMENT IN WASHINGTON STATE

The construction of the earliest bridges and tunnels of major proportions within the State is associated with the construction of the transcontinental railroads. It was in 1864 that the Northern Pacific Railroad was chartered by Congress to build a mainline from Lake Superior to Puget Sound. However, it was not until 1883 that the Northern Pacific established a route between Duluth and Puget Sound by means of connecting its line to the existing Oregon Railroad and Navigation Company line along the south bank of the Columbia River. The two systems were linked by two car ferries: a car ferry across the Snake River which connected with a short railway spur that ran to Wallula, and a car ferry across the Columbia River between Portland and Kalama which connected with the Northern Pacific line that ran between Kalama and its terminus at Tacoma. This circuitous route to Puget Sound was feasible only because of daring financial manipulations made by the northwest railroad magnate, Henry Villard. Although the railroads retained their individual corporate identities, Henry Villard obtained control of both systems. However, in January of 1884 Villard's empire collapsed, and the two railroads reverted to separate control.¹

Once again cut off from Puget Sound, the Northern Pacific immediately began work on a route across the mountains. The Pasco-Kennewick Bridge (1), the first bridge to be built across the Columbia River, was constructed as a temporary structure in 1888 as part of the Northern Pacific's effort to redirect its route across the mountains. By 1887, a treacherous, temporary switchback was in service over the mountains through Stampede Pass. The completion of the two mile tunnel (2) in May, 1888 initiated the first adequate and direct through railroad service to Puget Sound.

Five years after the completion of the Northern Pacific route, the Great Northern Railroad, under the direction of James J. Hill, was operating a transcontinental line from Minneapolis to Seattle. In 1893, a complex system of switchbacks across the Cascades at Stevens Pass was opened to service, and a large steel truss (3) was erected across the Columbia. The completion of the

Cascade Tunnel (4,5) in 1900, confirmed that the historic focus of the whole northern portion of the interior of the state, which had been oriented down the Columbia River to Portland had finally been diverted to Puget Sound. And it was the Great Northern Railroad that provided Seattle with the vital rail connections that were instrumental in turning the new focus on Puget Sound, specifically towards Seattle.

The last transcontinental line to be built across Washington to Puget Sound was the Chicago, Milwaukee, and St. Paul Railroad's route to the coast through the interior of the state (13). The line was completed in 1909, more than 15 years after the beginning of transcontinental railroad construction through Washington.

The Milwaukee Railroad was the first railroad to electrify a substantial portion of its line. The Beverly Bridge carries vestiges of the superstructure used to support the copper cables. The advantages of railroad electrification were particularly apparent in the increased load capacity of the freight trains. Railroad electrification also alleviated the dangerous conditions within the long mountain pass tunnels. The Penstock Bridge (5) played an integral role in the water transportation system that powered the Great Northern trains through one of the early Cascade Tunnels.

Competition and power plays between the major railroad companies plagued and profoundly influenced railroad and bridge construction throughout the state. In 1900, James J. Hill surreptitiously purchased the rights of way for a new trunk line between Spokane and Portland on the north bank of the Columbia River in the hopes of obtaining a direct outlet to Portland for the rapidly growing traffic of Spokane and the southern portion of the interior. It was a venture to be shared by the Great Northern and the Northern Pacific. However, it directly competed with the Oregon Railroad and Navigation Company (OR&N) on the south bank of the river, which had been subsumed by the Union Pacific Railroad under the direction of Edward H. Harriman. Harriman valiantly attempted to thwart the construction of the Spokane, Portland, and Seattle Railway (SP&S) by using a variety ploys. While the court battles raged, "construction crews fought with fists, rocks, pickhandles, and dynamite." The last court encounter ended in victory for

\[2\text{Ibid., p. 270.}\]
Hill in 1906. The line from Spokane to Portland was finally completed and in operation by 1909. "As a transportation route it represents the highest result of the railroad builder's art," reported an engineer before a meeting of the Pacific-Northwest Society of Civil Engineers in 1925. Because the Great Northern and Northern Pacific desired a high capacity railroad with low operating costs, they did not make use of the existing Northern Pacific line between Spokane and Pasco. Instead, they constructed a new low grade roadbed with a minimum of curves. Their aim was "to make the roadbed of the most permanent character." The bridges on the line certainly reflect this aim. Permanent steel viaducts or earth fills were built initially, rather than temporary timber structures. From Spokane, the line makes its only west-bound ascent of 375 feet. It follows Cow Creek through Adams County. "At the junction of Cow Creek and the Palouse River, the Portland and Seattle encounters the most expensive stretch of railroad construction, except that in Devil's Canyon, ever known in Washington. The valley is crooked and entered frequently by steep, narrow gulches; the road is built across a succession of 'hog backs' and gulches. Eighty-foot cuts are followed by 90-foot fills in alteration; short tunnels are frequent; high steel trestles are necessary in many places." Of the steel trestles built in this area the Cow Creek Viaduct (9) is the longest and the highest. The line passes through the Washtucna Coulee and follows the east bank of the Snake River through Devil's Canyon. Here the treacherous terrain is traversed by four enormous steel viaducts, the highest of which is the Box Canyon Viaduct at 250 feet (8). The route makes use of the Northern Pacific tracks at only one point: the Columbia River crossing between Pasco-Kennewick (1). It follows the north bank of the Columbia across an early reinforced concrete arch (7) at Lyle, and eventually reaches Vancouver crossing the Columbia River to Portland by means of a large steel pinconnected swing bridge (10).

4 "Cascade Tunnel Route," extracts from a paper read before the Pacific-Northwest Society of Civil Engineers, Seattle, Washington, October 1925.
6 Railroad Gazette, 27 September 1907.
Because of the success of the Spokane, Portland, and Seattle Railway, the Oregon-Washington Railroad and Navigation Company (O-WRN) moved quickly to upgrade its line between Portland and Spokane. The largest structure on the O-WRN's new low grade line was the 3,920 foot Joso Viaduct (12) over the Snake River at Lyons Ferry. The completion of the new Union Pacific line was yet another example of the continuing competition between the Hill and Harriman interests to dominate and control the major railroad routes of the Northwest.

In 1912, the Oregon Trunk Railway, a subsidiary of the Spokane, Portland, and Seattle Railway, was completed, representing one of the first steps in the entry of the Hill lines into Oregon, a territory which previously had been associated exclusively with the Harriman lines. In has virtual autonomy over the railroads in Oregon and California, Harriman had effectively controlled the major railroad links to tidewater. However, Hill's entrance into Oregon made his dream of stretching the Great Northern empire from Spokane to San Francisco plausible. Although the Great Northern did not reach the Pacific coast of California until 1931, long after Hill's death, the completion of the Oregon Trunk Railway represented a significant step towards the fulfillment of Hill's dream. The Celilo Bridge (13), the largest of ten steel bridges built on the Oregon Trunk Line, was a major link in connecting the SP&S to Union Pacific Territory.

The legacy of extant structures associated with railroad development within the state span a vast, varied, and often treacherous topography, and stand as a fitting testimony to the grand schemes and boundless ingenuity of the early railroad magnates in their efforts to dominate the major routes of the Northwest.
II. BRIDGES THAT REFLECT EARLY HIGHWAY DEVELOPMENT

In 1911, the Washington State Highway Commissioner proclaimed that: "A system of State roads is today the livest [sic] issue before the people of Washington or any other state. We are living in a transition period and changes come rapidly. Evolution in transportation methods affects road construction in no less a degree than a deepening of waterways, and the construction of easier grades and easier curves on the trunk railways."\(^1\) With the proliferation of the automobile, the engineer was confronted with a new and complex range of urgent structural demands. As the Washington State Highway Commissioner observed, the foremost demand was the rapid construction of highways, of which the building of adequate highway bridges was an integral part. The heavy load capacities required by railroad traffic had previously shaped the development of bridge design. Automobile traffic, however, exerted different demands and design requirements on the bridge construction engineer which eventually shifted existing patterns and changed the direction of American bridge building. Although there are examples of concrete structures, the railroad bridge has been almost exclusively built in steel, and is characterized by the heavy riveted steel truss. The lower highway loadings enabled the engineer to use a range of bridge types and materials which resulted in a vast number of concrete structures on the highways. However, the dominance of the steel truss did not diminish on the roadways. And steel remained the most suitable material for extremely long spans over navigable waterways.\(^2\) It is interesting to note that the design of the earliest highway structures of major proportions in Washington were based on a technology that originated in railroad bridge construction of the 19th century.

The first highway bridge to be constructed across the Columbia River was a pinconnected steel cantilever truss at Wenatchee (14). It was built in 1908 to transport automobiles and water to east Wenatchee in order to develop the land for the expanding apple industry. Like most of these large,

\(^1\)W.J. Roberts, "System of Roads: Routes, Mileage and Costs," Pacific Builder and Engineer, 18 November 1911, p. 337.

early highway structures, the Wenatchee Bridge was privately financed, though subsequently purchased by the State Highway Department in 1909.

In 1916, construction began on a bridge between Vancouver and Portland (15). This enormous structure which consists of a series of simple trusses was financed by Clark and Multnomah Counties. In 1929, Washington and Oregon purchased the bridge from the counties.

A highway bridge was built across the Columbia between Pasco and Kennewick (16) in 1922. It was the first of five steel structures, and the first of four cantilever trusses to be constructed across the Columbia River during the 1920's, marking the beginning of a proliferation of major bridge construction in this new transportation era. The State Highway Department purchased the bridge from its private owners in 1931.

Though the construction of the Longview Bridge (17) was entrenched in controversy, its completion represented another effort to bridge the Columbia River with highway structures. It formed an important connecting link in the Pacific Highway extending from Vancouver, B.C. to Tia Juana, Mexico. The Longview Bridge was the last privately-financed bridge to be constructed across the Columbia River, and represented a turning point in the financing of bridge construction in the State. Soon after this time, the State purchased all privately-owned toll bridges. The construction of bridges throughout the State became increasingly dependent upon, and influenced by state and federal aid programs.
III. SPECIALIZED STRUCTURES: LOGGING AND MINING BRIDGES

The State's abundant resources have always been unattainable and useless without a transportation network to retrieve the minerals and vast supplies of timber, and a means of depositing them at a location where they can be processed for public consumption. The structures that are a part of these transportation systems embody an important segment of bridge construction history within the State.

These grand transportation schemes often involved the construction of large structures in remote, inaccessible territory. The earliest bridge associated with the development of logging and mining interests remaining within the State, is a timber deck Howe truss (18) over the Little Sheep Creek in Stevens County. It was constructed in 1896 as part of the Red Mountain Railroad which ran between Northport and Rossland. The railroad was conceived and financed by D.C. Corbin to link the untapped Canadian mineral deposits in the Kootenay district to the smelters in the United States. At Newport, the Red Mountain spur line connected to another one of D.C. Corbin's railroads, the Spokane Falls and Northern mainline. Through D.C. Corbin's initiative, the mining of the Kootenay district brought great, though momentary wealth to Spokane during the late nineteenth century.

The earliest extant bridge associated with the logging industry is the Winslow Railroad Bridge (19). It is a timber deck Howe truss which was constructed in 1916-17 by the Winslow Lumber Manufacturing Company as part of a 25 mile track system used to transport logs to the company's mill in Orin. As the logging industry developed, there became a growing separation between the logging and milling businesses. However, the Winslow Railroad, like most of the earliest logging railroads, was built by operators of the lumber mill who needed a dependable supply of logs.

Two enormous steel arches (20,21) rising almost 400 feet above wooded gorges were constructed by the Simpson Logging Company in 1929. They were built during a time when high costs were bringing an end to the era of logging railroads. By the 1930's, the West's most accessible timber had been logged,
and the initial investment of construction and equipment costs for even the shortest railroad lines was becoming prohibitive.\(^1\) It was only the largest corporations, such as the Simpson Logging Company, that would find that the unit cost of hauling logs by rail was cheaper than that by truck. The Vance Creek Bridge remains in use as a railroad bridge, while the High Steel Bridge was converted for use by vehicular traffic approximately 20 years ago. The awesome permanence of the steel structure over Vance Creek belies its seemingly anachronistic function, and reflects a changing era in the use of logging railroads. During the late 19th and early 20th centuries, the logging railroad bridges were usually timber structures. Although the mainline of the logging railroads were in service for a number of years, the structures on the spur lines, which often included extremely long and high timber trestles, were temporary, and were abandoned or reused at different locations as soon as the specific area was logged. However, as construction costs increased, enormous structures like the Vance Creek and High Steel Bridges were only economically feasible if they could be used over a long period of time. As a case in point, after a period of more than fifty years, both the Vance Creek Bridge and the High Steel Bridge remain in use. The alterations which have been made to the High Steel Bridge reflect the inevitable changes in the transportation of timber -- the gradual disappearance of the logging railroads and their replacement by trucks.

The magnificent raw power of the 250 foot log cable-stayed girder bridge (22) spanning the Quinault River is undeniable. It was designed and constructed by the Aloha Logging Company's Superintendent in 1952 to support the weight of a loaded logging truck, as part of the road system built to retrieve the company's timber from the dense forests of the Olympic Peninsula. The Chow Chow Bridge, which was constructed from a 12 foot scale model, was designed by a man who had unusual constructive ability, but who had no formal engineering background. Although the existing timber structures associated with logging and mining industries within the State span a period of almost sixty years, the bridge builders shared a common trait; they shared an intuitive constructive ability. The logging superintendent's spirit and inventive genius can be compared to the American bridge builders of the 18th and early 19th centuries who were

"practical men...who depended upon their own resources and natural instinct, experimenting with models and profiting by previous failures, but who had no accurate knowledge of the strains produced on the various members of a structure by the exterior forces."

Practice always preceded the science; consequently structural systems were invented long before the theory was developed. The Chow Chow Bridge is indeed an example of a structural system that was used to solve a problem before the formal theory was developed. It is one of the first examples of a cable-stayed girder bridge within the United States. Although there are numerous European applications of the cable-stayed design, the bridge type has not been used in the United States until very recently, because it is a statically indeterminate system, and has been difficult to analyze with any reasonable degree of accuracy.

IV. REPRESENTATION OF BRIDGE TYPES: TRESTLES

There still remains within Washington a sparse sampling of structures that are representative of bridge types which once predominated the landscape. The timber trestle which has evolved as a distinctly American structure, characterized railroad construction in Washington during the late 19th and early 20th centuries. The 984 foot Wilberton Trestle (23) which rises to a height of 98 feet above Mercer Slough, demonstrates the magnitude of the length and height of the early timber trestles that once traversed the varied and seemingly formidable topography of Washington. It is a rare surviving example within the State of a bridge type that once dominated transcontinental railroad construction. During this period, when the railroad's primary objective was to cross the continent rapidly, steel construction became a luxury, both in time of construction, and in initial expense. Timber, however, was abundant throughout western Washington, and was free for the taking.

After the transcontinental route was completed, the looming timber structures were often replaced by solid earth fills or permanent steel viaducts. The steel viaduct which was also a distinctly American structure associated with railroad construction, is best represented in the two long steel Spokane, Portland and Seattle Railroad viaducts over Cow Creek (9) and Box Canyon (8), and in the Union Pacific Joso Viaduct. (12).
IV. REPRESENTATION OF BRIDGE TYPES: TRUSSES

As exemplified in the table of bridge types, the truss is clearly the most common bridge form constructed in Washington between 1880 and 1940 for both railroad and highway structures. Because Washington was settled long after the major experimentation with truss types had occurred, there is not a vast representation of truss forms.

The earliest truss form represented is the timber Howe truss which was patented in 1840. The Little Sheep Creek Railroad Bridge (18) constructed in 1896 and the Winslow Railroad Bridge (19) constructed in 1916-17 are the oldest extant examples within the State of this once common truss type. Timber continued to be used for the construction of railroad bridges throughout Washington during the first quarter of the century due to the abundance of the resource, and its initial economic advantages. The use of treated timber also extended the life of these structures. There is one Milwaukee Railroad standard timber Howe through truss remaining within the State (24). Although it was constructed in 1930, it replaced an identical structure built in the teens.

There are two examples of timber trusses within the State that are of the Pratt configuration (25,26). In the Howe truss, the vertical members resist the load in tension, while the diagonal members resist the load in compression. The tensile strength of steel or iron coincides with the function of the vertical members, and the compressive qualities of wood coincide with the function of the diagonal members. However, in the Pratt truss, the function of the vertical and diagonal members is reversed; consequently the vertical components are timber, and the diagonal components are steel. Although the Pratt truss was patented in 1844, the Howe truss design continued to be the most common form in timber construction. It was not until the introduction of all steel and iron trusses that the Pratt truss design prevailed.

These untreated timber structures had a life span of approximately 10 to 15 years. In an effort to extend the life of the bridges, the timber components were protected by constructing housing around them. There are four covered bridges remaining within the State. The oldest is a highway structure, a two span Howe truss constructed across Grays River (27) in 1905. In 1918 a covered timber Howe truss (28) was constructed across the Palouse River
outside of Colfax as part of the Spokane and Inland Empire Railroad, an expansive interurban electric railroad line scheme that extended from the Palouse to Spokane. Because it was necessary to provide for the connection between the locomotive and the overhead electric lines, the top of the bridge was left uncovered. Over the Chehalis River at Doty stands the last standard Milwaukee Road covered bridge (29). At one time several of these stark, utilitarian structures, constructed by company forces, spanned the waterways of Washington. A short-spanned timber Howe pony truss covered with corrugated metal (30) was constructed across the Chehalis River in 1934.

The seemingly endless source of timber throughout much of Washington, providing a cheap building material, may account for the fact that a number of timber highway trusses continued to be built throughout the 1930's. Because most of the early bridge construction in Washington occurred long after the technology of iron or steel truss construction had been developed, the timber and steel truss existed within the State simultaneously. The predominance of timber construction over that of steel or iron was not a matter of technology, but rather one of economy and accessibility. However, the iron or steel truss provided a strength, durability, and resistance to fire that the timber truss would never be able to attain.

There is a limited representation within Washington of the early steel truss forms which consisted of complex systems of triangulation. These early truss forms are demonstrated in the lattice or triple-intersection Warren truss over the Spokane River (31) and the double-intersection Warren truss over the Wishkah River (38). The double-intersection Pratt truss (1) over the Columbia River is similar to the lattice truss, and was a common truss form in railroad construction in the late nineteenth century. These three bridges share this multiple system of triangulation which was claimed to create an "unavoidable ambiguity in stress distribution."¹ These complex truss forms have been replaced almost exclusively by two other nineteenth century designs: the simple system of verticals and diagonals of the Pratt truss and the straightforward single system of triangles of the Warren truss. It is interesting to note that in contrast to the east coast, there are very few examples within Washington

Washington of trusses with a multiple system of triangulation which in itself may shed light on the evolution of the truss form. Even during the early years of bridge construction within the State, the superiority of the Warren and Pratt configuration had been confirmed.

During the early twentieth century, the Pratt truss was claimed to be the most commonly used bridge type in America for spans under 250 feet. The two earliest and least altered examples of this truss type remaining within Washington are the F Street Bridge in Palouse (33) and the West Monitor Bridge (34). Both of these are pinconnected structures which preceded the more rigid riveted truss. With the improvement of riveting techniques, and the development of the pneumatic riveter during the early twentieth century, the pinconnected truss soon became a rarity.

During the mid-nineteenth century, the Parker truss was developed. In contrast to the uniform depth of the parallel chords of the basic Pratt truss, the polygonal top chord of the Parker truss which reaches its greatest height at the center panels, reflects the increase in bending moment that occurs from the ends of the truss to the center. The use of the arched top chord increased the rigidity of the structure, and enabled the construction of longer spans. The earliest, least altered examples of the Parker truss within the State are the Curlew Bridge (35), the Orient Bridge (36), and the Prosser Steel Bridge (37).

In an effort to construct longer spans, the Pratt truss configuration was adapted and modified by sub-dividing the panels with additional substruts and subties. The development of the Petit truss during the 1870's represented a major advance in strengthening the standard Pratt truss form. The Middle Fork Nooksack River Bridge (38) is the longest pinconnected modified Petit highway truss within the State, while the White River Bridge (39) constructed in 1908, is the oldest pinconnected modified Baltimore Petit structure.

In 1913, Clallam County constructed a two-span deck truss over the Elwha River (41). Its Warren truss configuration was patented in 1848, and is composed of diagonals which are placed alternately in tension and compression. The Elwha River Bridge is the oldest Warren truss in the State constructed for highway use. Like the Pratt truss, this single system of triangles continues to be used by engineers in modern steel trusses.
The largest truss bridges are cantilever structures which consist of a combination of anchor spans, cantilevers, and suspended spans. The oldest cantilever truss within the State is a pinconnected structure constructed across the Columbia River in 1908 (13). The Pasco-Kennewick Bridge (16), the Lyons Ferry Bridge (42), and the Longview Bridge (17) all represent cantilever construction that occurred during the 1920's. The George Washington Memorial Bridge (43), the Grand Coulee Bridge (44), and the Deception Pass Bridge (45) were built during the 30's and reflect a departure in form from the cantilever structures built in Washington during the previous decade. They reflect the refinement and progressive simplification of the cantilever truss form in the twentieth century.² The George Washington Memorial Bridge and the Deception Pass Bridge demonstrate the final merging of a functional and aesthetic form in the cantilever truss.

IV. REPRESENTATION OF BRIDGE TYPES: MOVEABLE BRIDGES

A very specific bridge technology evolved from the necessity of spanning navigable waterways. The earliest moveable bridges within the State are swing bridges, and are essentially steel trusses which rotate around a center pier. The Spokane, Portland, and Seattle Railway Bridge (10) which spans the Columbia River is the oldest swing bridge remaining within the State. Its 462 foot pinconnected draw span was long for its day, and was even acknowledged by the bridge engineer, Henry G. Tyrrell, in his book, *History of Bridge Engineering*. The Puyallup Waterway Crossing (47) is an example of a pinconnected swing span which was once frequently visible on the navigable waterways of the late nineteenth and early twentieth centuries.

In his authoritative volume on *Bridge Engineering*, J.A.L. Waddell remarks that in 1916, the swing bridge remained the most common type of moveable bridge. However, it was during this period that many of the early swing bridges spanning the waterways were being replaced by bascule structures. The bascule bridge, whose prototype is the medieval drawbridge, derives its name from the French word meaning balance. The bascule span is opened and closed much more rapidly than the swing bridge by means of a counterweight system. The absence of a central pivot pier in the bascule bridge was a great asset. The timber structure extending from the pier which served to protect the draw span was a dangerous obstruction in narrow channels, and often usurped valuable dock space. The advantages of the bascule structure over that of its predecessor were numerous, and particularly apparent in the populated, congested cities where both roadway and waterway traffic were heavy.

Methods of refining and improving the counterweight system in the bascule spans absorbed the energies of many bridge engineers during the late nineteenth and early twentieth centuries. The earliest examples of bascule bridge design within Washington are of the trunnion type. The Salmon Bay Great Northern Railroad Bridge (48) constructed in 1913 is an early example of the Strauss heel trunnion single leaf bascule bridge. The single leaf bascule was preferred for railroad traffic due to its greater rigidity. The heel trunnion, single leaf bascule bridge was patented by

J.B. Strauss of the Strauss Bascule Bridge Company of Chicago in 1911, and consists of an overhead counterweight which is pivoted on a fixed trunnion by a parallelogram of linkages. The structure's center of gravity does not move either vertically or horizontally as the bridge opens and closes. Consequently, this design enabled the construction of simple economical foundations. The heel trunnion design was a modification of, and eventually superceded earlier Strauss designs. In 1914, a single leaf Strauss heel trunnion bascule bridge (49) was constructed across the Ebey Slough in Everett. It was the first of its type to be used within the State as a highway structure.

The construction of several moveable spans was incorporated into the design of Seattle's Lake Washington Ship Canal. Between 1915 and 1919 three double-leaf trunnion bascule bridges of the transverse cross-girder type were constructed to span the new waterway (50-52). These bridges, which are the earliest examples within the State of a double-leaf bascule bridge, were designed by the City of Seattle, and followed a general design developed by the Chicago Department of Public Works in 1898. In 1924-25 a fourth double-leaf trunnion bascule bridge (53) was constructed across the canal on foundations that had been constructed when the ship canal was first built. A unique feature of the Montlake Avenue Bridge was that the trunnions were supported on a cantilever projection extending from the pier which eliminated the need for the transverse cross-girder used in the earlier canal bridges. In contrast to the three earlier bascule bridges constructed over the canal, ornate towers loom over the piers of the Montlake Avenue Bridge, evoking an aura of monumental dignity.

The Hoquiam River Bridge (54) was designed by the Strauss Bascule Bridge Company of Chicago, and was constructed in 1928. It is a patented Strauss trunnion double-leaf bascule bridge.

The 14th Avenue South Bridge (55) which was constructed across the Duwamish River in Seattle in 1931 is the only Scherzer rolling lift bascule bridge within the State. The bridge type was developed by William Scherzer in 1895. In this type, the leaf rotates on a quadrant which rolls along horizontal track girders. In contrast to the fixed position of axis rotation of the trunnion bascule, the axis of rotation of the Scherzer Bridge has a "motion of translation longitudinally with the structure."
Consequently, the Scherzer Bridge generally provides a greater clear opening for any total length of span than that provided by the fixed trunnion type. However, because the rolling action constantly changed the location of the center of pressure of the load on the abutment, solid rock foundations were necessary.

J.A.L. Waddell's synthesis of the significance of the bascule bridge is apt. He states that all bascule bridges are "inherently ugly, and for all but comparatively short spans are uneconomic in comparison to the vertical lift; but they are scientific and they represent, probably, the best and most profound thought that has ever been devoted to bridge engineering."

The vertical lift bridge developed simultaneously with the bascule bridge. The earliest vertical lift highway structure remaining within the State is the City Waterway Bridge (56) which was constructed by the renowned early twentieth century bridge engineering firm of Waddell and Harrington. The Vancouver-Portland Interstate Bridge (15), designed in 1916 by the newly formed firm of Harrington, Howard, and Ash is another early example of a vertical lift bridge.

In 1914, the Northern Pacific constructed a Strauss direct vertical lift bridge over Steilacoom Creek (57). The design, which replaced the usual counterweight cables, chains, sheaves, and winding drums of the vertical lift bridge with a system of counterbalanced levers and rack and pinion gearing, was patented by J.B. Strauss of Chicago, and was put on the market by the Strauss Bascule Bridge Company in 1912. The Steilacoom Creek Bridge was one of the first of this design to be constructed. The Strauss direct lift bridge possesses many of the design elements of the Strauss heel trunnion bridge. Like the Strauss bascule, the lifting mechanism of the direct lift bridge consists of a parallel link counterweight which moved on fixed trunnions, or pivot points. The stark steel form is blatant in its bold adherence to its functional purpose. Although the design of the Steilacoom Creek Bridge was limited to short spanned structures, it is significant in its demonstration of the evolution and experimentation of bridge design during the early twentieth century, in its demonstration of the way in which the concepts of bascule bridge design were merged with the design concepts of the vertical lift bridge.

In 1916, J. A. L. Waddell accurately interpreted the importance of the vertical lift bridge in relation to other moveable structures. He wrote that the type had come to stay, and that it would continue to be used more and more as time went on, "for not only is it inexpensive in first cost comparatively speaking, but it is also simple, rigid, easy to operate, and economical of power. It has met with considerable opposition up to the present time, mainly from the owners of bascule patents; but it has overcome that opposition most satisfactorily and unequivocally, consequently the future of the type may be counted upon as assured."\(^5\)

The design of the Lake Washington Floating Bridge (58) which includes an unusual moveable span was unprecedented within the United States. Because piers could not be constructed in the 150 to 200 foot depths of Lake Washington, under which lies almost 100 feet of soft mud, it was not possible to bridge the 7800 foot crossing with a more conventional long span structure. A bridge of pontoon construction eliminated the problem of pier construction. The 6561 foot deck is anchored to a series of floating reinforced concrete boxes which lie only a few feet beneath the surface of the lake. A total of 64 cables secure the floating structure transversely and horizontally to anchors on the lake bottom. The required 200 foot channel is provided by the horizontal movement of a portion of the floating deck into a recess in an adjacent fixed pontoon.

\(^5\) Ibid., p. 746.
IV. REPRESENTATION OF BRIDGE TYPES: ARCHES

During the early twentieth century the steel arch was not extensively used in the United States in comparison to other bridge forms. In his book, Bridge Engineering, J.A.L. Waddell explains the reason for the paucity of arches in the United States. "Arches are employed very generally in Europe on account of their superior appearance as compared with simple truss bridges, and because of the powerful influence of the old masonry arch upon the minds of European bridge designers, regardless of the consideration of economy. American engineers, on the other hand, have been indifferent to the question of aesthetics, and have preferred simple spans to arches mainly for reasons of simplicity and economy, but sometimes on account of their rigidity."\(^6\)

The Twelfth Avenue West Bridge on Dearborn Avenue (60) was constructed by the City of Seattle in 1911 and is the oldest extant steel arch within the State. Of the earliest steel arches within the State, it is the only example of a spandrel-braced arch. There are two examples within the State of a three-hinged lattice arch, one built over Ravenna Park (61) in 1912-13 by the City of Seattle, and one built over the Carbon River (62) in 1921 by the State and Pierce County. The three-hinged arch, with a hinge at the crown and at the two abutments, was widely used by American engineers. Although it is the least rigid of all arch structures, there is no ambiguity of stress distribution, and the method of stress calculation is relatively simple. A solid-rib two-hinged parabolic steel arch dramatically spans a steep wooded ravine on North Queen Anne Hill (63). This attenuated striking steel form was designed by the Seattle Engineering Department in 1935. It is the only one of its type within the State that was constructed before 1940. The Canoe Pass Bridge (46) constructed in 1935, and the two high steel arches erected by the Simpson Logging Company (20, 21) in 1929 are more recent examples of the spandrel-braced arch.

There has been little change in the form of the steel arch since the last decade of the nineteenth century. The essential components of ribs, stiffening trusses, and spandrel posts must always be present, and

have left little scope for variations. The design innovations in the arch bridge were linked to the developments of reinforced concrete.7

The earliest extant reinforced concrete arches within the State are the Washington Street Bridge (65) constructed over the Spokane River in 1908, and the Klickitat River Bridge (7) constructed by the Spokane, Portland, and Seattle Railway during the same year. The Arboretum Sewer Trestle (66) which was built in 1910 by the City of Seattle demonstrates how many of the earliest reinforced concrete bridges were park bridges, which were "notable more for their artistic design than for their large proportions."8 The solid-barrel arch rings which were used in the Klickitat River Bridge and in the Arboretum Sewer Trestle were predominant in the earliest reinforced concrete arch designs. Often these early structures were constructed as monoliths, and the metal reinforcing acted more as a binding element than as reinforcing. The Washington Street Bridge is an early example of a ribbed arch. The flattened form of the ribs of the Washington Street Bridge reflected future developments in concrete arch design.

When the Monroe Street Bridge (67) was completed in 1911, its monolithic arch was hailed as the largest concrete arch in the United States. The Monroe Street Bridge was similar to the Walnut Lane Bridge of Philadelphia, constructed in 1906-8, which was an important forerunner in the design of long-span fixed arches. The great size of the massive arched ribs of these two structures reveals the limits of unreinforced concrete in long span structures. However, the open spandrels and flattened ribs of the Monroe Street's central arch pointed toward the future in concrete arch design. The Latah Creek Bridge (68) was the second of Spokane's grand monumental concrete arches, and is an early example within the State of a long-span fixed-end reinforced concrete arch.

The commanding monumental form of the Rosalia Bridge (69) constructed by the Milwaukee Railroad in 1915 rivals that of the two Spokane arches. The Rosalia Bridge is the only multiple span concrete arch railroad bridge within the State. Because of the high impact of railroad loads, concrete arches were never widely used in the construction of railroad bridges.

particularly in long span structures.

The Lower Custer Way Crossing (70) is an early example within the State of a Luten arch. The Luten arch was introduced to the United States from Germany in 1900, and was one of the early scientific solutions to bar reinforcing in concrete. Unlike many of the earliest solutions to arch reinforcing which indiscriminately placed steel shapes throughout the concrete, the Luten system pointed to later techniques which distributed the steel primarily in the tension zones. In the Luten system, several bars forming a complete loop were laid transversely through the vault and invert of the arch. These series of loops were also laid throughout the length of the structure at regular intervals. The bars were bent to conform to the semicircular section of the vault, and were placed near the surfaces of maximum tension under live load.9

As the reinforcing of concrete became better understood, the rigid concrete and the elastic steel were scientifically designed to function together organically, and it became possible to build lighter, more attenuated forms. The minimal, graceful form of the 34th Street Bridges (74, 75) in Tacoma and the Cowen Park Bridge (73) in Seattle reveal the capabilities of reinforced concrete, and reflect the progressive reduction in the quantity of structural material used in concrete arch design. However, the bold, dynamic innovative concrete forms of the European designers, Maillart and Freyssinet have never been equalled in the United States. "The scarcity of advanced designs in concrete bridges has arisen in part from the necessities of American practice: lower working stresses than are the rule in Europe; much higher traffic loads, both rail and highway; the higher cost of formwork, chiefly because of high labor costs; and in many places, higher wind and snow loads."10

During the 1920's and 30's five reinforced concrete tied arches were constructed within the State (76-80). In these arches, the deck slab is hung by suspenders from a pair of arch ribs above the roadway. In most arches, massive abutments and foundations are necessary to resist the horizontal thrust exerted by the arch on the skewbacks. However, in the tied arch, the horizontal thrust is resisted by longitudinal ties

9Ibid., 2: 197.

10Ibid., 2: 195-196.
which extend between the hinged springing points. In most of the five tied arches in Washington, the deck slab itself acts as a tie. The double function of the deck slab was an economical solution, and it eliminated the need of massive abutments. Although there are examples of tied arches that were built throughout the 20's and 30's, the tied arch has remained a rare concrete arch form.11

11Ibid., 2: 206.
IV. REPRESENTATION OF BRIDGE TYPES: CONCRETE BEAMS, GIRDERS, AND TRUSSES

The concrete girder has become a predominant feature in the landscape of the American highway. The two earliest examples within the State of concrete girder highway bridges are the North 23rd (81) and the North 21st (82) Street Bridges in Tacoma. Both bridges were designed by Waddell and Harrington. The North 23rd Street Bridge was built in 1909, and is an early example of a concrete rigid frame girder bridge. The concrete beams are massive and overdesigned. The rigid frame was not adopted on any extensive scale, until after World War I. The 21st Street Bridge constructed in 1910 is a continuous concrete rigid frame girder bridge. It was built almost simultaneously with the 950 foot Asylum Avenue Viaduct in Knoxville, which Carl Condit documented in American Building Art, as the first continuous concrete girder bridge to be constructed.\(^{12}\)

There are three concrete structures within the nomination which are early American applications of the European innovation of concrete hollow-box construction. In cellular construction, the concrete is poured around hollow box forms thus reducing to a minimum the amount of material used. The steel and concrete is placed only at those points where it functions actively under live load. This economical hollow-box form was used extensively throughout Europe, but was not widely used in the United States. The Purdy Bridge, constructed over Henderson Bay in 1936, is one of the few box-girder bridges within the United States, and has the longest single span among concrete-girder forms.\(^{13}\) The design features and layout of the bridge were suggested by Homer M. Hadley, and was one of several unique concrete bridge designs of cellular constructions conceived and carried out by Mr. Hadley throughout Washington during his lifetime.

Homer Hadley also designed the McMillan Bridge (87), a reinforced concrete truss of hollow-box construction. At the time that it was built, its 170 foot main span was the longest beam span within the United States. The

\(^{13}\)Ibid., p. 209.
organic strength of concrete that is so frequently revealed through the arch form, is shrouded by the massive breadth and scale of this truss at McMillan. The McMillan Bridge demonstrates the use of concrete for a design that traditionally evolved and conformed to the structural properties of timber and steel.

The Seattle Engineering Department introduced hollow box construction in the design of concrete rigid frame bridges when it built a concrete structure in Schmitz Park (86) in 1935.

There are two concrete beams within the nomination that are included for their architectural merits. The Johnson Bridge (83), is a three-span concrete T-beam. The engineers have used a straightforward, commonplace bridge type, and through the addition and integration of simple, subtle geometric shapes have transformed the structure into one which has an aesthetically compelling visual impact. As the most impressive of several short spanned structures with similar ornamental motifs throughout Walla Walla County, the Johnson Bridge reflects the impact of a single creative engineer on regional bridge design. The Capitol Boulevard Crossing (84) is one of the best examples within the State of the influence of Art Deco and Modernistic Architecture on bridge design. The concrete viaduct exemplifies the way in which decoration was used to transform an ordinary structure into an entrance-way into the Capital City.
IV. REPRESENTATION OF BRIDGE TYPES: SUSPENSION BRIDGES

The thin parabolic cables of the suspension bridge stretching between two towers has an unyielding visual force. "The principle of the suspension bridge is simple," stated the bridge engineer, David B. Steinman. 'It consists of three essential parts: the towers, the anchorages, and the cables. The roadway and the stiffening construction have local importance, but both may be wholly or partially destroyed without causing the collapse of the bridge. In all other types of bridge construction, the failure or buckling of a single member will precipitate the collapse of the entire structure. A suspension bridge is the safest type of construction in that any local over-loading or structural deficiency will not jeopardize the safety of the whole."¹ However at the beginning of the 20th century the bridge engineering profession did not have this same confidence in the suspension bridge. In 1911, the bridge engineer, Henry Tyrrell wrote that although the suspension bridge is one of the oldest bridge forms, it has not been adopted as rapidly as other bridge types, because of its lack of rigidity and the absence of correct theory for proportioning stiffening trusses.² Mr. Tyrrell's cautiousness is perhaps explained by the fact that he was writing during the era of the railroad. Because of the flexibility of the suspension bridge design, it was not widely used for the heavier railroad loadings. It was the advent of the automobile that initiated the proliferation of the suspension bridge, particularly for long-spanned structures.

The oldest extant suspension bridges within the State are a series of timber suspension bridges crossing deep lateral gorges in the North Cascades at Devil's Corner (87). They were built by miners in the 1890's to provide access to their claims, and stand as a testimony to man's ingenuity and to the dogged persistence of the early miner's in breaching the formidable mountain barrier.

Although there are numerous examples of timber suspension bridges throughout the State, the Yale Bridge (88) is the only example of a short-spanned steel suspension bridge. Steel suspension bridges of moderate length

¹ David B. Steinman and Sara Ruth Watson, Bridges and their Builders, (New York, 1941) p. 326.

have remained rare because cost factors have prevented them from competing with simple steel trusses, cantilevers, or arches for ordinary highway structures.

The suspension bridge was primarily used for the very longest spans. When the graceful, ribbonlike Tacoma Narrows Bridge (89) was opened to traffic on July 1, 1940, it was the third longest suspension bridge in the world. The design of the Tacoma Narrows Bridge followed the mainline of development in the evolution of the suspension bridge. It represented a culmination of the trend to increase the span length, to reduce the width of the deck and to minimize the depth of the stiffening components, which simplified and distilled the bridge form; it represented the epitome of a move towards a suspension bridge of slender proportions that placed a premium of economy on flexible design.

However, on November 7, 1940 only four months after the opening of the bridge, the design ended in disaster. Gale force winds created torsional oscillations in the bridge that eventually reached catastrophic proportions causing the sinuous main span to break away from the undulating mass and plunge into the water below. The collapse of the bridge initiated a deluge of scientific investigation. Studies revealed that the bridge was destroyed by a combination of factors, factors that were more pronounced in the Tacoma span than in any other modern suspension bridge.

One critical factor was the vertical slenderness and resulting vertical flexibility of the structure which was caused by the construction of high flexible towers and a thin suspended span. Another flaw in the design of the bridge was the use of slender, solid web plate girders to stiffen the deck rather than the use of the complex and conventional truss. The steel truss acts like a sieve to the forces of the wind. However, the wind could not penetrate the solid wall of the girder. Because the span was highly flexible, the cross-section of the solid plate girders in combination with a solid floor was particularly sensitive to aerodynamic forces. The characteristics of this cross-section caused small undulations of the bridge to amplify. There was a tendency for these undulations to change into a twisting motion which would generate harmonic movements of dangerous magnitude. It was these harmonic motions that eventually proved fatal to the bridge.³

³Steinman, op. cit, pp. 353-357.
Other bridge designs did benefit from the mistakes made in the construction of the Tacoma Narrows Bridge. The noted engineer, Ottmar H. Amman, who had designed the recently completed Bronx-Whitestone Bridge in New York with stiffening girders, quickly replaced them with trusses. The knowledge gained from the research following the disaster was valuable to the entire engineering profession in terms of understanding the importance of aerodynamics in suspension bridge design.
V. THE ROLE OF THE BRIDGE ENGINEER

The singular role of the bridge engineer in the development of Washington is undeniable. This role was probably most pronounced in the construction of the grand transportation schemes of the transcontinental railroads. The awesome scale of the land demanded structures of equal proportion. The bridge and tunnel engineers of this era were men who had more than unusual constructive abilities; they were men with vision; they were dreamers, planners, managers, and builders who built on an enormous scale.

These qualities were exemplified in men like Mr. Nelson Bennett who completed the two mile long Stampede tunnel through the "backbone of the Cascade range" under unyielding odds. The immensity of the projects in which these engineers were involved is reflected in the career of John Frank Stevens. Stevens surveyed the Great Northern route over the Cascades which resulted in the construction of the Cascade Tunnel, and then went on to play a major role in the construction of the Panama Canal.

There were a handful of prominent, prolific bridge engineers who devoted their early careers to railroad bridge construction. For example, there was Ralph Modjeski who contributed to the design and construction of several major spans during the 20's and 30's including the San Francisco Bay Bridge. His early years were spent as chief bridge engineer of the Oregon Trunk Railway, and it was he who was responsible for the construction of the Celilo Bridge across the Columbia River in 1911-12.

The impact of the bridge engineer is visible throughout Washington. There are numerous examples of the influence of a single creative engineering talent on a particular region. For example, E.R. Smith's tenure as county engineer during the 20's and 30's has left its impact throughout rural Walla Walla County. Through the addition of simple, softly colored geometric shapes, several short-spanned concrete T-beams were transformed into visually compelling structures.

During the period between 1909 and 1914, two enormous multiple spanned concrete arches were constructed in the city of Spokane. There are few bridges within the State that are monuments of such a grand scale. It was the foresight and perserverance of a few individuals within the city engineering department who were responsible for the construction of these
forceful, concrete forms. An abundant number of concrete arches were built throughout the city of Spokane during this era by the engineering department directly impacting the visual countenance of the city. However, it is the magnitude of the Monroe Street Bridge and the Latah Street Bridge that make them particularly unique. Their rhythmic arch forms are commanding architectural focal points within the city. Morton McCartney, who was a key individual in the construction of the Monroe Street Bridge, supervised the design and construction of the Latah Creek Bridge as City Engineer.

The engineer, Homer Hadley, designed several unique concrete bridges throughout the state of Washington during his lifetime. The Purdy Bridge and the McMillin Bridge were both designed by Mr. Hadley. They are early American applications of the European innovation of concrete hollow-box construction. This economical method of construction was used extensively throughout Europe, but was not widely used in the United States. It was Homer Hadley who originally conceived the design of a floating bridge across Lake Washington. He visualized a floating roadway made up of a series of hollow concrete barges. Mr. Hadley's unusual work reveals the effects of a single innovative engineer on bridge design within the State.

There are other examples of bridge builders within Washington who forged outside of the mainstream of American bridge design practices. The 250 foot log cable-stayed girder bridge that was constructed across the Quinault River by the Logging Superintendent, Frank Milward, in 1952 is a prime example of a bold design that did not conform to American design patterns. It was the tenacious pioneering spirit of Mr. Milward, who constructed one of the first examples of a cable-stayed girder bridge within the United States. A segment of the history of bridge construction within Washington is revealed by the fact that structures were built in the mid-20th century by an individual whose background and methods of building closely paralleled those of 19th century engineers. Pioneering mavericks with little formal education were building innovative structures within the State simultaneously with engineers who used the most contemporary scientific analyses to determine appropriate bridge designs.

The history of bridge construction, and the role of the bridge engineer in the development of Washington is indeed multifaceted. Throughout the State's bridge construction history, there are repeated demonstrations of the resourcefulness and persistence of talented individuals who sought to
direct "the great sources of power in nature for the use and convenience of man." Without question, the bridge engineer's role is a significant one. In some respects, the bridge engineer played an indispensable role in the development of the state. Several of the earliest bridge engineers built structures that were integral parts of vast transportation systems which made Puget Sound and an inscrutable wilderness accessible to large numbers of people, directly impacting the course of settlement patterns within the State. The influence of the bridge engineer is pervasive; the construction of even the shortest spans affect people's lives, easing their ability to move from one location to another. This pervasive influence of the bridge engineer is reflected in the extant historic bridges and tunnels remaining within Washington.

National Register of Historic Places
Inventory Nomination Form: Naval Military Hangar – University Shell House (Canoe House/Shell House)
NAME

Naval Military Hangar - University Shell House

AND/OR COMMON

Canoe House/Shell House

LOCATION

STREET & NUMBER

University of Washington Campus

CITY, TOWN

Seattle

STATE

Washington

CLASSIFICATION

CATEGORY

X. STRUCTURE

OWNERSHIP

X. PUBLIC

STATUS

X. OCCUPIED

PRESENT USE

X. INDUSTRIAL

X. OTHER

PERIOD

X. IN PROCESS

X. BEING CONSIDERED

PRESENT USE

X. MILITARY

OWNER OF PROPERTY

NAME

U.S. Army Corps of Engineers, Seattle District

STREET & NUMBER

4735 East Marginal Way South

CITY, TOWN

Seattle

STATE

Washington

LOCATION OF LEGAL DESCRIPTION

COURTHOUSE, REGISTRY OF DEEDS, ETC.

King County Administrative Building

STREET & NUMBER

Fourth Avenue and James Street

CITY, TOWN

Seattle

STATE

Washington

REPRESENTATION IN EXISTING SURVEYS

TITLE

Seattle City Landmark Survey

DATE

1974

FEDERAL

STATE

COUNTY

LOCAL

DEPOSITORY FOR SURVEY RECORDS

Office of Urban Conservation

SEATTLE DEPARTMENT OF COMMUNITY DEVELOPMENT

CITY, TOWN

Seattle

STATE

Washington
Naval Military Hangar - University Shell House
Additions and corrections to the nomination forms

Item Number 4

Revise to indicate the following ownership:

The hangar building itself is owned by the University of Washington, Seattle, Washington.

The building is situated approximately half-way overlapping property of the
University of Washington and the adjoining property of the U. S. Army Corps
of Engineers, Seattle District.

The Corps of Engineers owns the portion of the site bordering on the Lake
Washington Ship Canal. This is a strip of land roughly 100' wide running east
and west and tapering with the shoreline as the ship canal widens where it joins
Lake Washington.

Item Number 7

In the last paragraph the first sentence should read:

Still used as a canoe house and sailboat rental concession
and storage area, the Canoe House is owned and maintained
by the University of Washington. Under terms of a consent
agreement a portion of the building for approximately half
its length on the end facing the ship canal occupies neigh-
boring property of the U. S. Army Corps of Engineers.

The Canoe House was erected during the First World War when the U.S. Navy occupied a portion of the University of Washington campus fronting Lake Union, the ship canal and Lake Washington. Though built to shelter seaplanes as a feature of the Navy's temporary training camp, the structure apparently was not completed until 1918, late enough to have been of little use to the military during the emergency. It is a straightforward, utilitarian structure ideally suited for its intended function, with a maximum clear span and sitting on the lakeshore.

The structure is located in the SE 1/4 Section 16, T25N, R4E of the Willamette Meridian. It is situated at water grade on the north bank of the entrance to the ship canal from Lake Washington. It is oriented on its site southeast to northwest, and in its original context its hangar doors opened advantageously onto the water. The immediate setting is green open space, and the location is presently one of the focal points of water-oriented recreational activities at the University. An embankment rises behind the Canoe House to the north and west, and in the background looms the University's football stadium surrounded by several acres of surfaced parking.

The simple rectangular enclosure on concrete slab measures 88 by 120 feet. Large timber trusses (as many as six or seven) span the central space and are supported at the ends by triangular framing units. Longitudinal joists are bolted to the trusses and end wall plates. The trusses are a modified Howe type with crossed chords and top members which are pitched at a low angle, instead of being straight or flat, and which account for the shape of the shallow gambrel roof. This wooden framework is sheathed and covered with shingles. Asphalt shingles make up the roof cover. The long side walls are raked outward from the eaves, and because their characteristics are stabilizing or rigidifying rather than load-bearing, they are little more than cladding openings which are, typically, large double-hung sash windows, in pairs, with nine lights over nine. Some of the original openings have been filled in or modified, and other openings, such as bay windows, have been added. The interior originally was unfinished and generally remains so today. There are grade level doorways in the north and east walls. Across the south end a large triple-section sliding door with window panes in the upper portions is suspended from an overhead track approximately 24 feet in height. The track is extended beyond the face of the structure with outriggers which enable the doors to be drawn clear of the opening.

Improvements date from 1922, when the hangar became headquarters for campus crew racing activities, and 1949, when the space was converted to use for storage and rental of boats. A 20-foot section across the north end was partitioned off and in it a second floor level added. Reached by an outside stair in the center of the end wall, the damp-free "garret" was the work space in which George Pocock built his celebrated laminated racing shells for twenty-seven years. To allow a maximum of natural light into the studio-garret, a long clerestory window was opened up across the face of the end truss. The partitioned section was further subdivided after 1949. Over the several years it was unused prior to 1922, the hangar suffered the lack of adequate drainage. Freshmen crew members were pressed into service to lay drain tile around the base. Gutters on the eaves of the side walls and corner...
downspouts completed the rain drain system. Other modifications include the addition of showers and lockers and a storage shed on the north end of the west wall.

Still used as a canoe house and sail-boat rental concession and storage area, the Canoe House is maintained by the University of Washington under terms of a consent agreement with the U.S. Army Corps of Engineers, the property owner of record. Dry rot and fire prevention are two major maintenance problems at present. The structure is not sprinklered. Construction of a new aquatic recreation facility is being planned for a location elsewhere on campus, and a future use for the existing canoe-rental facility is not contemplated.
SIGNIFICANCE

PERIOD
PREHISTORIC
1400-1499
1500-1599
1600-1699
1700-1799
1800-1899
1900-
2018
2100+
ARCHAEOLOGY-PREHISTORIC
ARCHAEOLOGY-HISTORIC
AGRICULTURE
ARCHITECTURE
ART
COMMERCE
COMMUNICATIONS
COMMUNITY PLANNING
CONSERVATION
ECONOMICS
EDUCATION
ENGINEERING
EXPLORATION/SETTLEMENT
INDUSTRY
INVENTION
LANDSCAPE ARCHITECTURE
LAW
LITERATURE
MILITARY
MUSIC
PHILOSOPHY
POLITICS/GOVERNMENT
RELIGION
SCIENCE
SCULPTURE
SOCIAL/HUMANITARIAN
THEATER
TRANSPORTATION
OTHER (SPECIFY)
Aviation
Collegiate athletics

SPECIFIC DATES
1918
BUILDER/ARCHITECT
United States Navy
STATEMENT OF SIGNIFICANCE

Constructed by the U.S. Navy as a seaplane hangar in 1918, the Canoe House is significant to the state as a rare, if not unique example of an architectural type developed in the early years of aviation. Because the airplane hangar was a response to new technology, its efficient form was essentially without historical precedent. No other examples of the hangar type dating from the period of the First World War are known in Washington. (A dirigible hangar at Fort Worden on the Olympic Peninsula dating from ca. 1922-1923 has an iron or steel frame with corrugated metal cladding. The oldest hangar at Paine Field south of Everett is reported to have been constructed in 1942.) Moreover, no other early hangars are known to have survived in the vicinity of Seattle, which has figured prominently in aviation history since the founding of the Boeing Company in 1916.

In 1917 and 1918 portions of the University of Washington campus were taken over for war preparations. Army Training Corps activities were relegated to the upper campus, and the U.S. Naval Training Camp extended along lower ground fronting Lakes Union and Washington and the ship canal connecting the two bodies of water. Among facilities of this cantonment area were officers' quarters, barracks, miscellaneous store rooms, and tents for the rank trainees. One of the largest of the temporary frame structures, apparently a mess hall and PX, had a roof truss profile similar to that of the Navy's seaplane hangar, but its walls were straight rather than raked. The seaplane hangar was a late addition to these facilities. Completed in 1918, it evidently was never used for the pilot training exercises it was intended to shelter. After the War, indications are that the hangar remained essentially empty, except for the unauthorized storage of a private plane, until it was relinquished to the University around 1922, reportedly for the transactional token of $1.00.

Rowing started on the University campus as early as 1902 and 1904. Speed racing did not become an official sport, however, until 1907, when direction of such activities was assigned to Hiram Conibear. During these early years the Pocock Brothers were brought to campus to fabricate racing shells according to a revolutionary, light-weight design which contributed to the varsity crews' success and subsequent recognition nationwide. Having been interrupted during the emergency, crew racing was resumed under Coach Connibear's successors after the War. George Pocock returned to the campus from a wartime job building seaplane pontoons for the Boeing Airplane Company. All crew activities, including Mr. Pocock's shell-building shop, were housed in the former Naval Military Hangar from 1922 to 1949, when activities were shifted to a new facility designated the Conibear Shell House. During the years they were quartered in
their make-shift facility the University's varsity crews compiled a distinguished record, of which a high point was competing in the World Olympic Games of 1936. During this time also George Pocock was permitted to fill orders for the superior laminated racing shells from Harvard, Columbia, Cornell, Princeton, Syracuse and other universities around the country.

Shortly after the hangar was vacated by varsity crews in 1949, it was converted for use as the University's Canoe House. Presently fulfilling a traditional function on the campus, the Naval Military Hangar is the second or third boat-rental facility operated under University auspices since the turn of the century. The predecessor canoe house, a much re-located building in use for nearly forty years, was torn down in 1950.
MAJOR BIBLIOGRAPHICAL REFERENCES

GEOGRAPHICAL DATA
ACREAGE OF NOMINATED PROPERTY 1.9 acres (See description)

UTM REFERENCES

ZONE EASTING NORTHING
A 5 2 6 6 0 5 2 1 7 7 2 1 0
B
C
D

VERBAL BOUNDARY DESCRIPTION

The area proposed for nomination, containing 1.9 acres more or less, is bounded on the south by the natural shoreline of the north bank of the Lake Washington Ship Canal, and on the north by the northernmost boundary of property governed by U.S. Army Corps of Engineers Consent Agreement No. DA (S)45-108-CIVENG-66-2. The west boundary is a line running perpendicularly from said northerly boundary to the end.

LIST ALL STATES AND COUNTIES FOR PROPERTIES OVERLAPPING STATE OR COUNTY BOUNDARIES

<table>
<thead>
<tr>
<th>STATE</th>
<th>CODE</th>
<th>COUNTY</th>
<th>CODE</th>
</tr>
</thead>
</table>

FORM PREPARED BY

NAME / TITLE
Elisabeth Walton Potter, Historic Preservation Specialist
ORGANIZATION
Washington State Parks & Recreation Commission
STREET & NUMBER
P.O. Box 1128
CITY OR TOWN
Olympia
STATE
Washington
DATE
May 10, 1975

STATE HISTORIC PRESERVATION OFFICER CERTIFICATION

THE EVALUATED SIGNIFICANCE OF THIS PROPERTY WITHIN THE STATE IS:

NATIONAL X STATE ___ LOCAL ___

As the designated State Historic Preservation Officer for the National Historic Preservation Act of 1966 (Public Law 89-665), I hereby nominate this property for inclusion in the National Register and certify that it has been evaluated according to the criteria and procedures set forth by the National Park Service.

FEDERAL REPRESENTATIVE SIGNATURE

TITLE
Executive Director - Charles H. Odegard
DATE

FOR NPS USE ONLY
I HEREBY CERTIFY THAT THIS PROPERTY IS INCLUDED IN THE NATIONAL REGISTER

DIRECTOR, OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION

ATTEST

KEPER OF THE NATIONAL REGISTER

of the ship canal revetment, which is a distance of approximately 248.7 feet. The east boundary is a line running perpendicularly from said northerly boundary to its point of intersection with the natural shoreline, which is a distance of slightly less than 150 feet. The distance between the east and west boundaries is approximately 300 feet.
NATIONAL REGISTER OF HISTORIC PLACES
PROPERTY MAP FORM

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS
TYPE ALL ENTRIES -- ENCLOSE WITH MAP

1 NAME
 HISTORIC Naval Military Hangar - University Shell House
 AND/OR COMMON Canoe House/Shell House

2 LOCATION
 CITY, TOWN Seattle
 VICINITY OF
 COUNTY King
 STATE Washington

3 MAP REFERENCE
 SOURCE USGS Seattle North Quadrangle
 SCALE 1:24 000
 DATE 1949

4 REQUIREMENTS
 TO BE INCLUDED ON ALL MAPS
 1. PROPERTY BOUNDARIES
 2. NORTH ARROW
 3. UTM REFERENCES
1 NAME
HISTORIC
Naval Military Hangar - University Shell House

AND/OR COMMON
Canoe House/Shell House

2 LOCATION
CITY, TOWN
Seattle
VICINITY OF

COUNTY
King
STATE
Washington

3 PHOTO REFERENCE
PHOTO CREDIT
Jacob E. Thomas
DATE OF PHOTO
January 1975

NEGATIVE FILED AT
Washington State Parks and Recreation Commission
Olympia, Washington

4 IDENTIFICATION
DESCRIBE VIEW, DIRECTION, ETC. IF DISTRICT, GIVE BUILDING NAME & STREET
View from northeast.
NAME

HISTORIC
Naval Military Hangar - University Shell House

AND/OR COMMON
Canoe House/Shell House

LOCATION

CITY, TOWN
Seattle

VICINITY OF

COUNTY
King

STATE
Washington

PHOTO REFERENCE

PHOTO CREDIT
Jacob E. Thomas

DATE OF PHOTO
January 1975

NEGATIVE FILED AT
Washington State Parks and Recreation Commission
Olympia, Washington

IDENTIFICATION

DESCRIBE VIEW, DIRECTION, ETC. IF DISTRICT, GIVE BUILDING NAME & STREET
Detail of hangar doors.
HISTORIC PROPERTY INVENTORY FORM

IDENTIFICATION SECTION
- Field Site No.: [Redacted]
- OAHP No.: [Redacted]
- Date Recorded: Dec-19-2002
- Site Name: Historic Rainier Vista/Arcadia Circle/Geyser Basin/Drumheller Fountain/NP RR Bridge
- Common Name: Rainier Vista, Froeh Pond
- Field Recorder: C. Wickwire
- Owner's Name: UNIVERSITY OF WASHINGTON
- Address: 1328 5TH AVE ROOM 418
- City/State/Zip Code: SEATTLE WA 98101

PHOTOGRAPHY
- Photography Neg. No.: R1:14.23.32-34
- (Roll No. & Frame No.)
- View of: Southeast from Red Square
- Date: Dec-19-2002

LOCATION SECTION
- Address: 4000 15TH AVE NE
- City/Town/County/Zip Code: SEATTLE
- Twp/Range/Section: T28N/R04E/16
- Tax No./Parcel No.: 162504-9001
- Quadrangle or Map Name: [Redacted]
- UTM References: Zone 10
- Plat: [Redacted]
- Lot: Entire Section 16

DESCRIPTION SECTION
- Building Type: fair/rail-related
- Plan: N/A
- Structural System: N/A
- No. of Stories: N/A
- Cladding (Exterior Wall Surfaces):
 - Log
 - Rustic/Drop
 - Roof Shingle
 - Board and Batten
 - Vertical Board
 - Asbestos/Asphalt
 - Brick
 - Stone
 - Stucco
 - Terra Cotta
 - Concrete/Concrete Block
 - Vinyl/Aluminum Siding
 - Metal (specify)
 - Other (specify)
- Roof Type:
 - Gable
 - Hip
 - Flat
 - Monitor
 - Gambrel
 - Shed
- Roof Material:
 - Wood Shingle
 - Wood Shake
 - Composition
 - Slate
 - Tar/Built-Up
 - Tile
 - Metal (specify)
 - Copper (specify)
 - Not visible
- Foundation:
 - Log
 - Post & Pier
 - Block
 - Stone
 - Brick
 - Poured
 - Other (specify)
 - Not visible
- Integrity: Intact
- Changes to plan: [Redacted]
- Changes to windows: [Redacted]
- Changes to original cladding: [Redacted]
- Changes to interior: [Redacted]
- Other (specify): [Redacted]

HIGH STYLES/FORMS
- Greek Revival
- Gothic Revival
- Italianate
- Second Empire
- Romanesque Revival
- Stick Style
- Queen Anne
- Shingle Style
- Colonial Revival
- Beaux Arts/Neoclassical
- Chicago/Commercial Style
- American Four Square
- Mission Revival
- Spanish Colonial Revival/Mediterranean
- Tudor Revival
- Craftsman/Arts & Crafts
- Bungalow
- Prairie Style
- Art Deco/Art Moderne
- Rustic Style
- International Style
- Northwest Style
- Commercial Vernacular
- Residential Vernacular (see below)
- Other (specify)

VERNACULAR HOUSE TYPES
- Gable front
- Gable front and wing
- Side gable
- Cross gable
- Pyramid/d/hipped
- Other (specify)
For almost one hundred years, Rainier Vista has provided sweeping views to the southeast of Lake Washington in the foreground and the Cascades and Mt. Rainier in the distance. Although it is impossible to imagine the University of Washington campus without this spectacular scenic vista, it is important to remember that it is the result of visionary thinking and careful planning. When the university relocated to its present campus from downtown Seattle in 1895, the heavily wooded site possessed great potential with its almost 360-degree view of Lake Union, Portage Bay, Lake Washington, the Cascades, and Mt. Rainier. An early plan, the 1898 "Oval Plan" by A.H. Fuller, sought to direct the course of development on the upper third of the campus before the university hired the Olmsted Brothers in August 1903 to create a comprehensive plan for the full site.

The Olmsted Brothers had initiated their involvement with Seattle landscape design earlier that year when the city hired the nationally prominent firm of Brookline, Massachusetts to prepare plans for a comprehensive park and boulevard system, including suggestions for improvements to existing parks. Thirty years earlier in 1873, the Northern Pacific Railroad had hired Frederick Law Olmsted, Sr. to plan the new city of Tacoma, which would be its western terminus in the Washington Territory. When they reviewed the plan, adapted to the hilly site, the railroad directors rejected it for lack of straight lines and its overly park-like design. In the intervening years, little happened in the way of formal city planning in the Pacific Northwest as former frontier towns developed into modern metropolises. However, the success of the Klondike Gold Rush in the late 1890s and early 20th centuries flooded Seattle with new money, new citizens, and a new impetus to embark upon the first application of broad-scale planning to the city. The national City Beautiful movement, which had begun ten years earlier at the 1893 World's Colombian Exposition in Chicago, provided additional inspiration to improve Seattle through beautification, thus motivating its inhabitants to moral and civic virtue. (See Continuation Sheet)

Description of Physical Appearance

Although many separate elements combine to create Rainier Vista, the dominant feature of the scenic vista is Mt. Rainier looming in the distance. Even when the mountain is not visible, the sense of its presence remains strong. In addition to providing spectacular views of the area's natural environment, Rainier Vista orientation and anchors the entire lower campus to the southeast as it sweeps downward towards Lake Washington from the cross-axis path called Grant Lane. At its upper end, Rainier Vista proceeds from the head of the campus, the Central Plaza, more commonly known as "Red Square," which ties it into the Liberal Arts Quadr. and connects it to the upper campus. From within Red Square, Suzzallo Library on the east and Gerbering Hall on the west perfectly frame Mt. Rainier hovering on the horizon before the rest of Rainier Vista comes into view. From the steps separating the two buildings, the entire vista becomes visible as the hillside slopes to the southeast. The view corridor contains elements within the landscape as well as the buildings, which frame and define its margins.

A single wide expanse path begins at the bottom of the steps from Red Square and continues between Mary Griggs and Johnson Hall, after crossing Grant Lane. Set back from the edges of the path, these two buildings, completed in 1928 and 1930 respectively, enclose the vista beyond Grant Lane, serving as an effective architectural frame and enhancing the vista with their landscaping. At the southern ends of the buildings, the path crosses Thurston Lane before terminating at Frosh Pond, the circular pool at the heart of the Science Quadrangle. The path encircles the low concrete wall surrounding Frosh Pond and provides access via connecting paths to Hegley Hall on the west and Guggenheim Hall on the east. Low hedges border the four rose gardens located around the pool between these crossing paths. At the center of Frosh Pond, Drumheller Fountain central jet sends sprays of water 100 feet into the air within two rings of jets shooting water outward.

(See Continuation Sheet)

Major Bibliographic References

*"Frosh Pond to Get Fountain, $40,000 Gift From Drumheller" Seattle Times, Wednesday, December 17, 1961, p. 1.

Statement of Significance (continued)

John Charles Olmsted and Frederick Law Olmsted, Jr. formed their partnership in 1889 after working in the office of their illustrious father. John C. Olmsted, the nephew and later stepson of Frederick Law and the senior partner in the firm, spent several weeks in the summer of 1903 studying the topography of Seattle and its existing parks before preparing his report, A Comprehensive System of Parks and Parkways. In the report accepted by City Council on October 19, 1903, the Olmsted Brothers made specific proposals for the development of a park and boulevard system, as well as policy recommendations as to how it should be accomplished. From 1903 until his death in 1920, John C. Olmsted and James F. Dawson, from 1906 to 1941, were the principal landscape architects for the work of the Olmsted Brothers in Seattle.

Unlike the earlier and simpler Oval Plan for the University of Washington campus, John C. Olmsted took into account the full extent of the site. Yet, surprisingly, this inward-looking 1904 plan did not take advantage of the views and vistas available from the spectacular site and filled the campus space with a rigid geometry and a symmetrical placement of buildings. Fortunately, the Olmsted Brothers’ plans for the 1908 Alaska-Yukon-Pacific Exposition (AYPE) superseded their earlier design for the mostly undeveloped University of Washington campus. Following the model of Chicago’s World’s Columbian Exposition of 1893, the exposition was conceived in 1905 as a way to call attention to the wealth of resources in Alaska, to focus on Seattle as its major port of entry, and to celebrate the city’s achievements. The plan developed for the AYPE took full advantage of the site’s potential and topography by making the view southeast towards the distant Mt. Rainier the central theme.

Rainier Vista was first conceived in the Olmsted Brothers’ earliest plan for the AYPE completed in November 1905. Although the “Preliminary Plan for the Alaska-Yukon-Pacific Exposition, 1906” underwent subsequent modifications, Rainier Vista was retained and remained the centerpiece of the plan. The exposition’s engineer, George F. Conrath, and his field crew used survey equipment to center the axis of Rainier Vista on the center of the mountain peak with lesser radii towards Lake Washington, the Cascade Range, and Portage Bay. Under the Olmsted plan, this view southeast down Rainier Vista would provide sweeping views of natural scenery while the view northwest up the sloping hillside would serve as the focal point of the fair. Major buildings would be located on either side of the Arctic Circle at the midpoint, and the U.S. Government Building would be situated at the terminus. All major pathways and roads would radiate from the Arctic Circle and provide connections to all parts of the fairgrounds. Although most of the exposition buildings were to be only temporary structures, the Olmsted Brothers’ design created permanent infrastructure planned around the opened areas and included the construction of some permanent facilities for future use.

During the 138-day run of the fair, which opened on June 1, 1909 and attracted almost four million visitors, temporary bath and powder buildings designed in the Beaux-Arts Classical Style and painted a bland white enclosed the upper half of Rainier Vista. Below the Court of Honor on the north side of the U.S. Government Building, a water cascade flowed through the Cascade Court, which stepped down the slope, fed into the Geyser Basin at the center of the Arctic Circle. The circular pool forming the Geyser Basin featured a modest central jet. Beyond the Arctic Circle, Rainier Vista opened up with grassy lawns and sunken gardens extending between formal paths leading to the outer portions of the grounds. Rainier Circle occupied the midpoint along the vista and joined Pacific Avenue on the east and west and Rainier Avenue to the south. The Northern Pacific Railroad Bridge at the southeastern end of Rainier Vista created a subway enabling fairgoers to proceed from the South Entrance Gate into the fairgrounds via Rainier Avenue. It appears that this bridge was constructed in conjunction with the fair in order to provide this grade-separated access. Its location on axis with Rainier Vista supports this assumption, for it had been constructed earlier, there would not have been the necessity for such a precise alignment.

After the close of the fair on October 16, 1909, the Board of Regents of the University of Washington selected the structures and features that would remain. Although some of the temporary buildings were initially retained, most were subsequently demolished as new permanent buildings were constructed. However, most of the roads, paths and landscaping, including Rainier Vista and the Geyser Basin, were preserved and eventually incorporated into later plans guiding development of the campus. The circular pool within the Geyser Basin later became known as “Frosh Pond” on account of an early tradition of tossing freshmen into it. After the removal of the fair’s temporary structures and elaborate water features, little changes occurred to the basic infrastructure within Rainier Vista for the next fifty years. During the 1930s, landscape architect Walter S. Sturgeon, a Harvard graduate, prepared a number of drawings for the university, including designs for the junction of Rainier Vista and “Central Walk” (Stevens Way), the Rainier Vista approach and surrounds for Frosh Pond, and the southern closure of Rainier Vista. However, it is not known the extent to which these plans were realized.

A December 1961 newspaper article announced that Joseph Drumheller, the president of the University’s Board of Regents, had made a donation of $40,000 to fund the installation of a lighted fountain in Frosh Pond as a centennial gift. Drumheller, a native of Spokane, was the grandson of Leonard Jackson Powell, the UW’s eighth president. Completion of the fountain was originally scheduled to coincide with the opening of the Seattle World’s Fair 21st Century 21st Exposition in April of 1962, an event originally conceived to commemorate the 50th anniversary of the 1909 Alaska-Yukon-Pacific Exposition. It was expected that the new fountain would be a focal point of attraction for visitors to the Seattle World’s Fair and a reminder of the earlier exposition. The fountain’s designer, Lawrence Habib of San Francisco, was a 1923 graduate of the university and also served as a landscape consultant for the campus. Habib’s design called for a central bank of jets shooting water to 100 feet surrounded by two rings of jets directing water at an inclined angle to distances of 15 to 20 feet. Additional features included built-in lighting and separate water pumps to allow for operation singly or together. The previous spring, a new concrete bottom had been installed in the pool to prevent sewage from entering the campus tunnel system below, replacing the dirt bottom in place for more than fifty years.

While the axis of Rainier Vista remains a dominant planning element, it cannot be isolated from overall campus planning or from its architectural context. First envisioned as a major component of the AYPE, it was retained in Gould’s 1915 plan and in all subsequent plans for the campus. It is integral to overall campus design and, in terms of National Register eligibility, can only be considered as part of a larger whole. While individual buildings or groupings of buildings and open spaces on the campus may be eligible for listing in the National Register, it is important that the linear length of Rainier Vista, with its bordering of both historic and modern buildings, would fall within a defined historic district.
Description of Physical Appearance (continued)

Two short paths begin at the lower end of the pool and continue the same alignment all the way to the lower end of Rainier Vista. Evergreen trees line the outer margins of the paths along this full length, giving the lower vista a more natural enclosure in contrast to the manmade structures above. A wide grassy lawn extends between the paths from the Lewis Lane path on the north and the Stevens Way road on the south. South of Stevens Way, a sunken paved roadway separates the two paths and proceeds under two concrete bridges before terminating within the underground Triangle Parking Garage at the far southern end of Rainier Vista. The Burke Gilman Trail, a former railroad right-of-way, crosses the first bridge, and Pacific Place crosses the second. Two rows of cherry trees parallel the paths below Stevens Way. From the lower end of Rainier Vista, the view northwest looks into the heart of the campus, providing an attractive view of the university's built environment.

While the directional axis defined by straight pathways, the circular pool, and the central lawn area of the original design have survived, treatments of the surfaces along the vista have changed over time. The AYPE features — a dramatic water cascade, multiple stairways, sunken gardens, period light standards and benches — have long since disappeared. Subsequent terracing, retaining walls, and stairways that characterized the Gould planning decades have likewise been removed. Paved pathways, uninterrupted by stairs or terraces, along with broad open lawns, are now the defining features between the fountain and Pacific Place.
SEATTLE INVENTORY FIELD FORM

42555

Historic

Ranier Vista; the Basin

Present/Common

Ranier Vista; Drumheller Fountain

Year Built

Ranier Vista began 1907

designed by Armistead Grim

II LOCATION

Neighborhood

University of Washington campus.

Street(s) & Number(s)

III CLASSIFICATION

Category:

District Building(s) Structure(s) Site / Object(s)

Status:

Occupied / Unoccupied Work in Progress

Potential Threats Observed

none

Present Use

pavilion; walk, academic quad

Original Use

A.Y.P. extension, organized around it; BCC 1915, plan school

Accessibility

Unrestricted / Restricted, explain

IV DESCRIPTION:

General Appearance (structural, stylistic, surroundings, etc.): Approx. 2400

long axial vista beginning with Central Plaza and terminating in a view

do Mt Rainer

Condition:

Excellent Good ✓ Fair Deteriorated Ruins

Unexposed

Integrity:

Original Site Relocated

Major Alteration and Approx. Dates:

Numerous changes along miles devoting from 1915 plan All flanking

A.Y.P. buildings razed
V OBSERVED SIGNIFICANCE

Designed initially by the nationally prominent firm of the
Olmstead Bros. For the A.Y.P. exposition. Restored by the 1915 Bebble
Heart of the Exposition

VI PHOTOGRAPHIC REFERENCES
(Roll(s) #18 IV Exposure(s) 14 View(s) S.E. tower Mt. Rainier from Central Plaza

VII SURVEYED BY
Mark L. Peckham
Name
3/23/79 Date
National Register of Historic Places
Registration Form: Nuclear Reactor
Building (More Hall Annex)
United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "X" in the appropriate box or by entering the information requested. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

Historic name: Nuclear Reactor Building
Other names/site number: More Hall Annex

2. Location

street & number: 3785 Jefferson Road NE
city or town: Seattle
State: Washington
code: WA
county: King
code: 033
zip code: 98195

3. State/Federal Agency Certification

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets the National Register criteria. I recommend that this property be considered significant nationally. (See continuation sheet for additional comments.)

Signature of certifying official/Title: ___________________________
Date: 6/10/09

WASHINGTON STATE HISTORIC PRESERVATION OFFICE
State or Federal agency and bureau:

In my opinion, the property meets, does not meet the National Register criteria. (See continuation sheet for additional comments.)

Signature of certifying official/Title: ___________________________
Date: ___________________________

State or Federal agency and bureau:

4. National Park Service Certification

I, hereby certify that this property is:

[] entered in the National Register.
[] See continuation sheet
[] determined eligible for the National Register.
[] See continuation sheet
[] determined not eligible for the National Register.
[] removed from the National Register.
[] other (explain: ________________)

Signature of the Keeper: ___________________________
Date of Action: ___________________________
5. Classification

Ownership of Property
(Check as many boxes as apply)
- private
- public-local [X]
- public-State
- public-Federal

Category of Property
(Check only one box)
- X building(s)
- district
- site
- structure
- object

Number of Resources within Property
(Do not incl. previously listed resources in the count.)
Contributing Non-Contributing

<table>
<thead>
<tr>
<th>Buildings</th>
<th>Sites</th>
<th>Structures</th>
<th>Objects</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name of related multiple property listing:
(Enter "N/A" if property is not part of a multiple property listing.)

N/A

Number of contributing resources previously listed in the National Register

None

6. Functions or Use

Historic Functions
(Enter categories from instructions)

EDUCATION: Research Facility

Current Functions
(Enter categories from instructions)

Vacant/Not In Use

7. Description

Architectural Classification
(Enter categories from instructions)

Modern Movement

Materials
(Enter categories from instructions)

foundation Concrete
walls Concrete, Glass
roof Concrete, Build-up
other

Narrative Description
(Describe the historic and current condition of the property.)

SEE CONTINUATION SHEET
6. Statement of Significance

<table>
<thead>
<tr>
<th>Applicable National Register Criteria</th>
<th>Areas of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mark "X" in one or more boxes for the criteria qualifying the property for National Register listing.)</td>
<td>(Enter categories from instructions)</td>
</tr>
<tr>
<td>X A Property is associated with events that have made a significant contribution to the broad patterns of our history.</td>
<td>ARCHITECTURE</td>
</tr>
<tr>
<td>B Property is associated with the lives of persons significant in our past.</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.</td>
<td></td>
</tr>
<tr>
<td>D Property has yielded, or is likely to yield, information important in prehistory or history.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criteria Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Mark "X" in all the boxes that apply.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>X G less than 50 years old or achieving significance within the past 50 years.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significant Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961, 1967</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significant Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Complete if Criterion B is marked above)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cultural Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Architect/Builder</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Architect Artist Group (Architect)</td>
</tr>
<tr>
<td>Jentoft and Forbes (Builder)</td>
</tr>
</tbody>
</table>

9. Major Bibliographical References

<table>
<thead>
<tr>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cite the books, articles, and other sources used in preparing this form.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous documentation on file (NPS):</th>
</tr>
</thead>
<tbody>
<tr>
<td>X preliminary determination of individual listing (36 CFR 67) has been requested</td>
</tr>
<tr>
<td>X previously listed in the National Register</td>
</tr>
<tr>
<td>X previously determined eligible by the National Register</td>
</tr>
<tr>
<td>X designated a National Historic Landmark</td>
</tr>
<tr>
<td>X recorded by Historic American Buildings Survey</td>
</tr>
<tr>
<td>X recorded by Historic American Engineering Record#</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary location of additional data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>Other State agency</td>
</tr>
<tr>
<td>Federal agency</td>
</tr>
<tr>
<td>Local government</td>
</tr>
<tr>
<td>X University</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of repository:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEE CONTINUATION SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEE CONTINUATION SHEET</td>
</tr>
<tr>
<td>SEE CONTINUATION SHEET</td>
</tr>
</tbody>
</table>
10. Geographical Data

Acreage of Property: Less than one acre

UTM References
(Place additional UTM References on a continuation sheet.)

1
Zone 10
Easting 52
Northing 99

2
Zone
Easting
Northing

Verbal Boundary Description
(Describe the boundaries of the property.)
See continuation sheet.

Boundary Justification
(Explain why the boundaries were selected.)
See continuation sheet.

11. Form Prepared By

name/title: Abby Terese Martin (edited by DAHP Staff - Oct 2008)
organization
date: May 14, 2008
street & number: 515 12th Avenue East
telephone: (217) 721-3713
city or town: Seattle
state: WA
zip code: 98102

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps
A USGS map (7.5 or 15 minute series) indicating the property's location.
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional items
(For SHPO or FPO for any additional items.)

Property Owner (Complete this item at the request of the SHPO or FPO.)

name: University of Washington, Capitol Projects
street & number: University Facilities BLDG, Box 352205
telephone: (206) 543-5200
city or town: Seattle
state: WA
zip code: 98195
Narrative Description:

The Nuclear Reactor Building in Seattle, Washington, sits within the University of Washington campus on a triangular shaped space is currently bounded by the Mechanical Engineering Building on the north, More Hall to the south, the Allen Computer Science Building and Stevens Way to the west, and Jefferson Road, a campus access road, to the east. The building is oriented on a tilted east west access and is presently vacant, one can see immediately that the building was not built for a general purpose. The building is distinct from the rest of the Engineering complex in visual character and setting; its physical appearance and materiality are unique. It is singled out by it’s a surrounding plaza to the west, and the observer must approach the building by ascending four low risers. With no knowledge of the buildings purpose, one approaching the building can see that it is intended to stand apart, not to conform with its surroundings.

In the tradition of modern architecture, the Nuclear Reactor Building is expressive of the materials of which it is constructed. The defined structural elements of the building provide a frame which has been filled in with broad expanses of plate glass. The structure is precisely and vividly articulated, and every member is essential. The concrete of the main haunch beam is square and solid, while the cast-in-place beams which support the roof are tense in shape; their compacted form opens up the sides of the building for observation. Although the building's shape is animated, the window mullions and the form-work pattern of the cast concrete beams create a regular expression of the grid the building is laid out upon. The use of the glass storefront window system as a thin separation of inside and outside contrasts with the massiveness of the concrete structure. The form of the building is evocative of the forward-looking spirit of the period, with an energy in the shape that implies the power that the building was meant to contain.

Exterior

The Nuclear Reactor Building occupies the southeast corner of the space formed by the Engineering buildings, surrounded by an observation deck with a view to the southeast. Stevens Way, a campus ring-road, runs through the engineering complex. The Nuclear Reactor Building and its adjoining plaza are separated from Stevens Way by a small grassy quad. There is a pedestrian pathway called Snohomish Lane crossing through the north side of the Nuclear Reactor Building lot. The lane passes through the engineering complex toward the gym and stadium. The path descends a set of stairs next to the building, in accordance with the slope of the site. At the base of the stair, on the east façade, is where the main entrance to the Nuclear Reactor Building for students and professors is located. The rear of the building on the east side
at the lower level is fitted with a loading dock, accessed by a service road which runs behind the building to the Physical Plant.

The Nuclear Reactor Building is approximately 70 feet by 76 feet on the inside, on the lower floor. The area of the lower floor of the Nuclear Reactor Building is 5,100 sq.ft. The occupiable space of the upper level overlooking the central reactor room is 645 sq.ft., but the entire upper level space including the outdoor observation deck is 7,558 sq.ft. The area of the building and the adjacent paved plaza is 15,997 sq.ft. The building is laid out on a 4 foot grid, expressed in the rhythm of the mullions between the plate glass on both the observation level and in the south facing rooms of the lower level. The reveals every 2 feet in the cast-in-place transverse beams further enforce this rhythm.

The structural components of the Nuclear Reactor Building are expressed as individual pieces, each serving a defined purpose. The roof rests upon and is shaped by two parallel irregularly shaped beams, which in turn rest upon a square-arched haunch beam. Gerard Torrence, the structural engineer for The Architect Artisan Group (TAAG), developed the shape and dimension of the structural members. To achieve the goal of maximum visibility, the structural load was placed on two large cast-in-place concrete beams, which frame the east and west sides of the building. These beams act like "L's" that have one leg resting on the ground, and the other end resting upon the large transverse concrete haunch beam. The parallel beams must support the roof and the 3-ton beam crane necessary for moving the reactor shield. The roof was designed to be as light as possible, and is composed of precast concrete channels which span the central reactor room, a design which was quite innovative at the time. The structural design of the building was engineered to withstand the seismic activity of the Puget Sound area. The sensitive fuel for the reactor had to be kept in a stable condition, and the main haunch beam serves both as support and stabilizer against any seismic movement.¹

The materials used in the Nuclear Reactor Building are expressive of their particular qualities. There is no excess use of material, and the details of the building are clear and consistent. Concrete as a material is expressed differently in various conditions of use throughout the building. The concrete of the powerful cast-in-place haunch beam is smooth and square, while the form and rawness of the large parallel beams that support the roof convey the kinetic energy with which concrete can be formed. In the pre-cast roof the relative lightness of the members is evident in their section and the way they simply rest on the beams. Throughout the structure of

¹ Interview with Wendell Lovett
the building the connections between the members are simplified so that there can be no
mistaking how the load is being carried. The dynamic shaping of the concrete members reflects
the energy source contained within the building.

Interior
Inside, the reactor was housed in the central, double height space on the west side of the
building, the upper half of which is almost entirely enclosed in glass. Three sides are open to the
public via an outside observation deck, while the forth side (to the east) is dedicated to direct
study and observation by engineering students and faculty. This observation level includes a
control room, a small lecture space and a lobby. The control room and lecture room directly
overlook the reactor space below, and are separated from it by a plate glass curtain wall. While
the free-standing mechanical console and control panels for the reactor have long since been
removed, the spaces retain their original layout, terrazzo floors, canister-type light fixtures, doors
and protective railings overlooking the reactor room. Entry to the observation level is via a small
entry lobby accessed from the east side of the building. At the northeast corner is a small simple
concrete stairwell which leads to the basement or lower level of the building. An original pull-
down metal stair at the ceiling of the lobby allows access to the roof.

The lower level floor is much larger in area, extending beneath the outside observation deck on
the north and south sides of the building. Here you will find several support spaces including a
counting room, an experiment area, a chemistry laboratory, a crystal spectrometry room,
restrooms, electronic shop, “dirty shop”, an office and classroom spaces. These rooms are all
enclosed by utilitarian concrete walls, and are primarily below grade. As the hillside slopes down
to the east, several spaces open to natural light via a standard curtain wall system, consisting of
plate glass windows and metal insulated wall panels (okra/brown color). The glass and metal
panels are articulated with aluminum mullions every 4 feet, in the same manner as the glass
walls of the observation area above. These spaces retain their original metal doors, recessed
can lights and wall finishes. The floors are currently concrete, and may have been covered in
vinyl / asbestos tile. All mechanical fixtures and cabinetry have been removed. Inside the
reactor room, the massive high density concrete shield for the reactor remains, but it has been
cleaned of its accessory parts when the building was decommissioned. Via historic images, this
space remained a fairly open and sparse area, containing only the necessary components and
mechanical equipment for the reactor core.
Site
The plaza area immediately adjacent to the Nuclear Reactor Building is of concrete, paved in a trapezoidal pattern echoing the footprint of the building. The pattern is highlighted by sand finished concrete, outlined by exposed aggregate trim. The plaza itself was designed as an extension of the buildings observation deck, and was intended to be a further exhibition space. This paved area steps up four shallow risers to the observation deck overlooking the reactor below. The observation deck continues the trapezoidal paving pattern. Prefabricated board-formed concrete panels were used to form the railing around the edges of the observation deck. The panels are attached to the deck edge, but are not attached to each other. Reportedly there was anxiety about the panels not being strong enough, since a continuous railing does not connect them, but they have proven stable over time. The prefabricated panels and their irregular shape are typical of late modern architecture, and the use of prefabricated technology was a particular trademark of architect Wendell Lovett's.

To the north and west of the plaza area is a manicured lawn area highlighted by extensive planting areas, with some low retaining walls. Here specific plant materials, such as Rhododendrons, Mt. Fuji Flowing Cherry Trees, and Gaulteria shallon were called out in the landscaping plan. Approach to the building was via Stevens Way over a blacktop sidewalk which leads to a small descending set of concrete stairs to the north or a ramp to the south.

Condition / Integrity
The Nuclear Reactor Building maintains a high level of architectural integrity. From the exterior, no changes have been made to the building including the retention of the windows, doors, finishes, as well as the plaza space and other site characteristics. Inside, while all of the mechanical and control equipment have been removed, the original layout out of the building remains, and the flow and use of spaces is easily discernable. The reactor room itself, designed to be observable to the public from the outside observation deck, remains an open two-story space with remnants of the original reactor core attesting to its use as home to a small scale nuclear reactor. And despite the loss of the reactor core itself, the original design intent of the building continues to convey its historic association and function.
Statement of Significance:

The Nuclear Reactor Building, located on the University of Washington campus in Seattle, Washington is eligible for the National Register of Historic Places under criterion “A” for its direct connection to the broad patterns of the development of nuclear energy. More specifically, the structure, housing a small nuclear reactor, served as a teaching tool for a variety of students who learned through hands-on experience, about the daily complexities of running a nuclear reactor facility.

Additionally the Nuclear Reactor Building is historically significant under criterion “C” as a unique example of architecture of the post WWII period and represents the work of several noted Pacific Northwest architects; Wendell Lovett, Gene Zema, and Daniel Streissguth. The building demonstrates modern architecture’s close relationship with science, art and technology, blending these ideas into a unified visual statement.

The period of significance for the building begins in 1961, the date the building was completed, and ends in 1988, the date when the reactor shut down. The building was one of the first, if not the first, in the nation, which was specifically designed with the intention of making the nuclear process visually accessible, and open to the public or casual observer. The designers of the University of Washington Nuclear Reactor Building rejected the conventional approach of enclosing the reactor within concrete and instead revealed it through walls of glass. The building was constructed when nuclear technology held great promise as a clean, cheap and efficient energy source. The building design and materiality reflect that optimism. As such the building also meets National Register criteria consideration “G” at the local level of significance as a property that has achieved significance within the past 50 years by expressing the post-WWII optimism for nuclear technology.

The Nuclear Reactor Building was completed to serve as the showpiece for the newly-formed Nuclear Engineering program at the University of Washington (UW). The building is a classic and concise example of modern architecture on the UW campus, a sharp contrast to the traditional brick buildings that surround it. The building was designed by The Architect Artist Group (TAAG), which included architects: Wendell Lovett, Gene Zema and Daniel Streissguth. The group was a collaboration of professionals whose goal was to achieve comprehensive design through the integration of their respective disciplines: art, architecture and engineering. TAAG was the vision of Lovett, a University of Washington professor at the time. In the late 1950s Lovett organized this group of professionals in order to obtain work on larger design projects, mainly to go after projects at the up-and-coming Seattle World’s Fair. Lovett asked
architects Daniel Streissguth, a fellow professor, and Gene Zema, a former student, to join him. The other members of The Architect Artist Group were structural engineer and professor of structures in the UW architecture department, Gerard Torrence, and a painter, Spencer Moseley, who was a professor of art at the University. All the members of TAAG taught courses at the University of Washington at the time, with the exception of Gene Zema, who had a private architecture practice. The Nuclear Reactor Building was the only building constructed by The Architect Artist Group, thus serving as an example of this unique collaborative partnership. In 1961, the group submitted a competition design for the proposed Toronto City Hall, but failed to win the commission.

The decision to hire The Architect Artist Group to design the Nuclear Reactor Building was not typical of University of Washington convention at the time. The regular policy of the University was to offer design projects on campus only to outside architectural firms in the state, and, as full time professors, the members of TAAG were excluded, even if they had independent outside architectural practices. Lovett had connections in the Capital Projects Office at the University, specifically Fred Mann, the University Architect. Fred Mann was aware of The Architect Artist Group's organization and broke convention to offer them the project to design the Nuclear Reactor Building. The only stipulation was that the professors had to temporarily become part-time employees.

At the time of the building’s design and construction, Seattle was preparing for the 1962 "Century 21" World's Fair, which was being centered around new technologies and futuristic ways of living. The function and purpose of the Nuclear Reactor Building coincided with the ideals about a better tomorrow that drove the 1962 Seattle World's Fair. Two important figures in the design of the Fair, Paul Thiry and Minoru Yamasaki, also served on the University's Design Review Commission at the time the Nuclear Reactor Building was in the design phase. Showcasing its involvement in cutting edge technology was certainly in the forefront of the minds of the University as Seattle was preparing to present itself to the world.

It was also during this time when many architects from Washington and Oregon were beginning to receive national acclaim for designing some of the finest modern buildings in the county. From 1949 to 1961, projects in Washington received 2 honor awards and 7 merit awards from the AIA. Examples of work in the State appeared in regional, national and even international publications. Yet modernism in Washington State followed the trends of other States in terms of specific design idoms.

Interview with Daniel Streissguth
The Nuclear Reactor Building is considered an early work of Brutalism. The term was coined in 1953 to describe the architectural work of a group of British architects. Brutalism in its early phase (originally called New Brutalism) was actually a design philosophy, not a style. The idea was to create an aesthetic based on the exposure of a building's components: its frame, its sheathing, and its mechanical systems (all important features of the nominated building). Quickly however the term began to be applied to buildings that utilized monumental concrete forms and bulky massing. The style represents a revolt by architects against the corporate glass curtain wall and was often seen as a quick and easy way to construct long-lasting buildings.

While the style appeared early in the Pacific Northwest, the best examples date to the late 1960s and early 1970s. The style was rarely used for residential architecture and is mainly found on institutional building such as libraries, classrooms and museums. Small-scale commercial building such as banks also utilized the style.

Brutalism brought out the best and worst in what Modern architecture had to represent. In warmer desert climates, many Brutalist buildings have often come to be regarded as works of art. However, under the damp, grey skies of the Pacific Northwest, Brutalist buildings are often described as being unfriendly, cold and dark. The roughness of the exterior concrete soaks up moisture and turns black with age.

The term Brutalism is derived from the French word for rough concrete or “béton brut”. Brutalist structures have a heavy mass and scale. And their highly sculptural blocky shapes are often stacked together in various ways, creating an unbalanced look. Common design features include the “Russian Wedge” in which a wall plane projects outward on a slopped angle. Broad surfaces are often interrupted by deep-shadow penetrations of the buildings mass; vertical slots may contrast with broad oblong openings or tall openings with horizontal slots, while “egg-crate” effects are also much employed. The exterior treatment, as the name suggests, is usually exposed concrete, which is left rough to show the wooden formwork. However some examples of brick and stucco can be found. Fixed windows are set deep into the walls and are often small in relation to the size of the structure. Other common features include the use of “Waffle” slabs for floor and roof systems. As the name implies this cast-in-place building system utilized continuous pour of concrete with a coffered underside to reduce the weight of the slab. Such slabs were often left exposed.

Brutalist buildings on the University of Washington campus include McMahon Hall (1965); the Marine Sciences Building & Oceanography Teaching Buildings (1967-69); Schmitz Hall (1970); Kane Hall (1971); Gould Hall (1972) and Condon Hall (1973). The earliest expression of the
style is the Union Avenue Parking Garage in Olympia completed in 1958. The best example in the state is most likely the multi-story Psychology Building on the Central Washington University Campus completed in 1972. The Nuclear Reactor Building, represents a solid example of the style in terms of embodying the distinctive characteristics of the period of construction, which in this case possess high artistic values.

The University of Washington's College of Engineering began offering nuclear engineering classes in 1953, and in 1958 granted its first Master's degree in Nuclear Engineering. Dr. Harold Wessman, Dean of the Engineering College at the time, served as a strong advocate for the formation of the Nuclear Engineering program and pushed for the construction of a reactor on campus. Initially the program was run through the graduate school at the College of Engineering until 1965, when it became its own department.

That same year General Electric's Graduate School of Nuclear Engineering at Richland, Washington was transferred to the University of Washington, further boasting the program. Richland was the site of the Hanford project, which was established in Eastern Washington in 1942 to produce plutonium for the Manhattan Project. The Hanford site was no longer secret after World War II, and continued to produce plutonium for nuclear applications, eventually becoming a site for producing nuclear power. After the transfer of the graduate program in Nuclear Engineering, the University of Washington and Hanford maintained a strong connection, exchanging educators and students throughout the next 20 years.

Such programs in Nuclear Engineering were becoming common place at the university level by the late 1950s (see attached table). North Carolina State became host to the first a university-based nuclear reactor in the world in 1953, followed by Penn State in 1955. By 1968, over 75 nuclear reactors were in operation at universities across the United States. Today there are approximately 27 nuclear reactors in academic settings, down from 40 in 1987. The early 1960s were somewhat of a boom-time in terms of construction of university based teaching reactors. Between 1960 and 1965, nine reactors came on-line across the college campus. In the Pacific Northwest, Washington State and the University of Washington reactors became operational in 1961, preceded by Idaho State (1967), Oregon State (1967) and Reed College (1968).

2 A Century of Educating Engineers, p 44
3 Pope, The Atomic West, p 236
4 Interview with Dean McFeron
At the University of Washington, Dr. Albert Babb became the first chair of the eight-faculty department, which was made up of engineering professors of different departments. During the 1960s, there was a joint research project with the Critical Mass Laboratory in Hanford supervised by Bob Albrecht. Between its inception in 1965 and 1992, the department granted approximately 300 graduate nuclear engineering degrees.

After WWII, the Atomic Energy Commission was created to continue atomic energy research and the development of practical applications for nuclear energy. Several academic institutions across the United States would play a key role in this effort. However, a research reactor was essential for a competitive nuclear engineering program. Their proximity to the Hanford reservation, and faculty/personnel exchange, enhanced the two state universities in Washington State to garner federal financial support for the construction of a reactor on their campus' as well as for the development of research and educational programs. Washington State University received a $110,000 grant from the Atomic Energy Commission for the construction of a nuclear reactor building, while the University of Washington was able to obtain a grant of $150,000.5

Washington State University's Reactor was designed by campus architect Philip Keene and was housed in an International style concrete box far removed from campus life. In contrast, the University of Washington embraced the idea of having a reactor centrally located and exposed to public view. The design for the Nuclear Reactor Building at the University of Washington was formulated in 1959.

The site chosen for the new Nuclear Reactor Building was a prominent site in the center of the Engineering complex on the old campus, in the middle of a courtyard surrounded by larger buildings. The idea of the building, as a symbol of the University's engineering program, justified its placement on such an important site. The building was executed in the spirit of showcasing nuclear power, "sort of a crown jewel," as described by architect Daniel Streissguth. As recorded in the University of Washington Training Reactor Final Hazards Summary Report to the Atomic Energy Commission, it is stated: "the reactor building is intended to be a campus 'showpiece', since large numbers of visitors are expected, particularly during the Engineering Open House" [p 13]. Dr. Albert Baab, the professor leading the establishment of the Nuclear Engineering Department, worked closely with TAAG and was deeply involved in the design of the building. Baab's feelings about nuclear power and its hopeful nature are remembered by architect Daniel

5 A Century of Educating Engineers, p57
Streissguth: "He wanted to make it a symbol of the School of Engineering, he wanted to show the world what nuclear power looked like."

As soon as The Architect Artist’s Group received the commission, they began to research existing teaching reactors on other university campuses. Many major universities were installing research reactors at the time, including the University of Wisconsin, the University of Maryland, MIT, and the University of Florida (see attached list). As TAAG surveyed these examples, they found only reactors “hidden in concrete boxes,” as Daniel Streissguth and Gene Zema later remembered. TAAG and Dr. Baab concluded that encasing a reactor of the proposed size in concrete was an unnecessary protective measure. In the reaction process, radiation is contained within the reactor itself, and if any radioactivity should escape, concrete walls cannot contain it. The practice of housing research and training reactors in concrete was psychologically based, as the concrete was perceived as a protective shield. The University of Washington Training Reactor Final Hazards Summary Report to the Atomic Energy Commission states:

“There is no credible way in which the fission products of this reactor can be made to escape, and the amount of contained fission products will be relatively small since it is limited to a maximum power of 10 kilowatts”.

Additional research and questioning by TAAG and Dr. Baab determined that if the reactor were located below ground level, any potential released radiation would be absorbed by the ground. The shape and slope of the site in the engineering complex was conducive to this design. The reactor could be protected by the earth and viewed from above, with access to service and loading at the rear of the building at ground level. The main level of the building became an observation deck overlooking the testing process. By placing the reactor below the ground, the walls of the building above the reactor level could be almost entirely glass. A reactor which was housed behind glass walls was completely unprecedented. The design of the building was approved by the University Architectural Commission and the Board of Regents.

The design of the form of the Nuclear Reactor Building has been largely attributed to architect Wendell Lovett. In the words of fellow TAAG member Daniel Streissguth “the building is all Wendell.” Although all the members of The Architect Artist Group participated and contributed to the design, Wendell Lovett had the strongest ideas about how the building would be expressed.

6 Interview with Gene Zema and Daniel Streissguth
7 Ibid.
From his boyhood, Lovett had been fascinated with technology and this is evident in the Nuclear Reactor Building. Lovett's design for the building is the physical manifestation of an opportunity to promote nuclear technology unashamedly.

Wendell Harper Lovett was born in Seattle on April 2, 1922. He received his formal architectural education at the University of Washington where he received his bachelor's degree in architecture in 1947. While at the University, Lovett excelled in his studies and was awarded the AIA Student Silver Medal for excellence in design. He continued his education at Massachusetts Institute of Technology where he received his graduate degree in 1948. While there he was awarded the William R. Ware Prize.

On the job training during summer and winter breaks garnered Lovett a variety of experiences. He served as at draftsman for George Groves (summer 1941); a Carpenters helper, American Building Co. (summer 1942); served as a draftsman for Stuart & Durham (fall 1945); NBBJ (1946-47); and worked for Ralph Rapson while in Boston (spring 1948).

After graduate school Lovett accepted a job with the architectural firm of Bassetti & Morse. During this time he joined a group of architects to build a planned community (called Hilltop) east of Lake Washington. There he built his first house (1951). The project received widespread publication, from the American Arts & Architecture magazine to the French l'Architecte d'Aujourd'hui magazine and was presented a State AIA Honor Award in 1953. This was the first of many awards to come.

During this early phase of Lovett's career, he was heavily influenced by the Miesian idiom and the idea of using production components to create minimalist dwellings. Notable projects in this vein include the Wallace H. Lovett House (1954); the Gervais Reed House (1955); and the Gordon Giovaneli House (1959). Each project received numerous design awards and were featured in a variety of domestic and international publications.

With such allocates pouring in, at the young age of 32, in 1954 Lovett was offered a half-time teaching position at University of Washington. He continued working half time for Bassetti until he left Seattle on a Fulbright Scholarship as a guest critic at the Technical Institute in Stuttgart (1959-60 academic year). Before he left, the design for the Nuclear Reactor building was finished and the working drawings were almost complete.

8 Interview with Daniel Streissguth
While in Europe, Lovett was heavily influenced by the work of Rolf Gutbrod, Fritz Leonhardt, and Ralph Erskine. He notes that he “discovered the idea of enclosure and containment” during this time. He would later call this idea his “stop” and “go” spaces and his designs began to move away from stark geometrical and industrial layouts, to anthropomorphic expressions of form.

Immediately upon his return to Seattle, Lovett, in collaboration with Seattle architect Ted Bower, was engaged in the design of a pedestrian walkway shelter system for Seattle World’s Fair (1961). Other notable projects include the Geber House (1962); the Meiller House (1966); and the Studebaker House (1969).

In 1965, Lovett was appointed as a full professor at the University and continued an independent private practice on the side. Between 1972 and 1981, he designed sixteen custom houses including the Fey House (1973); the Scofield House (1976) on Mercer Island; the Larsen House (1978); the Fujita House; and the Weston House (1981).

Over a span of 40+ years many of his designs were featured in a variety of local, regional, national and international publications including Sunset; House & Garden; Architectural Record and Domus. From 1953 to 1980 over 60 articles appeared. Lovett has also won numerous honors and awards from design competitions for Progressive Architecture; to local, regional and state AIA Honor Awards, to the Seattle Times “Home of Year”.

Lovett’s desire to link art and architecture also led him to product design. In 1954 he created the “Flexi-Fibre” later “Bikini” Chair, which was displayed at the International Exhibition of Modern Decorative and Industrial Arts in Milan. In 1966 he created the “Firehood” and “Toetoaster” hearths for Condon-King Company. After going into mass production, today the hearths can be found in thousands of dwellings across the county.

In 1987 Lovett retired from teaching and began work on the Villa Simonyi, a sprawling multiphase project in Medina. Other work during the later part of his career include the Cutler-Girdler House (1996); the Vagners-Christianson House (1999); and the Meilleur–Buren House (2001).

Lovett was elected to the AIA College of Fellows in 1978 and in 1993 was awarded the Seattle AIA Medal for distinguished lifetime achievement in architecture, design and design education. Today Lovett is retired and resides in Madrona.

A key member of the TAAG team was artist Spencer Moseley. His job (with the help of Charles Smith) was to help further in revealing the nuclear process to the observer. The Argonaut reactor within the building had a shield that was composed of large blocks of metal filled with
concrete. The shield was composed of many blocks because of their combined weight. A shield of a single piece would have required substantially more structure and a much stronger beam crane to lift it. The limit of the beam crane in the Nuclear Reactor Building was 5,000 lbs, and some of the shield blocks weighed nearly as much. It was necessary to move the blocks periodically to change the fuel rods.\(^9\) Moseley's idea was to color code the blocks in bright primary colors (red blue, yellow and indicative of different radioactive qualities), so that when the blocks were moved they would create a continuously changing visual pattern. The colors of the blocks differentiated them according to their position in the shield. In a building that was composed of concrete and glass with minimal finishing, the colored blocks of the reactor shield drew the observer's eyes directly to the reactor.\(^{10}\)

Moseley (1926-1998) was born in Bellingham and taught art at the University of Washington from 1951 to 1971 after receiving a BA and MFA from the University. He served as the director of the School of Art from 1967 to 1977. Moseley was an acclaimed artist whose paintings are included in the collections of many regional museums, including the Seattle Art Museum and the Henry Art Gallery. As a young man he studied in Paris with the legendary modernist Fernand Leger, and for the rest of his life his paintings were inspired by an interest in formal, structural abstraction, often with a cubist spin. Yet despite his lifelong passion for European modernism, Moseley was a champion of the regional art scene and new, experimental art disciplines that in the halcyon days of the '60s and '70s were emerging from craft departments at the University of Washington.

With Lovett in Europe, Gene Zema, Daniel Streissguth, Gerald Torence and landscape architect Robert Chittock completed the construction documentation over the next few months. Zema signed the architectural drawing set on November 9, 1959. Zema supervised the actual construction of the Nuclear Reactor Building, and today recalls that it was a smooth process, "the building went up without a hitch." A craftsman himself, Zema's care and attention to detail are recognizable in the details and articulation of materials of the building.\(^{11}\)

Zema was born on September 2, 1926, and grew up on a farm in the Sacramento Valley in California. He began studies at the University of Washington in 1944. Although he initially studied Engineering, he changed his course of program to Architecture after returning to school from service in the Navy during World War II. In 1950, he completed his Bachelor of

\(^{9}\) Interview with Brian Panckow and Stan Addison

\(^{10}\) Interview with Daniel Streissguth

\(^{11}\) Interview with Daniel Streissguth and Gene Zema
Architecture degree at the University of Washington, with Lovett serving as one of his main professors.

After receiving his architectural license in 1951 he worked for a variety of architectural firms before opening his own practice in 1953. Located in Seattle’s Eastlake neighborhood (200 East Boston), the office was a strong testament to the skills of the young designer and helped him receive many notable architectural commissions over the next thirty years. Zema shared this office with A.O. Bumgardner, and they often formed a partnership to work on larger projects. They each maintained their private residential practices during this time and the partnership lasted only a few years. As partners, the two were invited in 1955 to produce a prototypical residential design for the Grand Rapids (MI) Homestyle Center exhibit featuring nationally known architects. Their design represented a “budget house for...the Pacific Northwest utilizing natural materials”. In the early 1950s, Zema had designed a number of standard builder’s plans for the development of Bridle Trails Park in Bellevue, WA, which were very similar to the Homestyle Center model he designed later with Bumgardner.

Zema holds the distinction of receiving the first Seattle AIA Home of the Year award in 1955 for his own dwelling completed in 1954 (16040 35th NE, Sheridan Heights). Other award-winning homes were the Holm residence in Richmond Beach (built 1956, AIA honor award 1962), and the Upton residence (1961) on Mercer Island, which was awarded both a Home of the Year award in 1961 and an Honor Award in 1962. Other notable residential buildings in and around Seattle included the Stephen House (1970) and his own home in Laurelhurst (1965).

Zema’s residential and non-residential work was heavily influenced by the work of Paul Hayden Kirk. He especially drew direct inspiration from Kirk’s “how-to” book about clinic design (Doctors’ Offices and Clinics, 1955) for the eight medical and/or dental clinics he designed. These included the Jefferson Park Medical Clinic (1957) on Beacon Hill, the Rice Dental Clinic (1961) in north Seattle, and the Overlake Park Clinic (1963-65) in Bellevue.

Other non-residential projects also include the Wells-Medina Nursery (1968) and Gould Hall at the University of Washington (with Dan Streissguth, 1972). In 1968 Zema opened a Japanese antiquities gallery in his office, which remained in operation through the 1990s (under different ownership). Zema retired from practice in 1976 and built a third home for his family on Whidbey Island in 1983, where he currently resides.

Daniel Streissguth graduated from the University of Washington in 1947 and received a graduate degree from MIT in 1949. He was licensed by the State of Washington (#648) on July 10, 1951. Upon graduation, he taught at Washington University in St. Louis, Missouri (1953-55). In 1955
he began teaching at the University of Washington, and continued to teach beginning level design courses to undergraduate and graduate students until his retirement in 1993. During his tenure he served two-four-year terms as chair of the Architecture Department, and is primarily known for his excellence in teaching design.

Streissguth maintained a small private practice over his career where he worked on residential projects in addition to his teaching duties. Projects include the Cotton House Remodel in Port Townsend (1956), the Helander House also in Port Townsend (1956), and his own home in Seattle (1958). He joined fellow architect Gene Zema to design the current home of the University of Washington College of Architecture & Planning (Gould Hall) in 1972. He also worked with Zema on the Wells Medina Nursery building and grounds (1968).

The contractors for the Nuclear Reactor Building were Jentoft & Forbes Contractors. Nothing is known of their other construction projects. Landscape architect Robert W. Chitlock was a University of Oregon graduate and received his formal landscape architectural license (#86) on June 9, 1971. Chitlock began his practice in 1957 and his practice continues today. Projects include Japanese Branch First Presbyterian Church of Seattle (1963), WSU Agricultural Science Building (1969), a roof top deck for Bay Vista Towers (1982); the Seattle Garden Club Fragrance Garden (2007); landscape for the Grace Boyd House (2008) and the Bowman Garden (1982) in Bellevue. Over the years he has been a regular contributor to Sunset Magazine and his work has been featured in several publications including: Practical Guide to Home Landscaping (1972); Sunset Ideas for Landscaping (1972); Landscape for Western Living (1968); and How to Build Fences and Gates (1971).

When Lovett returned to Seattle in 1961 he was pleased with the result of TAAG’s work at the Nuclear Reactor Building. With his absence, however the partnership dissolved and each member moved back into private practice.

The Reactor Building was dedicated in 1961, the centennial year of the University of Washington, just before the 1962 Seattle World’s Fair. Lovett recalls, when the building was completed, there were some reservations about its appearance. The University president at the time, Charles Odegaard, asked the team after the building was completed, if it was finished and if they were going to paint it. Painting the building was not TAAG’s intention, and countered the raw expression of the material in the building. In the end, the concrete haunch beam and the pre-cast roof channels were painted white to reconcile the president.

12 Interview with Wendell Lovett
However overall, the Nuclear Reactor Building was recognized for its innovative design in a variety of regional, national and international publications such as: *Architecture West*, *Arts and Architecture*, *Architectural Record*, *Progressive Architecture*, *Pacific Architect Builder* and *L'Architecture d'Aujourd'hui*. These articles identified the building as the "natural focus for the engineering building group" (*Architecture West*) and describe the nature and materiality of the building as appropriate for the "dynamic energy source" contained within (*Arts and Architecture*).

Within the College of Engineering itself, the construction of the Nuclear Reactor Building was greatly celebrated. Dean McFeron, professor in the Mechanical Engineering department at the University of Washington who came to the Seattle in the 1950s to help establish the Nuclear Engineering Program, fondly remembers when the Nuclear Reactor Building began to be used. Since the building was constructed at the same time as the grounds and attractions for the Seattle World Expo, the Engineering Department held a public "Open House" to show off its new building. Professor McFeron recalls that someone had the idea to make a "mini monorail" with a model train and run it through the reactor's portholes. The little train was encased in lead for protection, but made the reactor go a little haywire because reactors do not react well to sudden change. The "mini monorail" was a public success, and many people were watching from the observation deck, "ten people deep".\(^{13}\)

The reactor reached critical and sustained fission in April 1961 and began operation at 10 kw. The Nuclear Reactor Building was used for testing and teaching consistently throughout the 1960s, and in 1967 the reactor's power production was raised from 10 kw to 100 kw. The only significant accident in the history of the Nuclear Reactor Building occurred in 1972. That year a plutonium foil failed and 42 mg of plutonium dust was spread around the reactor room. The spill was cleaned up, and the floor was painted over and composition tiles laid to protect from contamination. The cleanup was successful, and the building continued to be used as usual. (When the building was decommissioned later, the tiles were removed). The Nuclear Reactor Building underwent safety testing by the Nuclear Regulatory Commission yearly as long as the reactor was in place.\(^{14}\)

The applications of the nuclear reactor at the University of Washington went beyond the research and experimentation within the Nuclear Engineering department. The reactor's location on campus was convenient for producing short-life isotopes for the University's Hospital, which

\(^{13}\) Interview with Dean McFeron
\(^{14}\) Interview with Brian Panckow
were used for some medical treatments. The reactor was also used for testing for Cystic Fibrosis in infants, which could be diagnosed by the radioactivity levels of the child's fingernails.\(^\text{15}\)

In the 1970s there was a general decline in the prosperity of the Nuclear Engineering Department. Both enrollment and funding numbers receded. This decline was due to a combination of skepticism about nuclear power, the energy crisis, environmental concerns, the Vietnam War and the economic recession. Throughout the 1970's, nuclear power in the United States faced growing resistance and gained mostly negative attention due to its expense and safety concerns. In the Pacific Northwest, the issues were largely economic. The Washington Public Power Supply System [WPPSS] had proposed a plan to build five reactors in Washington State, but the project fizzled under political and economic scrutiny. Over a period of two decades, only one power plant was completed. The economic consequences of this venture induced resistance from the public. There were protests against the WPPSS and a few protests against nuclear power itself.\(^\text{16}\) In March 1979 the Three Mile Island accident occurred near Harrisburg, Pennsylvania, which solidified a fear and aversion to nuclear power across the nation.

The general dissent against nuclear power brought with it a lack of employment. Many graduates of the Universities Nuclear Engineering program in the 1970s were forced overseas to find work. Brian Panckow, who operated the reactor in its later years of operation and was involved in the decommissioning of the building, recalled that in the late 1970s when he began working in the building, the program was well into decline and research was limited. The Nuclear Reactor Building, less than two decades old, became burdened with the negative attitudes that have kept it trapped in the past. In 1982 there were severe budget restrictions at the University of Washington, and many programs were cut or insufficiently funded. Limited research continued in the Reactor Building on fusion, passively safe nuclear concepts, and nuclear waste management. There was some funding for research from the Department of Energy. In the late 1980s the reactor was used less for teaching and research and more for infrequent testing for a few commercial companies, mostly for medical applications. In 1988 the reactor ceased to be used. From October 1988 to February 1990 the fuel rods were removed to the Hanford site in eastern Washington. In the course of the reactor's operation 304,443 kw hours of thermal energy was produced.\(^\text{17}\)

\(^{15}\) Interview with Dean McFeron

\(^{16}\) Pope, The Atomic West, p 236

\(^{17}\) University of Washington Nuclear Reactor Laboratory Decommissioning Information
In 1992 the Nuclear Engineering program at the University of Washington officially disbanded, due to lack of student enrollment and interest. In 1994 the University’s reactor license was converted from operation to possession only. In 1995 the Nuclear Regulatory Commission approved the decommissioning plan proposed by the University, but in 1999 the decommissioning process was put on hold due to lack of funding. The decommissioning plan was reactivated in October 2003. In December 2006 the University requested a termination of its Facility Operating License for the research reactor. On May 21, 2007, the Nuclear Regulatory Commission issued its inspection report (50-139 / 2006-204) declaring the building decommissioned and certified clean for reoccupation. Currently the University plans to demolish the building in the summer 2008.\footnote{18}

Although the Nuclear Reactor Building has been dormant for the past two decades, it remains in good condition. The structural elements of the building are sound. There are a few visual defects from water stains, and some leaks from cracks in the observation deck. Inside the building, most of the finishes have been stripped in the process of decommissioning. The floor tiles have been removed and paint from the walls of the reactor room was removed as well. All the original scientific equipment has been removed. Although the reactor itself has been removed, the concrete casing for the reactor still stands in the center of the reactor room. An observer today, seeing the remnants of the concrete casing, can still grasp the building’s original intention.

In the tradition of modern Brutalist architecture, the Nuclear Reactor Building is an expressive of the materials of which it is constructed. The defined structural elements of the building provide space for large expanses of glass curtain wall. The concrete of the main haunch beam is square and solid, while the cast-in-place beams which support the roof are tense in shape as they open up the space for observation. Although the building’s shape is animated, the window mullions and the form-work pattern of the cast concrete beams create a regular expression of the grid the building is laid out upon. The use of the glass storefront window system with regular aluminum mullions as a thin separation of inside and outside contrasts the massiveness of the concrete structure. The structure is precisely and vividly articulated, and every member is essential. The form of the building is evocative of the forward-looking spirit of the time, with an energy in the shape that implies the power that the building was meant to contain.

\footnote{18} Ibid
The Nuclear Reactor Building represents a matchless aspect of the work of three significant Modern architects of the Pacific Northwest, who were part of a short-lived but progressive collaboration: The Architect Artist Group. For The Architect Artist Group, the Nuclear Reactor Building is a result of their combined talents, with significant contributions from structural engineer Gerard Torrence and artist Spencer Moseley. For all parties the Nuclear Reactor Building was a unique project in their careers. Architect Wendell Lovett, the lead designer of the project and organizer of TAAG, was internationally known for his work, and has been elected a Fellow of the American Institute of Architects. Over the course of his career he designed primarily residences, some furnishings, but the Nuclear Reactor Building is his only institutional project. Such work offers an insight into what might have been if the group were to have maintained a long term partnership. Such collaborations between architect and artist were part of the main tenants of modernism. Architects Gene Zema and Daniel Streissguth, who also designed many buildings in the northwest, went on to design some commercial and institutional building including designing together Gould Hall on the University of Washington campus in 1972.

All three of the architects of the Nuclear Reactor Building are still living, but have not practiced for several years. When interviewed regarding the building and The Architect Artist Group, they recalled the experience as unique in their careers. They felt that the Nuclear Reactor Building itself had potential for re-use on the University campus, and was a true expression of the excitement of new technology and research of the time period.

The Nuclear Reactor Building is exemplary of modern architecture's close relationship with science and technology. The building's form and character is driven by technology and its advancement, looking only to the future. In an era of un-precedented change, the Nuclear Reactor Building expresses a need to advance and eliminate boundaries. One can see this clearly while observing the building, set apart and standing out from the conventional academic buildings around it. The building unashamedly promotes technology and communicates it publicly.
Bibliography:

Architecture West; "Strong Lines Lead Students to Nuclear Learning" 68 : 18-19, December 1962

Arts and Architecture; "Nuclear Reactor Building" 80 : 22-23, January 1963

Arts and Architecture; "Technical Building by the Architect Artist Group", 25, September 1959

Architectural Record; "A Teaching Reactor in a Glass Pavilion" 134 : 182-183, September 1963

L'Architecture d'Aujourd'hui; "Reactur Nucleaire de L'Universite de Washington a Seattle" Paris, 35 : LIX, September 1965

Progressive Architecture; "The Role of the Architect" 45 : 171, June 1964

Cited Sources:

University of Washington Nuclear Reactor Laboratory Decommissioning Information. March 26 1990.
Interview with Brian Panckow, Radiation Safety Officer at the University of Washington,
by Abby Martin, November 2007.

Interview with Brian Panckow and Stan Addison, Radiation Safety Officers at the University of Washington, by Abby Martin, January 24 2008.

Interview with Dean McFeron, Professor Emeritus of Mechanical Engineering, University of Washington,
Verbal Boundary Description

The Nuclear Reactor Building and its adjacent plaza are sited within the central open space of the Engineering Complex at the University of Washington campus in Seattle. The triangular shaped space is currently bounded by the Mechanical Engineering Building on the north, More Hall to the south, the Allen Computer Science Building and Stevens Way to the west, and Jefferson Road, a campus access road, to the east. Bisecting the site on a east/west access is a pedestrian lane, called, Snohomish Lane.

Boundary Justification

The boundaries of the nominated property include the structure itself and the adjacent plaza facing Stevens way as well as the east side walkway, stairs and path areas, all part of the original landscape design.
Teaching Reactors on University Campus'
by operational date
(partial list, unknown status of reactors)

<table>
<thead>
<tr>
<th>Operator</th>
<th>Location</th>
<th>Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina State</td>
<td>Raleigh, NC</td>
<td>1953</td>
</tr>
<tr>
<td>Penn State University</td>
<td>University Park, PN</td>
<td>1955</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>Ann Arbor, MI</td>
<td>1957</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Cambridge, MA</td>
<td>1958</td>
</tr>
<tr>
<td>University of Arizona</td>
<td>Tucson, AZ</td>
<td>1958</td>
</tr>
<tr>
<td>University of Florida</td>
<td>Gainesville, FL</td>
<td>1959</td>
</tr>
<tr>
<td>University of Maryland, College Park</td>
<td>College Park, MD</td>
<td>1959</td>
</tr>
<tr>
<td>Worcester Polytechnic Institute</td>
<td>Worcester, MA</td>
<td>1959</td>
</tr>
<tr>
<td>Missouri University of Science & Technology</td>
<td>Rolla, MO</td>
<td>1961</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>Columbus, OH</td>
<td>1961</td>
</tr>
<tr>
<td>Texas A&M University</td>
<td>College Station, TX</td>
<td>1961</td>
</tr>
<tr>
<td>University of Wisconsin-Madison</td>
<td>Madison, WI</td>
<td>1961</td>
</tr>
<tr>
<td>Washington State University</td>
<td>Pullman, WA</td>
<td>1961</td>
</tr>
<tr>
<td>University of Washington</td>
<td>Seattle, WA</td>
<td>1961</td>
</tr>
<tr>
<td>Kansas State University</td>
<td>Manhattan, KS</td>
<td>1962</td>
</tr>
<tr>
<td>Purdue University</td>
<td>West Lafayette, IN</td>
<td>1962</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td>Troy, NY</td>
<td>1964</td>
</tr>
<tr>
<td>University of Missouri</td>
<td>Columbia, MO</td>
<td>1966</td>
</tr>
<tr>
<td>University of New Mexico</td>
<td>Albuquerque, NM</td>
<td>1966</td>
</tr>
<tr>
<td>Idaho State University</td>
<td>Pocatello, ID</td>
<td>1967</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>Corvallis, OR</td>
<td>1967</td>
</tr>
<tr>
<td>Reed College</td>
<td>Portland, OR</td>
<td>1968</td>
</tr>
<tr>
<td>University of California-Berkeley</td>
<td>Berkeley, CA</td>
<td>1969</td>
</tr>
<tr>
<td>University of California, Irvine</td>
<td>Irvine, CA</td>
<td>1969</td>
</tr>
<tr>
<td>North Carolina State University</td>
<td>Raleigh, NC</td>
<td>1973</td>
</tr>
<tr>
<td>University of Massachusetts Lowell</td>
<td>Lowell, MA</td>
<td>1974</td>
</tr>
<tr>
<td>University of Utah</td>
<td>Salt Lake City, UT</td>
<td>1975</td>
</tr>
<tr>
<td>University of Texas at Austin</td>
<td>Austin, TX</td>
<td>1992</td>
</tr>
<tr>
<td>University of California-Davis</td>
<td>Sacramento, CA</td>
<td>1998</td>
</tr>
</tbody>
</table>
Images of the Nuclear Reactor Building published in *Architectural Record*, September 1963
Figure 29. UWTR Horizontal Section at Beam Tube Level
Interior looking into recital room from lecture room
nuclear reactor building from above
interior, reactor room, looking through reactor shell
interior corridor
interior, reactor room, looking northwest
Landmark Preservation Board Report
on Designation: Seattle Japanese
Garden
REPORT ON DESIGNATION

Name and Address of Property: Seattle Japanese Garden
1075 Lake Washington Boulevard E.

Legal Description:

Washington Park Arboretum Legal Description:
Lots 1 thru 7, Block 1, Madison Park Addition together with Lots 6-7, Block 4, Bard-Foster Washington Park Addition together with portion of vacated Bard-Foster Washington Park Addition together with portion Washington Park in E 1/2 Section 21-25-4 & NE 1/4 Section 28-25-4 together with Blocks 13-14, Lake Washington Shore Lands Addition less State Highway.

Japanese Garden Boundary Description:
A parcel of land, lying within the boundaries of Washington Park, in the N.E. ¼ of Section 28, Township 25 North, Range 4 East, Willamette Meridian in the City of Seattle, County of King, State of Washington described as follows:
Beginning at the intersection of 26th Avenue East and East Highland Drive;
thence along the centerline of 26th Avenue East N 1°50'20" E, 65.00 feet;
thence S 88°23'25" E, 289.27 feet;
thence S 21°13'25" E, 7.70 feet to the True Point Of Beginning;

Thence N 00°35'23" W, 68.55 feet;
thence N 71°07'10" E, 159.97 feet;
thence S 16°20'18" E, 74.57 feet;
thence S 22°48'37" E, 83.06 feet;
thence S 29°29'27" E, 99.36 feet;
thence S 33°07'15" E, 94.70 feet;
thence S 28°23'23" E, 98.30 feet;
thence S 22°33'30" E, 86.82 feet;
thence S 19°04'38" E, 81.24 feet;
thence S 20°05'38" E, 84.41 feet;
thence S 23°52'39" E, 49.65 feet;
thence S 24°57'47" W, 150.55 feet;
thence N 61°56'17" W, 148.82 feet;
thence N 42°19'08" W, 100.44 feet;
thence N 44°36'03" E, 48.20 feet;
thence N 43°27'58" W, 116.39 feet;
thence N 32°32'24" W, 305.54 feet;
thence N 18°51'46" W, 181.83 feet;
thence N 85°36'34" E, 71.86 feet to the True Point of Beginning. Said parcel containing 4.37 acres. Bearings are based on Lambert Projection for the State of Washington, North Zone.

At the public meeting held on May 21, 2008, the City of Seattle's Landmarks Preservation Board voted to approve designation of the Seattle Japanese Garden at 1075 Lake Washington Boulevard East as a Seattle Landmark based upon satisfaction of the following standards for designation of SMC 25.12.350:

(C.) It is associated in a significant way with a significant aspect of the cultural, political, or economic heritage of the community, city, state or nation.

(D.) It embodies the distinctive visible characteristics of an architectural style, or period, or of a method of construction.

(E.) It is an outstanding work of a designer or builder

(F.) Because of its prominence of spatial location, contrasts of siting, age, or scale, it is an easily identifiable visual feature of its neighborhood or the city and contributes to the distinctive quality or identity of such neighborhood or city.

DESCRIPTION

Current Appearance
The Seattle Japanese Garden is a 3½ acre enclosed site located in the extreme southwest corner of the Washington Park Arboretum. This 230-acre park occupies a long, narrow valley extending south from Lake Washington’s Union Bay to East Madison Street. Lake Washington Boulevard winds through the length of the Arboretum west of center and serves as the primary access to the park. South of Madison Street, the Boulevard continues southeast towards the shores of Lake Washington. Arboretum Drive East is a secondary road through the Arboretum that roughly parallels the park’s eastern boundary. The Montlake neighborhood borders the Arboretum to the west while the private, gated residential community of Broadmoor lies to the east. Broadmoor’s 18-hole golf course wraps around the single family residences clustered at the center of the development and provides a green buffer for the park. East Madison Street, the major arterial along the southern end of the Arboretum, connects downtown Seattle to the southwest with the Madison Park neighborhood to the northeast. Named for the adjoining park, the Washington Park neighborhood lies south of Madison Street to the north of Lake Washington Boulevard.
Nestled at the base of a steep slope on the west, the Japanese Garden has a long, narrow and roughly rectangular outline bordered by Lake Washington Boulevard along its entire eastern margin. The garden’s northern end terminates just south of the intersection of East Interlaken Boulevard and Lake Washington Boulevard. Beyond the southern end of the garden is the northern entrance of a large parking lot shared by the Washington Park Playfield situated further to the south. A small wooden sign positioned near the lot’s entrance directs visitors to Japanese Garden parking. A second entrance off Lake Washington Boulevard provides access to the lot’s southern end.

A short service road extends from the northwest corner of the parking lot to a pair of gates leading into the service area within the southwest corner of the Japanese Garden. The gates are set within a chain link fence topped with barbed wire that encloses the western end of the garden’s southern boundary and continues along the entire western and northern boundaries. Just beyond the fence is a rough dirt trail that follows the fence line from the parking lot on the south to Interlaken Boulevard on the north. On the hillsides to the west and north of the garden, the vegetation of native trees, bushes and groundcover is largely untended in contrast to the landscaped areas found on the more public south and east sides and within the garden itself.

The chain link fence terminates at the northeast corner of the garden where a high cedar fence begins and continues the length of the eastern boundary and around the southeast corner of the garden. Following the contour of Lake Washington Boulevard, a paved sidewalk runs along much of the eastern side to a point just beyond the garden’s original entrance gate where it transitions to a wide gravel path. North of this gate, a low hedge grows along the fence, while the beds south of the gate are planted with a greater variety of trees, bushes and shrubs. Known as the Emperor’s Gate, this wood frame structure features a pair of paneled doors that open inward below a shingled side gable roof supported by carved brackets and simple side posts. Each door contains a narrow bamboo screen in the upper half. When open, the doors rest against wing posts set at angles from the gate posts and connected by short horizontal beams. The gate is recessed inward from the main fence, allowing rolling metal gates to secure the entrance.

At the southern end of the garden, the sidewalk continues to the parking lot, providing pedestrian access for the garden’s visitors. A wide paved path leads from the sidewalk to the current entrance, known as the south gate, set within the cedar fence near the southeast corner of the garden. Dense plantings obscure much of the fence from view in this area. Shaped pine trees dot the lawn on either side of the entrance path, framing the view towards the gate. In contrast to the open view of the southeast corner of the garden, a small grove of evergreens screens the southwest corner and service road beyond. Along the sidewalk from the parking area, a small landscaped area features a wood sign mounted on a post indicating the direction to the Japanese Garden adjacent to a large granite boulder set with a small memorial plaque. The plaque honors the efforts of James K. Fukuda, who was with the Consulate-General of Japan in Seattle and was instrumental in the creation of the garden. Sheltering the stone is a Paulownia tomentosa or Empress Tree.
At the end of the paved entrance path, a small enclosed plaza is recessed from the main fence so as to allow rolling metals gates to secure the area containing the ticket booth and south gate. Built into the fence along the east side of the plaza, the small wood frame booth has a hexagonal plan with ticket windows set in the two exposed sides. The entrance is located at the rear within one of the four sides facing into the garden. The flat roof structure has small shingled shed roofs over the ticket windows. The wood frame garden gate consists of a pair of doors that open inward below a shingled side gable roof supported by carved brackets and simple side posts. Each paneled door contains a bamboo screen in the upper half. When open, the doors rest against wing posts set at angles from the gate posts and connected by short horizontal beams. On the east side of the plaza, two shallow display cases are mounted on the fence under a side gable roof of similar design to the garden gate. A low wooden bench on a concrete base provides the only seating in this area.

At the threshold of the gate, a large flat shedding stone is set into the pavement. Visitors are meant to pause on the stone and shed the outside world before entering the more contemplative realm of the garden. Beyond the gate, the paved path transitions to gravel as it continues into the garden. Along many of the garden paths, fencing in the form of low wood posts connected by ropes serves to prevent visitors from walking on the delicate mosses and other groundcover in the adjoining beds. Immediately after entering the garden, a large and very old Japanese lace leaf maple grows to the left of the path. To the east, a dry stream bed constructed of rocks, stones and pebbles meanders through banks covered with moss and Mondo grass and planted with trees, bushes and low shrubs. A *yukimi* or snow-viewing lantern, so named because its broad flat roof is designed to catch the falling snow, rests above the eastern bank near another large Japanese maple.

As the wide path proceeds north, a side path leads southwest to the service area, containing a pair of portable toilets, the garden’s only restroom facilities, a small wood frame shed, and the ladders, wheelbarrows, hoses, tools and equipment used to maintain the garden. A stand of bamboo partially screens this otherwise open area from view. From the service area, a wide path continues north and parallels the fence along the western boundary of the garden before curving northeast to join the path along the pond’s western shore. Just beyond the intersection with this side path, the main path splits into one leading northwest over a stone arch bridge to paths on the western side of the garden and one continuing north to paths along the eastern side.

Designed in 1959 and completed in 1960, the Seattle Japanese Garden contains the features of a stroll garden of the formal (*shin*) type built during the late 16th century Momoyama Period and early 17th century Edo Period. Using the techniques of *miegakure* or “hide and reveal,” the stroll garden’s design is intended to present a series of scenes as visitors walk through a series of sub-gardens centered on a pond or lake. In addition to the pond, popular garden elements include hills, streams and waterfalls, islands, rocks, groves of plum or cherry trees, paths and bridges, and tea gardens. All of these elements have been included within the design of the Seattle Japanese Garden with the intent of recreating natural and man-made landscapes within a compressed area. One of the garden’s initial designers, Kiyoshi Inoshita, described his design intent in a 1959 report:
The flow of water, which originated at the high mountain ranges, transforms itself as it continues its way through the landscape; first it turns into a waterfall, then into a stream, washing the bank by a tea hut, and finally becomes a lake. At the lakeshore are a variety of features such as a rock promontory, an inlet, and steep slopes, through which water continues its way, until it reaches a village (an image of the village symbolically represented by a cherry grove, iris paddies, and a moon viewing hill). At the village, there appears an island connected to the shore by two different bridges. At the end of the lake is a stone paved boat launch, which symbolically represents a fishing village. There, the water disappears from one’s sight, leaving the expectation that it will be joining the greater ocean.

In executing this design intent for the Seattle Japanese Garden, principal designer Juki Iida incorporated an existing pond and existing plant material, primarily maples, and created several distinct landscapes or sub-gardens anchored by the pond at the center and connected by paths that provide various scenes to strolling visitors. Iida also used a compositional technique called shakkei or “borrowed scenery” to draw outside elements of the existing Arboretum into the views he created within the garden. This technique serves to extend the scale of the garden beyond its own boundaries.

Covered with a forest of conifers, maples and rhododendrons at the higher southern end, the mountain and hillside area contains two streams, one natural and one man-made, but both appearing to flow from the background hill to the west of the garden. Originating near the southwest corner of the garden, the natural stream follows a man-made rocky bed and flows downhill through a steep moss-covered slope and under the stone arch bridge before joining the second stream to form the lake. A large Kasuga-style lantern stands near the southern end of the stone bridge, which was constructed ca. 1936 as part of the original improvements to the Arboretum funded by the Depression-era Works Progress Administration. The man-made stream originates from a point northwest of the 11-tiered Korean-style stone pagoda, representative of a ruined mountain monastery, and flows east before cascading over a four-foot waterfall below the stone pagoda. Constructed of weathered granite boulders buried two-thirds underground, the waterfall is the focal point of the mountain area anchored by the largest stone in the garden, weighing some 8½ tons.

Below the waterfall, the water continues to flow through a rocky course, shifting direction and crossing a path of stepping stones before joining the first stream near the tea house, representative of a mountain villa. A small box-like stone lantern rests directly on the ground along the rocky course, seeming to shed light on the water as it passes. Below the junction of the two streams, water flows around a bridge of stepping stones and then into a wider bed, representative of a valley, and eventually becomes the lake. Just before the outlet to the lake, a second bridge of large, flat rectangular stones, representative of a dam, crosses the wider stream. Another yukimi or snow-viewing lantern rests on a nearby rock outcrop.

With its strong rock outcrops, projecting pebble beached cape and inlet, the southern end represents the pond in plateau while the marshy landscape of the more open northern end represents the pond in plain. At the middle of the pond, a rocky island covered with low
pines and bushes and connected to the east and west banks by two bridges separates the two halves. North of this is a second rocky island, known as Turtle Island, that is also covered with low pines and located near the eastern shore. The island’s pines are said to symbolize Japanese cranes. Individual rocks dot the water near the pond’s shoreline, including one off the southern end of Turtle Island that the pond’s turtles often use to sun themselves. Lined with cut stone paths set at right angles, the rectilinear northern shore of the pond represents a fishing village and boat landing or harbor. At the northeast corner of the pond, the water passes under a wisteria arbor before disappearing from view in a culvert, metaphorically flowing out to sea. Due to the use of miegakure techniques, a full circuit of the paths around the pond is required in order to view all of its design elements as no one place within the garden offers a full view of everything.

From the southeastern corner of the pond, the gentle grassy bank projects north into a low, narrow rocky cape or peninsula, creating an inlet between the eastern shore. A small stone misaki-toro or “cape lantern” at the tip of the peninsula serves as a beacon. The cape is a popular spot for the great blue herons that visit the garden to rest and sun themselves. Along the eastern shore planted with maples, shaped pine trees and low sculpted bushes, the grassy bank slopes gently towards the water’s rock lined edge. At the midpoint of the pond, a path leads from the Emperor’s Gate, the garden’s original entrance, and through a stand of five vertical pines to the eastern bridge. Set amongst the pine trees is a large Kasuga-style lantern dedicated to the memory of Carl McNeilan Ballard, who was president of the Arboretum Foundation from 1955 to 1957 when planning for the Japanese Garden initiated.

The eastern bridge is a dobashi or earthen bridge constructed of small logs set over a timber frame supported over the water on a pair of posts at the center. A layer of earth or concrete covers the logs before being topped by gravel. A path set with wide flat stepping stones winds across the small island to the western bridge. This yatsuhashi or “eight-plank” zigzag bridge has two changes of direction before reaching the western shore. Square posts set in the water support the plank deck and continue above it to support the low railings. It is said that the zigzag form enables one to avoid the evil spirits that flow in straight lines.

Nearby on the western shore is the pond’s moon-viewing stand or platform of similar construction. This wood-frame structure has a square plan and extends over the water, facing southeast towards the apparent path of the rising moon. However, the hills beyond the garden obscure the moon rising above the eastern horizon and only allow it to be visible when well up in the sky. Like the yatsuhashi bridge, the square posts set in the water at the outer corners support the plank deck and continue above it to support the railing that encloses three sides of the platform. Additional shorter posts set in the water provide structural support around the perimeter and at the center. The focus of late summer ceremonies that celebrate the rising of the moon, the platform is also a good place to view the large colorful koi that inhabit the pond. Along the western shore planted with trees and low shrubs, the grassy bank slopes gently towards the water lined with beds of Japanese iris, reeds, and other aquatic plants. Near the northern end of the shore, a stone reflecting lantern set on a shaft rises above the water adjacent to a large stone. This is another snow-viewing lantern of the tachi-yukimi type.
The more natural state of the eastern and western shores contrasts with the more formal appearance of the northern shore, representing the fishing village and boat landing. Beyond the waterline edged with rocks, a nearly flat grassy bank extends upward to a wide path set with narrow bands of cut stone. This path follows a zigzag route near the base of a seven foot stone wall that extends across the full length of the northern shore. Near the western end of the path, a set of wide shallow stone stairs leads down to the water’s edge. At the corner of the area representing the boat dock, a stone omokage or “face-shape” lantern illuminates the harbor area. Several low benches provide seating within the grassy margin between the path and the wall.

A set of wide stone steps leads up to a path that skirts the top of the wall covered with low sculpted shrubs below a hillside planted with azaleas. Near the top of the slope and the garden’s northern boundary, the Kobe Friendship Lantern is reached by a series of irregular stone steps. This Kasuga-style stone lantern was a gift from Seattle’s sister city and carries a small plaque that reads “May the Light shine Everlastingly upon the Friendship between Kobe and Seattle.” The City of Kobe donated a second lantern in the okazaki style with a turtle carved at the base that occupies a site near a bench within the grassy area beyond the southeast corner of the pond.

The eastern end of the path along the top of the wall follows a steep slope down to the northeast corner of the garden. Another Kasuga-style lantern stands at the base of the path aligned with the end of the cut-stone path of the fishing village area. The path continues south to the wisteria arbor where it splits to cross a low, arched wood plank bridge on the east and a bridge of irregular stepping stones to the immediate west. Cedar corner posts and diagonal braces support a square frame of cedar and bamboo tied together with bark rope imported from Japan. The wisteria’s gnarled main trunk grows at the northeast corner with interweaving branches trained upward, over and through the bamboo framework. Dense green foliage covers the top of the arbor and typically fills with blossoms in mid-May. The wisteria arbor covers the outlet to the lake and serves as an entrance to the fishing village.

Above the path along the western shore of the pond, an orchard planted primarily of flowering cherry trees covers the grassy slope. Japan is deservedly famous for its cultivation of cherry trees over the centuries, and its festivals held in conjunction with the tree’s spring flowering. Considered the national flower, the cherry blossom (sakura) is celebrated in the country’s arts, crafts and literature. At the northwest corner of the orchard, an azumaya or viewing arbor occupies the high ground near the chain link outer fence screened with bamboo matting in this area. The earthen steps leading up to the open east side of the azumaya are constructed of rows of short concrete posts that simulate sections of wood logs set vertically. The wood frame structure is a marvel of Japanese joinery, especially the interior framing of the low-pitch, pyramidal roof. Covered with wood shingles, the roof rests on four tapered corner posts mounted on a concrete pad. A low bench is built into the north and west sides between the posts, providing a restful place to view the cherry orchard and the garden beyond. Attractive plantings of ornamental grasses, low bushes and flowering shrubs grow on the banks beyond the south and east sides.
Further south along the western path on the bank beyond the moon viewing stand is a *Betula pendula* or European white birch tree. Crown Princess (now Empress) Michiko of Japan planted the tree, a symbol of her family, in a formal ceremony during her visit to the garden on October 5, 1960, shortly after it was completed. The Crown Princess had accompanied her husband, Crown Prince (now Emperor) Akihito, on a tour of the United States to commemorate the centennial of the first trade and friendship treaty between the two countries. On the same visit to the garden, the Crown Prince planted a cherry tree to symbolize Japan and his family.

Occupying a knoll above the southwest corner of the pond, the Japanese Tea Garden or *roji* (literally “dewy ground”) is an enclosed garden, containing the six-mat *chashitsu* or teahouse, Shoseian (Arbor of the Murmuring Pines), and a *machiai* or waiting arbor. Surrounded by a hedge of boxwood, cedar and osmanthus, the *roji*, a term that originally referred to the path leading to the teahouse, is designed to prepare guests for *chanoyu* or tea ceremony by recreating a tranquil forest glen in a mountain landscape. As in the larger Japanese Garden, the hide and reveal techniques of *miegakure* are employed so as not to allow for an open view of the *roji* in its entirety. This is true both within the *roji* and outside, where the hedge enclosing the garden screens most views. Even with this screening, the teahouse at the center of the *roji* is still a major focal point for the larger garden. The original 1959 teahouse donated by the City of Tokyo burned in a 1973 arson fire. Following the plans for the original structure, the current teahouse was completed in 1981 with major funding provided by Urasenke Foundation of Kyoto to serve as a classroom for the study of Chado at the University of Washington. Shoseian is maintained by the Seattle Branch for University of Washington Chado classes, community classes, seasonal tea gatherings, special events and tea presentations.

While paths surround the *roji* on all sides, there are only two entrances, one on the rear west side and one on the east side facing the pond. The rear service entrance is meant to be used by those performing the tea ceremony to give them access to the back entrance of the teahouse while the front main entrance is meant to be used by the guests who will be participating in the tea ceremony. For each entrance, a *shiorido* or wood and bamboo lattice gate held shut by a strand of woven rope stands within a break in the hedge. The service entrance is level with the adjacent path, but the main entrance is reached by a flight of irregular stone steps. These gates provide access to the outer (*soto*) *roji*, the brighter northern half of the tea garden where guests wait to be called to the tea ceremony on the covered bench in the *machiai*. A wood and bamboo lattice fence separates this area from the inner (*uchi*) *roji*, the shadier, darker southern half where guests pause to purify hands and mouth in a ritual at a *tsukubai* or stone basin before entering the teahouse.

Upon entering the *mon* or main gate, guests follow a meandering path of irregular stepping stones (*tobiishi*) to reach the *machiai* just beyond the gate to the northwest. Although there is a paved path from the service entrance to the rear of the teahouse, irregular stepping stones are used for all paths within the *roji*. The meandering nature of the natural stone paths is designed to slow the guest down and reveal the landscape gradually, thus increasing the sense of space and passage. The smaller stepping stones are intended to make one look down and pay careful attention to one’s steps while the larger stones allow one to pause and look...
up, all in preparation for the tea ceremony as part of the transition from the mundane world to
the realm of tea. The stones also protect the delicate mosses that cover the ground of the roji
in imitation of a forest glen.

The machiai is a wood frame structure comprised of an open seating area with a rectangular
plan facing east and an enclosed area that wraps the north and west elevations. Traditionally,
this enclosed area would have contained lavatories and changing rooms for the convenience
of guests. Access to the enclosed area is provided by shoji screen doors located on the east
and south ends. A shed roof covers the enclosed area on the rear west elevation and
continues as a gable roof over the east half of the north end of the structure. A low-pitch
gable roof covers the open seating area but extends only a few feet beyond the ridge over the
enclosed area at the rear. Wood shingles cover both roofs, which also feature carved caps at
the ends of the ridges. Around the exterior, the structure’s vertical peeled cedar posts are
exposed between panels plastered with stucco in the upper half and vertical wood paneling in
the lower. Stucco covers all of the panels within the open seating area set with a low wood
bench along the west and north sides. There is no floor within this area covered with small
rocks and set with a continuation of the irregular stepping stones that lead from the gate. The
largest stone below the southern end of the bench is meant to indicate the position of the
most important guest. A small window screened with bamboo in the southern end of the
building allows the guest in this position to view the gate leading to the inner roji.

Once guests are summoned, they follow a second path of stepping stones to the chumon or
middle gate within the fence that extends from the rear east elevation of the teahouse. Once
inside the inner roji, the guests proceed to the southeast corner where the tsukubai is located,
enabling them to rinse their hands and mouth before the tea ceremony. Adjacent to the
tsukubai is a stone oribe lantern, both of which were donated by the City of Tokyo in 1959
along with the original teahouse. The original teahouse was built by craftsmen in Tokyo and
then disassembled and shipped to Seattle where it appeared on display at a Washington State
trade fair before being reassembled on this site prior to the creation of the Japanese Garden.
Post and lintel construction with Japanese joinery, which requires little or no use of nails,
screws or other fasteners, enabled this assembling and disassembling to occur relatively
easily. As near as possible, the same construction techniques and the original plans were
used when the current teahouse was rebuilt of cryptomeria and western red cedar, creating a
near duplicate of the original destroyed by arson fire.

Known as a six-mat teahouse, this size refers to the fact that six tatami mats cover the floor
of the chaseki or tearoom, with each tatami mat measuring 90cm by 180cm or roughly 3 feet
by 6 feet. The functions of the teahouse dictate its form with its interior arrangement of
rooms expressed on the exterior of the building. The chaseki is the main room within the
teahouse and features a tokonoma or alcove along a portion of the rear north wall. The two
rooms of equal size immediately adjacent to the chaseki are an entry foyer at the northwest
corner and a kyujima or service and preparation room at the southwest corner. A mizuya or
small kitchen or pantry with storage shelves and a sink area extends off the service room,
enclosing the western side of the doma or covered terrace at the front of the teahouse. A
shallow storage closet extends along the west side of the mizuya and kyujima. This storage
space was not part of the original teahouse’s design but added when the teahouse was rebuilt.
A low square, wooden platform or stool occupies the center of the doma in front of the main entrance to the chaseki screened with sliding shoji doors and accessed by a large rectangular stone known as a shoe stone. This platform can be used for outdoor tea ceremonies. Two low wooden benches provide seating within the doma along the south and east sides.

A low pitch gable on hip roof clad with copper sheeting covers the teahouse and extends over the doma where it is supported on peeled log posts. The wood frame structure of the teahouse is exposed between panels plastered with stucco in the upper half and vertical wood paneling in the lower half, similar to that of the machiai. Sliding wood screens line the east elevation of the chaseki and adjacent tokonoma. Two sliding wood shoji doors are set within the north wall of the entry room at the rear of the teahouse. Windows screened with bamboo grills line the upper west wall of this room. The only other window is on the south wall of the mizuya. A narrow door within the east wall of the mizuya allows direct access to the doma. A concrete pad serves as the foundation for the entire structure, including the doma. A narrow channel of gravel lines the outer edge of the concrete pad and serves to catch the rain falling from the gutterless eaves of the roof. Another path of stepping stones leads from the south end of the doma and around the west side of the building to a gate within a fence that extends from the northwest corner of the teahouse. This fence also serves the function of separating the inner and outer roji. The path continues to the paved path off the rear service gate.

Original Design
An examination of the original drawings for the Japanese Garden shows that much of the original design was executed as intended when the garden was created in 1960 or shortly thereafter. However, a major departure was the omission of a large club house or pavilion that occupied a terrace above the fishing village at the northern end of the garden. The drawings also show a spacious “front yard” north of this structure. It appears that this would have pushed the boundary of the garden further to the north. The drawings also show that the azumaya or viewing arbor was not constructed in the plan’s original location within the center of the cherry orchard and but at its northwestern edge. One major landscape element, a zoukirin or mixed forest, was not realized as planned within the northwest area of the garden between the cherry orchard and club house. A camellia glen on the east side of the pond was also omitted. Due to security concerns, the plan to enclose the garden with a 4½-foot evergreen hedge was abandoned in favor of a chain link fence topped with barbed wire.

Subsequent Alterations
With the exception of the replacement of the original teahouse due to arson fire, the greatest change since the creation of the Japanese Garden has been the growth of the plant material over the years. Early photographs show more open views before the garden matured to its present state. Major and minor maintenance and rehabilitation projects, including several focusing on the pond and its circulation system, have been carried out over the years, but all have been executed with the intent of maintaining the original design. Other projects have served to improve the ADA accessibility of the garden’s paths and bridges. While the design has remained intact, the majority of alterations have occurred around the perimeter with changes in fencing and in the entrances. As funds have allowed, the inappropriate chain link
fencing on the more public south and east sides has been replaced with cedar fencing. Shortly after the garden was completed, the main gate on the east side was supplemented by the construction of a second gate at the south end. This was initiated primarily because little parking was available near the main gate while a large parking area was already located south of the garden. Eventually, the main gate was closed only for special occasions, leaving the south gate as the primary entrance into the garden. The current entry plaza was completed in a 1987 project that added the ticket booth, relocated from the Seattle Center, and the rolling security gates. At the same time, rolling gates were installed at the original gate for security purposes. Portable toilets have also been installed in the service area so as to provide restrooms within the garden, the nearest permanent facilities being those located at the Washington Park Playfield or the Arboretum’s Graham Visitors Center.

STATEMENT OF SIGNIFICANCE

Washington Park Arboretum Historical Context
The long, narrow valley now encompassing the 230 acres of the Washington Park Arboretum extends north from East Madison Street to the southern shore of Lake Washington’s Union Bay. Historic maps show a stream meandering north through this valley before discharging into the southwest corner of Union Bay to the west of Foster Island. Until the 1916 opening of the Montlake Cut dropped the level of Lake Washington by almost nine feet, Union Bay and its low-lying marshes covered a significantly larger area, and Foster Island was isolated and much smaller in size. The steep eastern slopes of Capitol Hill define the southern half of the valley’s western edge while a relatively low-lying area of land now occupied by the Montlake neighborhood lies along the northern half. Originally, this area was part of a larger hourglass-shaped strip of land that connected north and south Seattle and separated the waters of Lake Union’s Portage Bay to the west and Union Bay to the east. A small brook flowed west across this narrow isthmus roughly following the route of today’s SR520 and emptied into the southern end of Portage Bay, forming a shallow natural portage between the two bodies of water. Along the southwestern margin of the Montlake area, the high bluffs of Capitol Hill’s northern end terminate in a deep wooded ravine, now preserved as Interlaken Park. Beyond the valley’s eastern edge, the terrain rises to a high point within the gated Broadmoor community before gently sloping down to the shores of Lake Washington in the Madison Park neighborhood. Although land in the vicinity easily accessible by water was platted as early as the 1860s, these natural features restricted overland access from adjoining areas, delaying significant residential development until the first decades of the 20th century.

From the earliest days of Euro-American settlement in Seattle, the narrow neck of land between Lake Union and Lake Washington was seen as a logical location for a canal uniting these two major inland bodies of water. Previously, Duwamish Indians, an Original Peoples of the area, had used the brook across the isthmus as a canoe portage in order to travel between seasonal campsites and villages established in the area and points beyond, including several along the shores of Union Bay. As envisioned by settlers, the construction of additional canals to the west would link the two lakes with Puget Sound, facilitating the development of industry and commerce. In anticipation of this, pioneer settler Thomas Mercer proposed the “Lake Union” and “Union Bay” names to those gathered for
Independence Day celebrations on July 4, 1854. In the late 1860s, it also inspired Harvey L. Pike to name his newly platted town on the low neck of land “Union City,” an area comprising sixteen blocks located to the north and south of a strip of land designated as the “Canal Reserve.” Pike had turned his sights towards real estate development after an unsuccessful attempt to excavate a canal across the lower portion of the isthmus, using only a pickaxe, shovel and wheelbarrow. At the time Pike recorded his first plat in the summer of 1869, this area was considered far from the center of town in Pioneer Square and located just outside the Seattle city limits incorporated in December of that year with a northern boundary at Galer Street. Unlike other outlying areas where larger parcels were platted to serve as farms, Union City’s small lots anticipated denser residential development that would not commence for almost forty years.

Over the next two years, Pike filed two additional plats to the north and south of “Union City” and then sold the rights to develop the canal in 1871 to the Lake Washington Canal Company, of which he was one of the incorporators. Pike probably anticipated that he would benefit from both the construction of the canal and real estate development in his town site. After failing to obtain federal support for the project, the firm built a narrow gauge railway to transfer coal extracted from east side mines between Lake Washington barges and Lake Union barges. Within a few years, this railway was abandoned when a rail outlet via Renton became available, and the tracks were removed in 1878. Five years later, a second attempt was made to excavate a canal across the isthmus. However, this effort proved more successful as the Lake Washington Improvement Company managed to construct a canal deep enough to float logs and small boats between the two lakes. Organized in 1883 by Judge Thomas Burke and pioneer entrepreneur David Denny among others, the company hired Chinese labor to complete the project by the mid-1880s. Dams and sluice gates regulated water flow through a narrow channel bordered by steep banks. Later, this channel was deepened and widened. Logs transported through what came to be called “The Portage” were stored in the millpond at the southern end of Portage Bay before being transferred to the sawmills at the south end of Lake Union, including one owned by David Denny. Shortly after the completion of the canal, Judge Burke joined with entrepreneur Daniel J. Gilman and others to organize the Seattle Lake Shore & Eastern Railway line, which reached Union Bay in 1887. Now the route of the Burke-Gilman Trail, this railroad skirted the northern shoreline of Lake Union and looped around Union Bay before heading north to continue along the western shore of Lake Washington.

The successful canal venture and improved access provided by the new railway line failed to spur the real estate development envisioned by Harvey Pike when he platted “Union City” and its subsequent additions. Limited access to the Montlake area remained a primary obstacle to its development. Although a wagon road connected the area to Capitol Hill and the new University of Washington campus by the mid-1890s, no streetcar or cable car lines served the neighborhood until 1909, well after the city’s first lines were developed in the late 1880s and early 1890s. As is apparent on maps of the era, growth progressed in a linear fashion along the routes of these public transportation lines, accelerating the trend for residential and commercial development outside the city’s original downtown core. This was the case with the Madison Street Cable Railway constructed in the late 1880s. With the financial backing of other individuals, Judge John J. McGilvra developed the line from
downtown Seattle in order to provide access to the large tract of land he owned at the eastern end of Madison Street. A native of New York, Judge McGilvra came to Olympia in 1861 after President Abraham Lincoln appointed him United States Attorney for the Washington Territory. When his term ended three years later, Judge McGilvra moved to Seattle where he acquired several hundred acres of land on the shores of Lake Washington and built a home for his family, which he called Laurel Shade. By the later 1860s, Judge McGilvra had cut a wagon road straight through the wilderness to Pioneer Square at his own expense.

For many years, the McGilvras remained the only permanent residents of today’s Madison Park neighborhood even after Judge McGilvra platted two large tracts of his property south of Madison Street in the mid-1870s. In 1889, Judge McGilvra platted a third addition in the Madison Park area, mostly to the immediate south of Madison Street. At the same time, Judge McGilvra retained ownership of a large tract of land north of Madison Street and divided it into individual lots as well. However, with these lots, Judge McGilvra stipulated that only cottages could be built and solely on a leasehold basis. After constructing their dwellings, owners would be required to make annual payments for the use of the lots. Despite these limitations, many chose to build cottages on the small lots, which remained in the ownership of the McGilvra Estate until the land was eventually platted as the Loch-Gilvra Addition in 1919 and made available for sale.

As a spur to development, Judge McGilvra constructed the Madison Street Cable Railway and set aside more than twenty acres of land to create Madison Park, a private amusement park at the Lake Washington terminus. At that time, streetcar and cable car lines often terminated at a popular attraction so as to encourage real estate development along the length of the line and to increase ridership outside of regular commuting hours, especially on weekends. Bisected by Madison Street, Madison Park featured a large pavilion, a boathouse, piers, a promenade, and two floating bandstands with shoreline seating. Nearby, a crude baseball diamond was built on the north side of Madison Street, which hosted the first professional baseball game in Seattle on May 24, 1890. With cable cars running from Pioneer Square as often as every two minutes on Sundays, the park soon became the most popular beach in the city. Steamships plied the lake from the park’s piers, carrying passengers for transportation as well as pleasure excursions and cruises. Despite these enticements, residential and commercial development progressed slowly, radiating east from downtown and, to a minor extent, west from Madison Park. Annexation of the area by the city of Seattle also did little to encourage residential or commercial growth. The North Seattle Annexation in May of 1891 encompassed the northern ends of Capitol and Queen Anne Hills as well as Magnolia, Fremont, Wallingford, Green Lake, Latona, and Brooklyn, which later became known as the University District. The annexed area included Union Bay and its marshlands west of 35th Avenue NE and south of NE 55th Street and the Montlake and Madison Park neighborhoods. This lack of growth is evident in the 1894 McKee’s correct road map of Seattle and vicinity, which shows a large swath of undeveloped land north and south of Madison Street between Capitol Hill and Madison Park.

The Puget Mill Company, a division of the San Francisco firm of Pope and Talbot, owned a large portion of the undeveloped land mostly to the north of Madison Street, some 300 acres that is now the site of the Washington Park Arboretum and the Broadmoor community. Pope
and Talbot had established the Puget Mill Company in the early 1850s at Port Gamble to capitalize on Puget Sound’s vast timber resources. At that time, early lumber companies acquired only their mill and town sites and concentrated on the manufacture of lumber, contracting with independent loggers to provide the raw materials for their operations. It was not deemed necessary to acquire their own forest lands when loggers could freely but illegally harvest timber on the federally owned land that surrounded them. The lack of laws governing the sale of timber from federal forest lands coupled with the absence of federal authority meant that this practice continued throughout much of the 19th century. However, the Puget Mill Company realized early on that a permanent supply of timber would be needed to support their operations at some point in the future and took advantage of every opportunity available to purchase property. The first chance arose in 1861 when a special commission headed by the Reverend Daniel Bagley sold land reserved by the federal government to provide funding for the construction and operation of the newly established Territorial University of Washington in Seattle. The Puget Mill Company’s substantial purchase included the 300+ acres of land fronting on the shores of Union Bay. Over the next several decades, the Puget Mill Company eventually became the largest holder of timberlands in Washington, owning 186,000 acres in 1892 when it stopped buying land. Despite these vast holdings, the company continued to purchase logs on the open market into the first decade of the 20th century.

In 1890, the Puget Mill Company logged the 300+ acres with the intention of developing it, a decision likely influenced by the improved access provided by the new Madison Street Cable Railway. However, the financial crisis brought on by the Panic of 1893 delayed these plans for a decade. It was not until May of 1900 that the Puget Mill Company recorded the “First Subdivision of Washington Park Addition to the City of Seattle.” This nine-block plat was located south of Madison Street between 33rd and 37th Avenues East and bordered John J. McGilvra’s First and Second Additions to the south and east. In conjunction with the subdivision’s development, the Puget Mill Company struck a deal with the city to provide some $35,000 worth of water main extensions. In exchange for these infrastructure improvements, the company donated a nearby strip of land along the extreme western edge of their property that contained 62 acres. This parcel extended from the shore of Union Bay south to East Prospect Street and lined the eastern side of the valley. Through Ordinance No. 5740 introduced in November 1899 and passed in January 1900, the City of Seattle accepted the property for the purposes of a public park, beginning the process of acquiring the land that would become the Washington Park Arboretum.

Washington Park

This initial acquisition occurred shortly after the Seattle City Council appropriated $100,000 for the purchase of Woodland Park, including a portion of Green Lake, from the widow of Guy Phinney, a wealthy lumber mill owner and real estate developer. After acquiring his property in the late 1880s, Phinney had created an elegant English-style estate, complete with formal gardens, and opened it to the public to promote development in his adjacent real estate holdings. His untimely death in 1893 at the age of 41 eventually forced his wife to sell the private park to the City in November 1899. Acquisition of Woodland Park had been proposed in the 1892 Annual Report of the Park Commissioners, which first highlighted the need for a comprehensive system of parks and boulevards in Seattle. At that time, the City’s
three public parks, Denny, Volunteer (then City) and Kinnear Parks, were outnumbered by the five privately owned destination parks built by real estate developers, Madison, Madrona, Leschi, Woodland and Ravenna Parks. Parks Superintendent Edward Otto Schwagerl, a prominent landscape architect and engineer, completed designs for a comprehensive park and boulevards plan for Seattle in the mid-1890s, but a lack of funding prevented its implementation. No major action towards the development of a park system occurred until the 1899 purchase of Woodland Park and the subsequent donation of the Puget Mill Company’s 62-acre parcel.

By 1902, the new park property on Union Bay was identified as Washington Park after the nearby Lake Washington. The same year, the City began the process of purchasing adjoining parcels, eventually acquiring the 230 acres that now comprise the Washington Park Arboretum. The first major purchase was the nearly 20 acres extending south to East Madison Street that covered the southern portion of the valley. A high wood trestle bridge that carried the cable railway over the valley’s stream marked the southern boundary of the property. In December of 1903, George and Angie Kinnear sold the City their 37½ acre parcel that encompassed the western side of the valley between East Galer and East Lynn Streets. Smaller parcels along the western margin were acquired the following year through both purchase and condemnation. Later in the decade, the City had the opportunity to acquire the marshlands beyond the northern end of the park property after the State of Washington authorized the sale of shore lands in 1907 to fund the Alaska-Yukon-Pacific Exposition planned for 1909. The City followed this acquisition with the 1910 purchase of two privately owned parcels located nearby to the west within Pike’s Second Addition to Union City. The City largely completed its acquisition of land for Washington Park with the 1917 purchase of Foster Island and the 1920-21 purchase of all but one lot of the Bard-Foster Washington Park Addition. Platted in 1910, this addition contained five irregular shaped blocks located roughly between East Highland and East Prospect Streets and 26th and 28th Avenues East. Most of the Seattle Japanese Garden lies within the two eastern blocks of the addition.

Although this process of land acquisition spanned some two decades, plans for improvements to Washington Park began almost immediately. The new park property was already included along the route of the immensely popular Lake Washington Path, a ten-mile cinder bicycle path that linked downtown Seattle with Lake Washington. Completed in the summer of 1897 by the Queen City Good Roads Club, the path roughly followed the route of today’s Lakeview and Interlaken Boulevards and eventually became part of a larger 25-mile system of bicycle paths. Assistant City Engineer George F. Cotterill developed this system with the assistance of volunteers by walking about and surveying the city and published a guide map in 1900. In 1903, the Olmsted Brothers landscape firm of Brookline, Massachusetts utilized some of Cotterill’s existing bicycle routes, including the portion now comprising Interlaken Boulevard, as part of their plans for a comprehensive park and boulevard system for Seattle. The City had hired the illustrious firm that same year to prepare a report detailing their plans for such a system as well as suggestions for improvements to existing parks. This move was largely brought on by the public interest generated for the planned Alaska-Yukon-Pacific Exposition and the need for improvements to the recently acquired Woodland and Washington Parks, two large tracts of mostly undeveloped land. In anticipation of the
Alaska-Yukon-Pacific Exposition, the plan placed emphasis on the development of Washington Park as a boulevard entry to the Exposition to be held on the grounds of the University of Washington. However, there were no plans for the general improvement of the park at that time.

Improvements for the boulevard began in 1903 with slashing and clearing for the proposed roadway undertaken before the completion of detailed plans. The improvements proceeded the following year with continued clearing and grading of the roadway following designs prepared by the Olmsted Brothers firm. The first phase of Lake Washington Boulevard, 2,150 feet of macadam roadway extending north from Madison Street, was completed by August 1905. Within a year, a graded and graveled roadway continued to Union Bay. Although the Olmsted Brothers also produced planting plans for the boulevard in 1906, it is not known to what extent these were implemented. However, it is certain that the preliminary plans produced by the Olmsted Brothers for other portions of Washington Park were not executed at that time nor was the firm given the approval to prepare an overall park plan. In the absence of such a plan, subsequent improvements to Washington Park over the next three decades progressed somewhat haphazardly. In 1908, a portion of the park property was privately developed as a public course for harness races along what is now known as Azalea Way. A barn was also constructed at the southern end of the track to serve the speedway. Although interest in racing soon waned, horseback riding remained a popular activity within the park. By 1909, a massive sanitary fill by the city garbage department had created enough area for an athletic field, complete with bleachers, at the southern end of the ravine north of Madison Street. The same year, the Parks Department constructed a maintenance facility at Washington Park in the meadow below East Helen Street, featuring a stable for eight horses and storage space for tools, steamrollers and other equipment.

A more permanent but nonetheless attractive feature on the landscape was the North Trunk Sewer Viaduct constructed between 1910 and 1912 from designs by W.R.B. Willcox & W.J. Sayward. Now known as the Wilcox Footbridge or Arboretum Aqueduct, the concrete and brick veneer structure supports and conceals the sewer line that was extended to serve the Puget Mill Company’s adjoining property, subsequently developed as the Broadmoor community. Further improvements were made to the athletic field in 1930 with the completion of a shelter house at the northern end of the field near the children’s play area. Designed in a simplified Tudor Revival style, this shelter house was one of eight similar shelter houses constructed in Seattle parks in the late 1920s and early 1930s, following a policy to build only structures that would be pleasing in design and permanent in nature. These buildings housed large rooms for organized recreation activities in addition to public restroom facilities. Office space for recreation instructors was also provided. Other brief but active uses of Washington Park included an archery range located east of the boulevard to the north of Boyer Avenue East and a trap shooting area on Foster Island. Even with these improvements and uses, Washington Park remained largely undeveloped three decades after the initial property acquisition in 1900.

University of Washington Arboretum
In the mid-1920s, this lack of development led Dr. Henry Suzzallo, President of the University of Washington, to propose that Washington Park would be the ideal location for
an arboretum jointly developed by the University and the City of Seattle. Since the University had established its present campus in the 1890s, there had been plans to develop an arboretum on the extensive grounds. However, these plans never progressed beyond the initial plantings of native and exotic trees, many of which were removed as part of the preparations for the Alaska-Yukon-Pacific Exposition. By the 1920s, it was obvious to Dean Hugo Winkenwerder of the College of Forestry that campus building growth would prevent the realization of the planned arboretum unless another location could be identified. Dean Winkenwerder met with Dr. Suzzallo to explore other site possibilities, settling on Washington Park as the preferred alternative. Dr. Suzzallo worked to enlist the support of business and professional groups before formally presenting his proposal in a letter to the Board of Park Commissioners dated February 7, 1924. In response, the Board passed a resolution setting aside the entire area of Washington Park as a botanical garden and arboretum and granting the University the privilege of using certain buildings and greenhouses. However, a lack of funding prevented the plan from moving forward, and no work occurred with the exception of some limited clearing and the establishment of a Parks Department nursery in 1927. This situation did not improve with the onset of the economic depression in the 1930s as dwindling financial resources prevented expenditures for capital improvements.

In addition to a lack of funds, there was also no formal agreement between the City and the University over how the proposed arboretum would be developed and administered and no mechanism to seek financing for the undertaking. All parties involved realized the need to resolve these issues at the same time that funding sources were sought. However, initial efforts to establish an arboretum and botanical society that could address these issues were abandoned soon after forming in 1930 due to the financial challenges of the times. By 1933, arboretum supporters had decided to pursue state and federal relief funds targeted toward unemployment relief as the best means to realize their dreams. In order to be eligible for such funding, the project needed an official organization to act as sponsor and a development plan. Arboretum supporters also recognized the need to create a legal entity with the University acting as the operating agency and worked to development a formal lease agreement between the University’s Board of Regents and the City’s Board of Park Commissioners. Despite some opposition over relinquishing control to the University, the Parks Board approved an agreement in December of 1934 that donated the entire Washington Park acreage, including the athletic field, as a site for an arboretum to be constructed and operated by the University. Later that month, the Seattle City Council passed an ordinance (#65130), authorizing the agreement with the University to establish and maintain an arboretum and botanical garden in Washington Park that would become known as the University of Washington Arboretum.

The following year, a provision in the agreement to form an advisory council was fulfilled with the establishment of the Arboretum and Botanical Garden Committee, consisting of at least seven members, three to be appointed by the Mayor of Seattle, three by the President of the University of Washington, and the seventh member to be appointed by the Governor of the State of Washington. The Arboretum Advisory Council, as it became known, acted immediately to form the Arboretum Foundation in June of 1935. This non-profit organization would act as sponsor for the project and raise revenue to help establish the
Arboretum. Over the same period of time, others were working to create a development plan that could be used to establish the Arboretum with federal relief funds. In the early 1930s, Frederick W. Leissler, Jr., the Parks Department’s staff landscape architect, and others produced plans and surveys of Washington Park in anticipation of the work to come. Leissler also adapted his own plan for a botanical garden to the Washington Park site. These plans proved to be very helpful when the Olmsted Brothers landscape firm was once again hired in 1935, this time to prepare a preliminary general plan for the development of an arboretum. Under the leadership of Mrs. Sophie Krauss, the Seattle Garden Club raised the $3,000 needed to pay for services of the Olmsted Brothers and donated that sum to the University. James Frederick Dawson, the firm’s partner in charge of the design, used Frederick Leissler’s design as the basis for his plan and worked closely with Leissler, who had been hired by Dean Winkenwerder to oversee development of the Arboretum. However, even before the completion of the General Plan for the University of Washington Arboretum in March of 1936, it was necessary to begin work on the site so as to be able to take advantage of the work relief funds and labor already available.

Works Progress Administration

Over the course of 1935, work relief crews totaling some 300 men focused their efforts on clearing and contouring the landscape and preparing the topographic map and tree survey used to develop the preliminary general plan. Initially, this work was completed under the auspices of the Washington Emergency Relief Administration (WERA), a relief agency operated by the Washington State government from 1933 to 1937. In addition to creating work for the unemployed, WERA also provided other public welfare assistance, including aid to the aged, the homeless, and the impoverished. After May of 1935, the Works Progress Administration (WPA) provided the laborers for the project. Created in May of 1935, the WPA consolidated and superseded several earlier programs and became the best known of all the federal relief programs before ending in 1941. One of early projects completed by WPA workers was the construction of a storage barn, now known as the Maintenance Headquarters, from designs prepared by Frederick Leissler. Before the completion of the Olmsted Brothers’ plan, WPA workers prepared additional surveys, cleared brush and stumps, subsoiled acreage, installed portions of the water and drainage systems, constructed rustic fencing, excavated the greenhouse site, and made improvements at the north and south entrances.

Once the general development plan was ready and approved for implementation, the Arboretum’s entire area was divided into six sections (A through F starting at the southern end and proceeding north), each with projects averaging a total anticipated cost of $100,000. Plans for each section detailed the work to be completed underground (water systems, drainage and conduits), on the surface (roads, trails and plantings), and above ground (buildings, lighting systems, and greenhouses). After funding was approved for the first three sections A, B, and C, work began in October 1936 and continued until July 1941 when the WPA program ceased operations. During this five year period, WPA workers completed much of basic infrastructure that is present today. Most of the work followed the Olmsted Brothers design although there were departures as locations of certain features were changed to better suit the site conditions. Completed features included a new road, the Upper Road (later renamed Arboretum Drive), which roughly followed the route of the early bicycle path.
through the park, dredged lagoons at Foster Island with plantings of bamboo and Japanese iris, and a system of walks. WPA workers also constructed greenhouses, propagation houses, lath houses, potting sheds and cold frames, creating an extensive service area, and installed fences along the Broadmoor property line.

More substantial and public structures came in the form of a stone gatehouse located near the south entrance at Madison Street, an overlook or gazebo on a hillside at the southern end of the Arboretum, and a stone kiosk at the Interlaken Boulevard intersection with Lake Washington Boulevard. Designed by architects Arthur Loveless & Lester P. Fey, these structures reflect the rustic style of park architecture that was prevalent during this era while the intricate stonework is representative of the craftsmanship that was a hallmark of WPA construction. It is likely that Loveless and Fey also designed the stone pylons at the gatehouse and kiosk as well as the entry pylons at the northern and southern entrances. Similar craftsmanship was employed in the construction of two stone bridges over Arboretum Creek, which meandered along the Arboretum’s western margin. The south bridge was constructed at the southern end of a pond developed immediately southwest of the intersection of the two boulevards in an area designated as the Maple Section. Although the Olmsted Brothers plan had identified several areas for ponding of the creek, this was the only one completed. The combination of the existing water feature and the surrounding maple trees later made it the ideal choice for the location of the Seattle Japanese Garden.

Several major landscape elements were also completed by WPA workers, often under the supervision of local landscape architects and designers. This included the Rhododendron Glen, which followed a planting plan prepared by Otto Holmdahl, using collections from the late Dr. Cecil Tenny and the estate of Charles O. Dexter. Holmdahl also completed the plan for the Maple Collection around the pond in the southwest corner of the Arboretum and supervised construction of the Rock Garden/Rockery in a location chosen by Frederick Leissler near the intersection of Lake Washington Boulevard and Arboretum Drive. WPA workers constructed the pools of the Woodland Garden but did not implement the planting plan designed by Swiss-German landscape architect E.A. Fabi, who died in 1939 just as work got underway. Although the Olmsted Brothers firm completed the General Plan with the idea that they would be hired for additional design work for specific elements, they only executed a detailed planting plan for Azalea Way. With donations from the Seattle Garden Club, WPA workers transformed the former speedway into a three-quarter mile long stroll through banks of flowering azaleas, Japanese cherries, and eastern dogwoods. The General Plan also provided a sequential arrangement of the plant collection based on a taxonomic classification system laid down by the botanists, Engler and Prantl, with the family Coniferae, the collection commonly known as the Pinetum, situated at the beginning of the sequence in the northwest portion of the Arboretum. Although this first section was completed under the auspices of the WPA, most plant collections were initiated following the end of the Second World War.

In addition, several major elements of the Olmsted Brothers plan were never executed, including the Lakeside Boulevard, the Rose Garden and the Administration Building/Herbarium/Library. An attempt was made to develop an elaborate rose garden on the site of the athletic field at the southern end of the Arboretum, but this plan engendered a
storm of opposition. Although the plan was abandoned, the controversy eventually led to a modification of the 1934 agreement in order to exclude the playfield as well as a proposed new service yard for the Parks Department from the Arboretum’s jurisdiction. In December 1948, the Seattle City Council passed an ordinance approving the modification that returned a portion of Washington Park to the City for playground and recreational purposes. A similar modification occurred in 1981 when the University of Washington transferred management of the Seattle Japanese Garden back to the City.

Japanese Garden Proposal

In the late 1930s as work on the University of Washington Arboretum progressed, the Arboretum Foundation invited the Japanese Society for International Cultural Relations, or Kokusai Bunka Shinkōkai, to beautify five acres of Foster Island by creating a formal Japanese garden. Founded in April 1934, the Society aimed to develop mutual understanding with other nations of the world through cultural exchange. In July of 1937, the Society brought an exhibit of a 13th-century *tokonoma* or alcove from a Japanese nobleman’s house of the Kamakura period (1185-1333) to what is now the Burke Museum on the University of Washington campus. Earlier that summer, the Arboretum Foundation extended the invitation to sponsor the garden to the Japanese Consul-General in Seattle, Issaku Okamoto, who then sent a letter of recommendation to the Society in Tokyo. Apparently, the proposal was well received by the Society as a September 1937 newspaper article reported that they had agreed to spend $50,000 for flowers, shrubs, trees, bridges and a decorative archway. The Society also promised to send an engineer to supervise the work of landscaping in the fall of 1937 in preparation for plantings to be made the following year. A member of the Society’s Board, Count Michimasa Soyeshima, traveled through Seattle during this period and assured Consul-General Okamoto of the Society’s interest in creating an exact replica of one of Japan’s noted formal gardens. Despite this enthusiasm on both sides, the plan was apparently abandoned when it faced a growing anti-Japanese sentiment at the time, no doubt influenced by the Japanese invasion of China in 1937. As a result, the plan for a Japanese garden in the Arboretum remained on hold for another two decades before being revived once again by members of the Arboretum Foundation.

History of Japanese Gardens

Although most Americans conceived of a Japanese garden as simply an attractive collection of certain elements, garden design developed in Japan over more than 1000 years of history in response to social, political, religious, and cultural changes. In the middle of the 6th century, Chinese culture began to permeate all aspects of Japanese life, including ideas of gardening. Over the next several centuries, these ideas were developed and refined until the Heian period (794-1185), the first great era of Japanese garden history. This era began when the capital of Japan was moved in 794 to Heian-kyō, Capital of Peace and Tranquility (present-day Kyoto), where it remained until 1868. Attributed to Tachibana no Toshitsuna (1028-1094), an aristocrat accomplished in landscape garden design, the 11th-century *Sakuteiki* (Notes on Garden Making) is the earliest known written document on Japanese garden design. *Sakuteiki* outlines the three overall principles that form the prototype for all garden making: observance of the natural landscape, study of the work of past masters, and remembrance of famous places of scenic beauty. Together, these principles should inform the design of a garden comprised of six basic compositional elements: artificial hills, the
pond, the island, the white sand south garden, the garden stream and the waterfall. The primary focus of the work is stone setting, which forms the structure of the garden while trees and plants serve only as decorative accents. The placement of stones was the basis for garden design in the Heian period and for centuries afterward. The gardens did not exist as independent entities but were designed to correlate to the function and style of architecture from the large palaces of the emperor to the homes of the nobility. Buildings opened onto private gardens featuring large ponds with islands linked by bridges in a carefully composed collection of natural features, all for the sole enjoyment of the owner.

During the Kamakura period (1185-1333), the introduction of Zen Buddhism created an emphasis on a new garden type, *kare-sansui* (literally “withered mountain-water”). This refers to the small dry landscape gardens of rocks and raked sand or stone that were not designed as a pleasure garden but an object to be contemplated from several vantage points. The intent of the garden’s abstract composition was to suggest the inner essence of nature not to reproduce its outward forms in a naturalistic landscape. Contemplation of such a garden does not lead to enlightenment rather it shows the product of an enlightened mind who seeks to express that experience in the garden’s design. The pond and island garden of the Heian period continued to be popular and was often designed to be enjoyed on foot, but the *kare-sansui* gained prominence to the point that it was no longer included as an element in a larger garden but on its own. Overall, the size of the gardens became smaller and more attention was paid to plant material. These concepts were further refined during the Muromachi period (1333-1568) as landscaping continued to develop the use of small space to form a picture garden.

The Momoyama period (1568-1603) is probably best known for its development of a new garden type, the *roji* (literally “dewy ground”), an enclosed garden with a path leading to a small rustic hut where the tea ceremony is performed. Primary features include the stepping stones that lead visitors to the teahouse and prepare them for the tea ceremony, stone lanterns that light the way, and simple stone basins that enable visitors to cleanse themselves physically and spiritually. At the same time this simpler garden type developed, the pond gardens of the period became more complex in their overall design with larger and more impressive rock formations, jutting peninsulas, and craggy inlets. In addition, gardens were no longer designed mainly for strolling in but were increasingly constructed with a view from the surrounding buildings in mind. The growing unity and power of the ruling class was demonstrated in the construction of many large and heavily ornamental gardens.

During the Edo period (1603-1868), the Tokugawa shoguns brought peace, stability and isolationism by imposing a rigid social structure on Japanese society and closing their doors to outside influences from China and the West. Many of the gardens of this era were imitations of the prototypes of earlier times with an added emphasis on the use of *shakkei* or “borrowed scenery,” a compositional technique that incorporates distant views into the overall design of a garden. A new prototype, the large strolling garden, did emerge, however, and made use of numerous popular features such as hills, ponds, islands, winding streams, waterfalls and rocks in a completely new way. The intent was to include a greater number and variety of all elements to enhance the visitor’s experience of the changing vistas and set views. With the opening of Japan to the West and world trade during the Meiji
period (1868-1912), outside influences crept into garden design often resulting in a strange juxtaposition of styles. While a large number of older gardens of earlier periods were opened to the public and restored after falling into disrepair, many traditional architecture features, such as stone lanterns and rocks, were sold, and many traditional design concepts were abandoned.

Japanese Gardens in the United States

Just as traditional Japanese gardens were losing popularity in their own country, they were being embraced with great enthusiasm in the United States. Americans got their first glimpse of a Japanese garden at the 1876 Centennial International Exhibition held in Philadelphia to celebrate the 100th anniversary of the signing of the Declaration of Independence. The Japanese government had accepted an invitation to participate in the first official world’s fair in the United States and sent displays as well as the materials to construct the buildings to house them. These included a Japanese Dwelling and Japanese Bazaar, a low structure that served as a bazaar and teahouse. The trapezoidal plot in front of the Bazaar was fenced in and landscaped in a vaguely Japanese style, complete with a large stone lantern. The Japanese government also had displays in the Main Exhibition Building and the Agricultural Hall. Although many were repeat visitors, some 10 million people attended the fair, a number representing some 20% of country’s population at the time. The exhibits at the Philadelphia Exhibition were relatively small in comparison to those that followed as Japan soon took full advantage of the opportunity the fairs provided to influence world opinion. With the 1893 World’s Columbian Exposition in Chicago, Japan began the construction of major pavilions and gardens as well as massive displays in various exhibition halls, becoming the largest and often the most popular foreign exhibitor at fairs. The Japanese government constructed its national pavilion, the Hōōden, amid garden paths that wound through thousands of plants brought from Japan. Another garden flanked the Nippon Tea House and featured stone lanterns and bronze cranes. Although the Japanese government was unable to participate in the 1894 California Midwinter International Exposition in San Francisco’s Golden Gate Park, local entrepreneur G.T. Marsh acquired the concession to create “The Japanese Village.” Marsh himself designed the hill and water garden that surrounded the village’s five buildings. At the close of the fair, this site became the popular Japanese Tea Garden, the oldest extant Japanese-style garden open to the public outside Japan.

Ten years later at the 1904 Louisiana Purchase Exposition in St. Louis, the Japanese government created the sensation of the fair with its 175,000 square foot compound known as the Imperial Japanese Garden. The six traditional structures included the Formosa Tea Pavilion, the Bellevue Tea House, the Bazaar, the Main Pavilion, the Commissioner’s Residence, and a replica of the Kinkaku, a famous 14th century Golden Pavilion in Kyoto. These temple-style wooden buildings were arranged within a large stroll garden of meandering paths, picturesque plantings, and a small body of water at the center. The close proximity of a large Ferris wheel enabled visitors to have a panoramic view of the Imperial Japanese Garden. Smaller regional fairs, such as the 1915 Panama-Pacific International Exposition in San Francisco, also attracted equally large exhibits and proved to be wildly popular with fairgoers. These late 19th and early 20th century fairs and expositions introduced millions of Americans to Japanese-style gardens and inspired the creation of hundreds of
public and private gardens across the country. Many of the great estates of the gilded age installed Japanese gardens of varying degrees of size and authenticity. This was duplicated on a smaller scale among those of more modest means, especially in California where Japanese-style gardens were seen as eminently compatible with Craftsman-style bungalows. Commercial tea gardens modeled on those found at the fairs were also very popular in the early decades of the 20th century. By the 1930s, this ardor for Japanese-style gardens had cooled as American relations with the Japanese government became increasingly strained. Despite the anti-Japanese fervor of the Second World War, Japanese-style gardens experienced a renaissance in America less than a decade after the war’s end that continues to the present day.

Japanese Gardens in Seattle

The history of Japanese gardens in Seattle largely mirrors that of the rest of country. At the same time that he proposed a comprehensive park and boulevard system in the early 1890s, Parks Superintendent Edward Otto Schwagerl thought that Seattle should have a Japanese garden and a botanical garden and identified Sand Point as a possible location. While nothing came of Schwagerl’s proposal, there continued to be interest and popularity in Japanese-style gardens. An undated postcard from the early 20th century shows a “Japanese Tea Garden” in Madison Park where a rustic gazebo overlooks a small pond lined with stones and surrounded by grass. This is likely not the teahouse purchased by Emma Watts and placed in Madison Park after the conclusion of the 1909 Alaska-Yukon-Pacific Exposition. Historic photos show this elaborate structure within the Japanese Village located at the lower end of the Pay Streak, a concourse of concessions and popular entertainments. At the entrance to the Village, a sign reading “Street of Tokio” hung from a torii gate situated between the Tokio Café and the Japanese Theatre. The Japan Tea House fronted onto a Japanese-style garden, complete with a small pond, a bridge, stepping stones and lanterns. The official Japanese Government Building stood to the west of Rainier Vista with minimal plantings around its exterior. Like the other fairs before it, the Alaska-Yukon-Pacific Exposition presented a popular but not entirely accurate vision of Japan and its culture and likely stimulated interest in a Japanese garden for Seattle.

Shortly after the fair, a group of Seattle businessmen visited Japan, a result of which was a gift of an admired lantern that was placed in Mt. Baker Park in 1911. The Parks Board proposed to build a Japanese garden around the lantern, but the cost estimate was in excess of $8,000. In June of 1919, Architect A.H. Albertson sent a letter to the Parks Board requesting a permit to erect a Japanese Tea Garden in Volunteer Park for the “purposes of popularizing the drinking of Japanese Tea.” The proposal included relocating an existing teahouse from the southwest corner of Fifth Avenue and University Street and designing a new Japanese garden around it. The teahouse would be operated as a concession sponsored by the Japan Central Tea Association, a semi-official government entity. Albertson promoted the plan as being of “public interest and educational value” and a “courtesy to the Japanese Government.” Although nothing seems to have come of this request, interest remained in the creation of some sort of Japanese garden as evidenced by a September 1929 letter from the Seattle Chamber of Commerce to the Parks Board. The letter notified the Parks Board that the Chamber’s Board of Trustees had adopted a recommendation proposing that a portion of “some suitable park” be set aside for “Oriental landscaping, exhibition and display of
Oriental shrubs, flowers, architecture, etc.” The Chamber offered to assist the Parks Board in enlisting support for the project among the Japanese and Chinese organizations and residents of the City. It is likely that financial difficulties brought on by the economic depression of the 1930s prevented consideration of such a plan. However, the idea of soliciting funding from a Japanese organization almost succeeded in realizing the 1937 plan to develop a Japanese garden at the University of Washington Arboretum. This time, it was anti-Japanese sentiment and not a lack of funds that caused the plan to be abandoned.

Japanese Americans in Seattle
While many in Seattle and the rest of the country were fascinated by Japanese art and culture in the late 19th and early 20th centuries, there was also an underlying racism and discrimination towards Americans of Japanese descent. In addition to restrictions on immigration, local, state and federal laws prevented Japanese from owning land, living in certain areas or becoming naturalized U.S. citizens. Paradoxically, it was these Japanese and first generation (Issei) Japanese immigrants who designed, constructed and maintained most of the public and private Japanese-style gardens that were celebrated and admired in the period before the Second World War. Although they took great pride in their work and built prosperous businesses, many turned to landscaping and gardening because it was one of the few occupations open to them. It is estimated that roughly 30% of the Japanese American labor force was employed in the gardening or nursery trades in the pre-war period. This situation did not improve for their children. Even though they were born in this country, many Nisei or second generation Japanese could not find professional employment after graduating from college, forcing them to settle for jobs as bellhops, grocery clerks, gardeners, dishwashers and truck drivers. It was not until the third generation (Sansei) that many of these barriers were removed.

In Seattle, a large and lively ghetto in the south end of downtown developed at the turn of the 20th century as a result of the restrictive real estate covenants and employment discrimination. Nihonmachi or Japantown was the center of community life until the forced incarcerations of the 1940s emptied it of residents and workers. Historic photographs serve as a record of the community that vanished and show the continued influence of Japanese art and culture in people’s daily lives. In a ca. 1930 photograph, a Mr. Hatate stands in the Japanese-style garden of the Maneki Café, a restaurant which continues to operate today a block south of the original location more than 100 years after its founding. When Japanese Americans were imprisoned in western concentration camps during the 1940s, many attempted to bring this culture with them, beautifying the barren landscape with small-scale Japanese-style gardens. Often, this work was completed by men who had worked as landscapers, gardeners and nurserymen. Upon their release, many of these men resumed their former occupations, contributing to the post-war renaissance in the popularity of Japanese-style gardens.

For many of the first generation of Japanese gardeners, Seattle’s temperate climate reminded them of Japan, making it easier for them to adapt their gardening techniques and design ideas when they began their landscaping businesses. They also found that they could earn a good living for themselves and their families. As a measure of their success, a group of 25 gardeners established the Seattle Japanese Gardeners Association in 1927 to provide
mutual support and serve the community. After the war’s end, the association re-formed and later formed a loose federation with gardeners in California and Vancouver, BC in the early 1960s. While many Nisei joined their fathers in their work, few of their own children had an interest in continuing in the family business with all the professional opportunities available to them. Although the association remained active into the 1980s, it eventually disbanded in 2004.

Of the many who practiced this profession in the Seattle area, none are better known than Fujitaro Kubota (1880-1973). Born and raised in Japan’s Kochi Prefecture, Kubota came to the United States around 1906 and eventually settled in Seattle. After working first at a sawmill, then on a farm and later in a hotel, Kubota established the Kubota Gardening Company in 1923. Over the next decade, his business prospered, enabling him to buy some 20 acres in Seattle’s Rainier Beach neighborhood by 1929. Along with his sons Tom and Tak, Kubota created an authentic Japanese garden inspired by Ritsurin Park in Takamatsu after researching landscapes in Japan. Kubota opened his garden for community celebrations and picnics before all such activities ended with the family’s incarceration at Minidoka in Idaho. Upon his return to Seattle, Kubota rebuilt his successful landscaping business and refurbished his abandoned property, converting it to a drive-through nursery where clients could choose plants and get design ideas for their own gardens. Over his career, Kubota generally adapted Japanese design principles to American culture rather than maintain pure Japanese styles. The gardens on the Seattle University campus and the Japanese Garden at the Bloedel Reserve on Bainbridge Island are public examples of his work. In recognition of his achievements in the pioneering of Japanese-style gardening in the Northwest, the Japanese government awarded him the Fifth Class Order of the Sacred Treasure in 1972, a year before his death. His property was later designated a City of Seattle landmark in 1981 and acquired as a public park in 1987.

Seattle Japanese Garden

It was Fujitaro Kubota who provided the initial cost estimate of $60,000 for the Seattle Japanese Garden when Mrs. Neil (Emily H.) Haig, Chair of the Arboretum Foundation’s Special Projects Committee consulted him. Mrs. Haig had been asked by Carl Ballard, Board President of Arboretum Foundation, to Chair the committee and resurrect the idea of building a Japanese garden in the Arboretum. On June 5, 1957, Mrs. Haig held the first meeting of this committee and created a work plan that covered issues such as location, cost, landscape architect, funding sources, and parking. In her efforts to gather preliminary information, Mrs. Haig contacted the Japanese Tea Garden at Golden Gate Park in San Francisco in the belief that it could serve as a useful model. She also wrote to and spoke with Fujitaro Kubota, who offered to look at the proposed location and provide a rough idea of the estimated project cost. Realizing that the project would benefit from the assistance of the Japanese government, Mrs. Haig contacted the Japanese Consul-General in Seattle, Yoshiharu Takeno. She also called Ewen C. Dingwall, the project director for the Seattle World’s Fair Century 21 Exposition, to talk about the proposed Japanese garden and its relation to the Fair. Mr. Dingwall attended the next meeting of the committee held on September 10, 1957 to discuss the plans for the Fair. It was at this meeting that Mrs. Haig presented Fujitaro Kubota’s cost estimate, which gave the group a better sense of how much money needed to be raised. Early fundraising efforts focused on holding garden tours,
something that would have been very familiar to members of the Arboretum Foundation. Mrs. Haig also reported that the Japanese Vice Consul, Mr. Yamada, had expressed interest in the plan and requested more information.

As plans proceeded, Mrs. Haig contacted the newly formed Kobe-Seattle Sister City Affiliation Committee, an organization founded to foster greater friendship and understanding after Seattle formally established ties with Kobe, Japan in October of 1957. The previous year, Seattle Mayor Gordon S. Clinton had appointed a study committee, which included former Seattle Mayor William F. Devin, in response to President Dwight D. Eisenhower’s efforts to promote people-to-people programs between America and the rest of the world. Mr. Devin had already established friendly ties with Dr. Chujiro Haraguchi, the mayor of Kobe, and knew the Japanese city to be a great seaport with a distinguished university. With the two cities’ similar backgrounds in education, shipping, and the arts, the committee members decided that Kobe was the logical choice for Seattle’s first sister city relationship. Mrs. Haig asked the organization if they would be interested in assisting in the efforts to establish a Japanese garden and secured the support of Kenneth Sorrells, Chair of the Garden Committee. On February 17, 1958, Mr. Sorrells accompanied Mrs. Haig and Edward B. Dunn, the new president of the Arboretum Foundation, on a visit to Consul-General Takeno to present the idea for a Japanese garden. At Consul-General Takeno’s suggestion, Mrs. Haig prepared a letter of introduction and compiled a prospectus on the project with plans and photographs that could be sent to the Japanese government to secure support. Consul-General Takeno also thought that different cities in Japan would be willing to make donations to the garden. Arboretum Director Brian O. Mulligan joined Mrs. Haig and Mr. Sorrells on a site visit with Consul-General Takeno, who was impressed by the possibilities.

In July of 1958, Mr. Tatsuo Moriwaki, a landscape architect and Superintendent of the Tokyo Park Department, visited Seattle and was taken on a site visit to the Arboretum. Subsequently, Mr. Moriwaki offered to provide the landscape architectural work for the garden and indicated that the City of Tokyo would provide a teahouse as an ornamental feature. Letters were sent to the Governor of the Tokyo Metropolis, The Honorable Seiichiro Yasui, to express appreciation for Mr. Moriwaki’s offer. Later that year, the City of Kobe made a donation of two stone lanterns, a large Kasuga-style lantern, which became known as the Kobe Friendship Lantern, and a smaller okazaki style lantern with a turtle carved at the base. At this point, momentum on the project was building rapidly. Arboretum staff produced the survey maps and photographs that would be used by the Japanese designers in developing the garden plan. The Seattle Japanese Gardeners Association offered to donate their services and plant material, and Genji Mihara of Seattle’s Japanese American community expressed the community’s desire to assist in every way possible. Most importantly, lumber magnate Prentice Bloedel made the first of several substantial donations that would fund much of the construction of the garden.

In January 1959, Mrs. Haig received a letter from the Governor of Tokyo formally presenting the teahouse for the Arboretum as a goodwill gift. The 480 square foot structure would be shipped on March 1, 1959 on the Mitsui Line’s Akagisan Maru at the expense of the Tokyo government. Upon its arrival, it would be first assembled for display at a Trade Fair before
being erected at the Arboretum. At the Special Project Committee’s meeting on January 27, there was some discussion as to who would cover the estimated $2,000 cost of assembling and reassembling the structure at the two locations. Ultimately, the committee decided that they would bear no more than half the cost if necessary. It was also reported at the meeting that they were still waiting for plans to be sent from Tokyo. The following week at a February 3 meeting of the Arboretum Foundation Board, a working committee was appointed to handle publicity and arrangements for the installation of the teahouse and the construction of the garden. Immediate responsibilities of the committee included making arrangements for the arrival and transportation of the teahouse, groundbreaking, and landscaping and securing the building site. One of the most important obligations of the committee was to select the landscape architect who would supervise construction of the garden and execute the plans prepared in Tokyo. After much investigation, Juki Iida (1889-1977) of the Iida Landscape Engineering Co. of Tokyo was selected to perform the work. Mr. Iida was the creator of more than a thousand Japanese gardens at home and abroad and was honored by the Emperor of Japan for his gardens. He also owned his own stone quarry, employing craftsman in the construction of stone lanterns, and operated a number of retail plant nurseries.

On March 21, 1959, the teahouse packed in fourteen crates arrived in Seattle at Pier 20 where Consul-General Takeno formally presented it to Mayor Clinton. The Port of Seattle stored the crates until it was time to move them to the National Guard Armory (now the Seattle Center House) for assembly under the supervision of Tomosaburo Kato, chief engineer of the Shimizu Construction Co. of Tokyo. The Trade Fair paid $1,000 of the estimated $5,000 construction costs while the City of Seattle covered the remaining expenditures. From April 24 to May 3, the teahouse was on display at the Eighth Annual Washington State International Trade Fair where it was promoted as a gift from the City of Tokyo to the people of Seattle. A few weeks later, a groundbreaking ceremony held was held on May 19 with Mayor Clinton and Consul-General Takeno once again in attendance. Sad Ishimitsu of K. Ishimitsu & Sons constructed the teahouse under the supervision Tomosaburo Kato and a representative of the Tokyo Metropolitan Government. A chain link fence was erected around the perimeter of the teahouse for security purposes, giving it a somewhat forlorn appearance that was out of context with its surroundings. Initially, the teahouse was not open to the public but used for special occasions, the first of which was a tea ceremony held on July 4, 1959. It was performed by Grand Master Soshitsu Sen XV of the Urasenke Foundation in Kyoto, Japan, who was traveling through Seattle on his way home from Europe.

In late November of 1959, Juki Iida and his assistant Nobumasa Kitamura traveled to Seattle for a two-week trip to present the design, survey the garden and make preliminary plans. With James Fukuda of the Japanese Consul-General’s office acting as interpreter, Mr. Iida unfolded the more than thirty sheets of drawings that outlined the basic design. Prepared by Kiyoshi Inoshita and then modified by Ryuo Moriwaki, Nobumasa Kitamura, Iwao Ishikawa, Naotomo Ueno, Riki Ito and Iida himself, the plans presented a design primarily with loose perspective sketches and details that incorporated the existing pond and the stone bridge over the creek and retained existing vegetation at the periphery. Mr. Fukuda also acted as interpreter for Mr. Iida when he interviewed the local workers that would construct the
garden and toured examples of their work. A three-man crew of second-generation Japanese Americans was chosen, William S. Yorozu as contractor, Richard Yamasaki for stone work and Sad Ishimitsu for wood construction. While Juki Iida and the Japanese designers retain prominence for their work in designing the garden, the significant role of the Japanese Americans who constructed and later maintained the garden has not always been acknowledged as it should. Mr. Iida also visited local nurseries to select plant materials and traveled to the Bandera area near Snoqualmie Pass to locate suitable granite stones. Some 600 tons of Bandera Mountain stone was used in the garden. Following a trip to Washington, DC to work on designs for a garden for the Japanese Embassy, Mr. Iida made a brief stop in Seattle to select and plan the placement of stones and the construction of the pond and grassy knoll before returning to Japan for the winter. In his absence, the work crews cleared brush, bulldozed the site, burned material and hauled rocks. Upon his return in early March of 1960 with Mr. Kitamura, Mr. Iida found that much of the large-scale site work had been completed. The two men divided oversight duties with Mr. Kitamura in charge of the pond and Mr. Iida in charge of the waterfall and stream, each directing the placement of every stone, rock, tree and shrub.

As work progressed over the Spring of 1960, the actual costs soon exceeded the original estimates, causing concern among the members of the Arboretum Foundation’s working committee. However, the project benefited from the donation of plant material and labor, including 100 flowering trees from the Japanese Community Service of Seattle and the services of 32 members of the Seattle Japanese Gardeners Association. The City of Seattle provided the funding for fencing the garden and sidewalk paving, and Seattle City Light donated the lighting equipment. All of this work culminated in the dedication of the not fully completed Japanese Garden on Sunday, June 5, 1960. Avery F. Peterson, Deputy Assistant Secretary for Far Eastern Economic Affairs in the U.S. Department of State was the principal speaker on a program that also featured Mayor Clinton, Consul-General Takeno, Dr. Charles E. Odegaard, President of the University of Washington, Griffith Way, Chairman of the Japan-America Centennial Committee, Gordon Marckworth, President of the University of Washington Arboretum, and Juki Iida. Edward B. Dunn, President of the Arboretum Foundation, presided. Unfortunately, the festivities were somewhat marred by the senseless damage done to the teahouse by vandals who broke into the garden in late May. Nonetheless, it should be considered quite an achievement that only three years elapsed between the first meeting of the Special Projects Committee and the dedication of the Japanese Garden. According to author Kendall H. Brown, the Seattle Japanese Garden “represents the earliest postwar public construction of a Japanese-style garden on the Pacific Coast and, as such, had a great impact on other gardens, serving as the template in design and function for most of the large civic pond-and-teahouse gardens built over the next forty years.”

Since the June 1960 dedication, the Seattle Japanese Garden has been a work in progress. In May of 1961, turnstile counters with a ten cent admission fee were installed to generate revenue for the maintenance of the garden. That same year, the south gate was constructed to provide safe and convenient access to the nearest parking area. The section of the garden south of the stone bridge was not a part of the original plan and was designed and built by Richard Yamasaki. The azumaya or viewing arbor was constructed in 1967, and the machiai
or waiting arbor within the tea garden was completed in 1970, both of them the work of Sad Ishimitsu. Supporting this work financially was the Arboretum Foundation’s Prentice Bloedel Unit #86, formed in 1966 for the specific purpose of completing and perpetuating the Japanese Garden. The greatest change that occurred was the tragic loss of the teahouse, which was destroyed by arson fire on April 9, 1973. Over the next eight years, the Arboretum Foundation raised the necessary funds to rebuild the structure with major financial support provided by the Urasenke Foundation of Kyoto. Grand Master Soshitsu Sen XV traveled to Seattle in 1981 to bestow upon the new teahouse the name Shoseian, “Arbor of the Murmuring Pines,” and to once again perform the first tea ceremony. Fred Sugita, a Japanese-born craftsman from Seattle, largely followed the original plans in completing the reconstruction of the teahouse with the assistance of Seichi Kawasaki, a carpenter-artisan from Hiroshima, Japan. The dedication on May 16, 1981 was truly a celebration of the restoration of the teahouse. That same year, the University of Washington transferred the management of the Japanese Garden to Seattle Parks and Recreation, which has undertaken several major projects in recent years. ADA revisions were planned and built in 1997, and shoreline restoration was completed in 2002. Major and regular pine pruning has been ongoing since 1998. Today, the Seattle Japanese Garden is ranked within the top ten of North America’s more than 300 public Japanese gardens.

BIBLIOGRAPHY OF RESOURCES

Historic Maps

“Map showing territorial growth of the city of Seattle (1891).” Seattle, Wash.: City Engineer, 1891. University of Washington Libraries Manuscripts, Special Collections, University Archives Division.

“Guide map of Seattle showing tide lands to be filled and canal to be constructed by the Seattle and Lake Washington Waterway Company (1895).” Seattle, Wash.: Seattle and Lake Washington Waterway Co., 1895. University of Washington Libraries Manuscripts, Special Collections, University Archives Division.

“Jackson Realty & Loan Co.’s new guide map of Seattle (1907).” Seattle: Jackson Realty & Loan Co., 1907. University of Washington Libraries Manuscripts, Special Collections, University Archives Division.

“The University of Washington Arboretum” Brochure. Arboretum Foundation, ca. 1940.

Plat Maps

First Subdivision of Washington Park Addition to the City of Seattle, May 16, 1900, Vol. 9, p. 49, King County Recorder’s Office File #19000516190875.

Drawings and Plans

Seattle Parks and Recreation Department

66001 Japanese Garden In University of Washington Arboretum, n.d.
66002 Ground Plan, Japanese Tea Garden, University of Washington, Drawing No. 1/26, December 20th, 1959, K. Inoshita.
66003 Ground Plan (2), Japanese Tea Garden, University of Washington, Drawing No. 2/26, December 20th, 1959, K. Inoshita.
66005 General Grading Plan, Japanese Tea Garden, University of Washington, Drawing No. 4/26, December 20th, 1959, K. Inoshita.
66006 Section of Grading (1), Japanese Tea Garden, University of Washington, Drawing No. 5/26, December 20th, 1959, K. Inoshita.
66007 Section of Grading (2), Japanese Tea Garden, University of Washington, Drawing No. 6/26, December 20th, 1959, K. Inoshita.
66008 Section of Grading (3), Japanese Tea Garden, University of Washington, Drawing No. 7/26, December 20th, 1959, K. Inoshita.
66009 General Planting Plan, Japanese Tea Garden, University of Washington, Drawing No. 8/26, December 20th, 1959, K. Inoshita.
66011 Project Automatic Landscape Sprinkling System for the University of Washington Japanese Tea Garden, Sheet 3 of 4, Date 8-26-60, Revised 10-11-62, Donald A. Hogan, Professional Civil Engineer.
66012 University of Washington Japanese Tea Garden, Sheet 4 of 4, Date 8-26-60, Revised 10-11-62, Donald A. Hogan, Professional Civil Engineer.
66013 Comprehensive Plan, Japanese Garden, Sheet 1 of 1, 3-1-83, City of Seattle Department of Parks and Recreation.

Existing Conditions, Demolition, Drainage/Irrigation/Paving, Sheet 1 of 7, 7-27-87, Jestena Boughton, Landscape Architect, City of Seattle Department of Parks and Recreation.

Drainage Profiles, Sheet 2 of 7, 3-9-87, City of Seattle Department of Parks and Recreation.

Fencing Plan, Noise Fence Details, Sheet 3 of 7, 9-28-87, Jestena Boughton, Landscape Architect, City of Seattle Department of Parks and Recreation.

Detail Area Plans, Layout/Grading, Sheet 4 of 7, 4-6-87, Jestena Boughton, Landscape Architect, City of Seattle Department of Parks and Recreation.

Rolling Metal Gates, Wood Wing Fences, Bench Details, Sheet 5 of 7, 12-14-87, Jestena Boughton, Landscape Architect, City of Seattle Department of Parks and Recreation.

Ticket Booth Plan, Sheet 6 of 7, August 86, Joji Minatogawa Associates, Architect, City of Seattle Department of Parks and Recreation.

Booth Details, Sheet 7 of 7, 4-6-87, Joji Minatogawa Associates, Architect, City of Seattle Department of Parks and Recreation.

Rolling Gates Change Order, Sheet C.O. 1 of 2, 4-11-88, Jestena Boughton, Landscape Architect, City of Seattle Department of Parks and Recreation.

Site Plan, Secondary and Service Cable, Japanese Gardens, UW Arboretum, 11-1-88, City Light Department.

Fenceline Planting - Renovation Plan, Japanese Garden, Sheet 1 of 1, 7-26-89, City of Seattle Department of Parks and Recreation.

1990-1991 Improvements, Japanese Tea Garden, Sheet 1 of 3, 12-11-90, City of Seattle Department of Parks and Recreation.

Fenceline Improvements, Japanese Tea Garden, Sheet 2 of 3, 12-11-90, City of Seattle Department of Parks and Recreation.

Topo Ponds, Japanese Tea Garden, Sheet 1 of 2, Oct. 2000, City of Seattle Department of Parks and Recreation.

Topo Ponds, Japanese Tea Garden, Sheet 2 of 2, Oct. 2000, City of Seattle Department of Parks and Recreation.

Historic Photographs and Images

Miscellaneous Sources

Engraving of the Japanese Bazaar in Fairmount Park, 1876. Frank Leslie's Illustrated Register of the Centennial.
(http://www2.hsp.org/exhibits/Balch%20exhibits/japanese/earlyphila.html)

Japanese pavilion and Japanese garden, St. Louis World's Fair, 1904. Japanese Americans in St. Louis Online Exhibit, Western Historical Manuscript Collection, University of Missouri-St. Louis.
(http://www.umsl.edu/%7Ewhmc/exhibits/japanese/index.html)

Entrance to Japanese Tea Garden, Golden Gate Park, San Francisco, Cal., post card, ca. 1913.

(http://www.sandiegohistory.org/pancal/sdexpo4.htm)

Tea House and part of garden from same area, October 17, 1960.

East side of pool soon after excavation started, December 31, 1959.

View north over the same area, October 17, 1960.

View north over stone bridge and pool with Tea House on left, March 22, 1960.

Nearer view of stone bridge and new plantings, October 17, 1960.

Construction of the two bridges, April 5, 1960.

The bridges and stone lanterns from Kobe, October 17, 1960.

Visitors at the opening of the Japanese Garden, June 5, 1960.

Juki Iida and Henry Yorozu consulting on construction of the Japanese Garden in April 1960.

Arboretum Bulletin 48:3 (Fall, 1985)

Japanese Garden from the northern hill, looking up lake, April 1960.

Japanese Garden under construction with Mr. Juki Iida, landscape architect, May 1960.
Mr. Sad Ishimitsu building a bridge over the Japanese Garden pond, Spring 1960.
Moving stones from base of waterfall, two months before opening, Spring 1960.

The Bancroft Library

Densho
Block 26 garden and pond, c. 1944. Minidoka incarceration camp, Idaho, Bain Family Collection, photo by Joe Tanaka, Densho ID: denshopd-p2-00068.

Museum of History & Industry Photograph Collection
Torii at Washington Park Arboretum, Date: 1909 or 1910. Frank H. Nowell, Picture ID: SHS 11,452.

Paul V. Galvin Library Digital History Collection
San Francisco History Center, San Francisco Public Library

Seattle Municipal Archives Photograph Collection

University of Washington Libraries, Special Collections Division

Wing Luke Asian Museum Photograph Collection

Mr. Hatate in garden of Maneki Cafe, Seattle, ca. 1930. Image Number: 1995.038.001.

Unpublished Materials

Seattle Municipal Archives

Don Sherwood Parks History Collection, Subseries II: Parks History Files
46/7 Washington Park 1908-1919
46/8 Washington Park 1920-1939
46/9 Washington Park 1940-1959
46/10 Washington Park 1960-1974
46/11 Washington Park, Brochures and Bulletins 1940-1971
46/12 Washington Park, Newspaper Clippings 1935-1976

Record Series: 5802-06 Community Relations Coordinator's Files 1973-1987
5802-06 1/1 1984-1985 Arboretum: Japanese Gardens, One of Three
5802-06 1/2 1982-1983 Arboretum: Japanese Gardens, Two of Three
University of Washington Libraries. Special Collections Division

Emily Haig Papers, Manuscript Collection No.: 1898, Accession No.: 1898-001, Date Span: 1933-1972.

Arboretum Foundation, Special Projects Committee
Box 9/Folder 11 Outgoing letters, 1960
Box 9/Folder 12 Minutes, 1957, 1959
Box 9/Folder 13 Reports, 1957-1960

Arboretum Foundation, Japanese Garden Committee
Box 9/Folder 17 Outgoing letters, 1961, 1964-1966
Box 9/Folder 21 Programs, 1964, undated
Box 9/Folder 22 Photographs, undated
Box 9/Folder 25 Ephemera, undated

Arboretum Foundation, Prentice Bloedel Unit 86
Box 10/Folder 9 Newsletters, Unit 86 Bulletin, 1966-1968

Project Files: U.S. Works Progress Administration
Box 16/Folder 9 General Correspondence (chronological) 1935-1938, Scope and Content: Includes Olmsted Bros.
Box 16/Folder 16 Project Proposals, 1935-1937

Subject Series: Japanese Garden
Box 24/Folder 6 Historical Features, General Correspondence
Box 24/Folder 9 Yorozu, William, 1960-1971
Box 24/Folders 10-27 Chronological, 1959-1983
Box 24/Folder 30 Prospectus, 1958
Box 24/Folder 32 Programs, 1966-1981
Box 24/Folder 42 Ephemera
Box 24/Folder 44 Plans, 1981, n.d.
Box 24/Folder 48 Clippings

Newspapers and Periodicals

Arboretum Bulletin:

Seattle Post-Intelligencer:
“Teahouse of the April Fair: Japan’s Symbolic Gift To City Officially Greeted At Dockside.” March 22, 1959, p. 9.
“Tea Garden Dedication To Be Held.” June 5, 1960, p. 10.
Lacitis, Erik, “U of W, City Reject Burned Tea House.” April 11, 1073, p. A8

Seattle Times:
“$97,359 Garden Job Will Begin.” October 13, 1936, p. 9
“Arboretum Is Ranked as In ‘Big 3’ in U.S.” August 11, 1941, p. 5.
“Expert to Supervise Teahouse Assembly,” April 6, 1959, p. 43.
“City Council: Teahouse money.” April 7, 1959, p. 11.
“First Ceremony In Teahouse To Be Tomorrow.” July 3, 1959.
“Steaming Tea Wafts Poetry.” July 5, 1959, p. 4, Photo p. 16.
Gilje, Svein, “Man, 92, was city trailblazer, Through beauty, better racial ties were cultivated.” November 12, 1972, p. G6.
Duncan, Don, “Shear beauty: These master gardeners are part of the landscape.” April 5, 1987, p. K1, K3.

Nodell, Bobbi, “Lifelong gardener Henry Yorozu, 81, was Idaho internee.” Obituaries, Sunday, September 08, 2002.

University of Washington Daily:

Books and Other Documents

Board of Park Commissioners, Annual Report, Board of Park Commissioners, Seattle, WA, 19xx.

Websites

City of Seattle Website, www.seattle.gov

Elisabeth C. Miller Library Website: Juuki Iida Scroll, depts.washington.edu/hortlib/collections/scroll.shtml

Urasenke Foundation / Seattle Branch Website, www.urasenkeseattle.org/
The features of the Landmark to be preserved include: the entire site as described in the Japanese Garden Boundary Description (above), including structures, site elements and plant material located within the site boundaries, excluding the existing south entry gate and ticket booth, the service area structures, the pump house, the existing electric light standards, and the chain link fencing.

Issued: June 4, 2008

Karen Gordon
City Historic Preservation Officer

cc: Timothy Gallagher, Superintendent, Parks and Recreation
 Andy Sheffer, DOPAR
 Kathleen Conner, DOPAR
 Kelly Goold, DOPAR
 Stephen Lee, Chair, LPB
 Diane Sugimura, DPD
 Ken Mar, DPD
 Cheryl Mosteller, DPD
Historic Inventory Property Form:
Governor Albert D. Rossellini Bridge
Governor Albert D. Rosellini Bridge

LOCATION SECTION

Field Site No.: SR5
Historic Name: Governor Albert D. Rosellini Bridge
Property Address: Lake Washington, vicinity of Seattle, WA
County: King
Township/Range/EW Section: 1/4 Sec 1/4 1/4 Sec
Quadrangle: SEATTLE NORTH

Common Name: Evergreen Point Bridge
Comments: Bridge stretches from the Montlake area of Seattle, east across Lake Washington to Evergreen Point in Medina

UTM Reference
Zone: 10
Spatial Type: Point
Acquisition Code: Other
Sequence: 1
Easting: 563887
Northing: 5277039
Sequence: 2
Easting: 566881
Northing: 5276342

IDENTIFICATION SECTION

Survey Name: SR 520 Bridge Replacement
Field Recorder: Lori Durio
Date Recorded: 10/2/2008
Owner's Name: Owner Address:
State of Washington, 310 Maple Park Avenue SE
Department of Transportation
City/State/Zip: Olympia, WA 98504
Classification: Structure
Resource Status: Survey/Inventory
Comments

Within a District? No
Contributing?

National Register Nomination:

Local District:
National Register District/Thematic Nomination Name:

DESCRIPTION SECTION

Historic Use: Transportation - Road-Related (vehicular)
Current Use: Transportation - Road-Related (vehicular)
Plan: Other
Structural System: Other

View of Looking east from Montlake area
taken 3/7/2004

Photography Neg. No (Roll No./Frame No.): N/A

Comments:

Page 1 of 3
Printed on 10/2/2008 1:40:12 PM
<table>
<thead>
<tr>
<th>Changes to plan:</th>
<th>Intact</th>
<th>Changes to interior:</th>
<th>Style</th>
<th>Form/Type</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes to original cladding:</td>
<td></td>
<td>Changes to other:</td>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Changes to windows:</td>
<td></td>
<td></td>
<td></td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Cladding</td>
<td>None</td>
<td>Foundation</td>
<td>Concrete - Pour</td>
<td>Roof Material</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roof Type</td>
<td>None</td>
</tr>
</tbody>
</table>

NARRATIVE SECTION

Study Unit: Other

- Transportation
- Community Planning/Development
- Science & Engineering

Date Of Construction: 1960-63

Architect:

- Builder: Guy Atkinson; General Construction Co; Manson Con.
- Engineer: Charles E. Andrews, Ken Arkin, Mike Thomas, et al

Property appears to meet criteria for the National Register of Historic Places: Yes

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local):

Statement of Significance

The Evergreen Point Bridge, the second span across Lake Washington, lies 4 miles north of the first floating bridge, the Lacey V. Murrow Memorial Bridge. The Evergreen Point Bridge formed the center portion of the 5.6-mile project connecting the area’s two main north-south highways, Interstate 405 on the lake’s east side and Seattle’s Interstate 5. (Hobbs and Holstine 2004). Construction on the Evergreen Point Bridge began in August 1960 and took almost 3 years (837 days) to complete (Hobbs and Holstine 2004). Its opening ceremony was held August 28, 1963. Although still generally referred to as the Evergreen Point bridge, it was officially renamed the Governor Albert D. Rosellini Bridge in 1988 (Mauldin, n.d.).

The floating pontoon bridge design was originally conceived by engineer Homer Hadley and was first used on the Lacey V. Murrow bridge. Charles E. Andrew was chief consulting engineer on the Evergreen Point Bridge for the State Toll Bridge Authority. Ken Arkin was senior field engineer in charge of field engineering for the bridge, and Mike Thomas was design engineer for the structure. ("Bridge Offices..." 1954) The Project Engineer was Harold S. Sitzman, and the Resident Engineer was John C. Tucker. ("Evergreen Point Bridge" nd) The contractor for the floating portion was Guy F. Atkinson, and for the approach structures, the contractors were General Construction Company and Manson Construction and Engineering Company. ("Vital Statistics" nd.)

At the time of its construction, the Evergreen Point Bridge was the largest floating span in the world at 1.4 miles long. It cost $24,972,000 (the floating section alone was $10.9 million), making it the most expensive floating bridge in the world (Hobbs and Holstine 2004). The State Toll Bridge Authority issued a $30 million bond for the bridge, with a 40-year retirement limit. The bridge had a 35-cent toll from 1963 to 1979. In June 1979, the bond was paid in full (20 years ahead of schedule) and the toll booths were removed. The bridge enabled the rapid growth of the north part of the Eastside, especially northern Bellevue, Redmond and Kirkland, leading to greatly increased development and with it, greatly increased commuter traffic.

Changes to the bridge over the years have mostly consisted of basic maintenance tasks, such as painting, cable replacement, repair/replacement of expansion joints, replacement and rehabilitation of guide rollers, repair of columns, and miscellaneous electrical and mechanical rehabilitation. More substantial work was done to increase the safety of the bridge, including the replacement of the draw span and the addition of an emergency stop bar in 1984, the addition of ladders and catwalks to selected pontoons, and the installation of a median barrier. None of these alterations are substantial and do not detract from the appearance, operation or significance of the bridge.

The bridge, having had few substantial alterations over its lifetime, appears today much as it did when completed in 1963. It continues to fulfill its original function, although it now must handle more than twice its intended capacity. The bridge is already over 40 years old, and will meet the 50 year mark for National Register eligibility in August 2013. Although it is not yet 50 years old, it qualifies for the NR1:P under Criteria Consideration G for its exceptional importance. With the sinking of the original Lake Washington floating...
bridge, the Evergreen Point Bridge became the oldest remaining floating bridge across Lake Washington, exemplifying an engineering feat of outstanding proportions. As noted above, it was also the longest and most expensive at its time of construction. It is eligible for the NRHP as a structure under criterion A for its significant impact on the development of the Seattle area, specifically on the communities on the east side of Lake Washington, and criterion C for its outstanding and innovative engineering design.

The bridge stretches from the Montlake area of Seattle, across Lake Washington to Medina. The floating section of the bridge is 7,578 feet long (1.4 miles), with 33 floating sections and 62 anchors. A standard pontoon measures 360 feet long by 60 feet wide and 149 feet deep, and weighs 4,725 tons. (*Vital Statistics* n.d.) The 62 reinforced-concrete anchors each weigh 77 tons and are connected to the pontoons by two ¾-inch steel cables. The roadway accommodates four lanes of traffic and is 54 feet wide. It has a 2-foot-wide median and 3-foot-wide walkway. The Evergreen Point Bridge was designed with a "no bulge" lift-draw span which opens to 200 feet to allow passage of ships. The lift spans are raised 7 feet, allowing retraction of the moveable pontoons. At each end of the floating section, elevated steel truss spans with fixed piers connect to the shore and provide enough vertical clearance to accommodate large pleasure craft (Hobbs and Holstine 2004).

"Evergreen Point Bridge." n.d.

"Record of Contract Work (1972-2002)" n.d.

Additional Photos for: Governor Albert D. Rosellini Bridge at Lake Washington, vicinity of Seattle, WA

View of aerial view of bridge, looking east taken 3/7/2004
Photography Neg. No (Roll No./Frame No.): N/A
Comments:

View of aerial view of bridge, looking west from Medina taken 3/7/2004
Photography Neg. No (Roll No./Frame No.):
Comments:

View of
Photography Neg. No (Roll No./Frame No.):
Comments:

View of
Photography Neg. No (Roll No./Frame No.):
Comments:

Printed on 10/2/2008 1:40:13 PM
Historic Inventory Property Form:
James Arntson House
Historic Property Inventory Report for
Arntson, James House - formerly 76th Avenue NE at 2851 Evergreen Point Rd, Medina, WA 98004

LOCATION SECTION

- **Field Site No.**: SR520E3
- **OAHP No.**: N/A
- **Historic Name**: Arntson, James House - formerly 76th Avenue NE
- **Common Name**: 2851 Evergreen Point Road
- **Property Address**: 2851 Evergreen Point Rd, Medina, WA 98004
- **County**: King
- **Township/Range/EW**: T25R04E
- **Section**: 24
- **Quadrangle**: Kirkland
- **Survey Name**: SR 520 Eastside Transit and HOV Project
- **Survey/Inventory**: Single Family
- **View of**: West elevation that faces Lake Washington
- **Photography Neg. No (Roll No./Frame No.)**: N/A
- **Date Recorded**: 7/1/2008

IDENTIFICATION SECTION

- **Field Recorder**: Lori Durio
- **Date Recorded**: 7/1/2008
- **Owner's Name**: Stephen A. Sharon
- **Owner Address**: 2851 Evergreen Point Road
- **City/State/Zip**: Medina, WA 98039
- **Classification**: Building
- **Resource Status**: Survey/Inventory
- **Within a District?**: No
- **Contributing?**: N/A
- **National Register Nomination**: N/A
- **Local District**: N/A
- **National Register District/Thematic Nomination Name**: N/A

DESCRIPTION SECTION

- **Historic Use**: Domestic - Single Family House
- **Current Use**: Domestic - Single Family House
- **Plan**: L-Shape
- **No. of Stories**: 1
- **Structural System**: Balloon Frame
- **Changes to plan**: Slight
- **Changes to original cladding**: Intact
- **Changes to windows**: Intact
- **Changes to interior**: Unknown
- **Style**: Modern
- **Form/Type**: Single Family
- **Acquisition Code**: Unknown
- **No. of Acreage**: 0.11
- **Acreage**: N/A
- **Tax No./Parcel No.**: 2425049180
- **Supplemental Map(s)**
- **Sequence**: 1 of 2
- **Neg. No** (Roll No./Frame No.): N/A
- **Notes**: N/A
- **Comments**: N/A

Printed on 11/19/2009 9:52:22 AM
The house may be eligible for the NRHP under Criterion C, for its distinctive architectural characteristics, uniquely representative of its mid-century period. It may be eligible for the WHR for its strong architectural qualities. The original owner, Mr. James Arntson, was employed by Noble and White Engineering in Bellevue, WA, but no further information was available. Although no information was discovered on the architect or designer of the house, it is a good representative example of mid-century modern architecture, with its L-shaped plan, courtyard, and rear cantilevered balcony. The wide, low intersecting gables of the roof emphasize its horizontality, and the many windows and exterior spaces reflect the original wooded isolation of the site, on a bluff overlooking Lake Washington. Although part of the lot was taken for the original construction of the Evergreen Point Bridge/SR 520, and new construction has since been built near the home, the site still retains much of its original feeling. It is well adapted to its setting, with the private courtyard and the rear deck that once looked out at the lake. The house has received few alterations, most notably the enclosure of the original carport into a garage. The form and design of the house are still visually striking and make it worthy of consideration for the NRHP and WHR for its intact display of distinctive mid-century modern architectural design. Although the design and setting of the property have been somewhat impacted, it retains integrity of materials, feeling, location, association, and workmanship.

Medina has an interesting history associated with the scenic shoreline, the timber industry, and berry-growing. It was originally a summer retreat area for Seattle citizens who could afford the luxury of a country place across the lake. This house is near the Lake Washington shoreline and is one of the few older houses remaining in this area, which is dominated by new construction. Those extant houses in the vicinity that date from before 1968 are generally not architecturally distinguished and have also been altered, with a few exceptions. This house and its neighboring structures do not form a cohesive collection of historic buildings that are able to convey the historic development of the community. Therefore, there is no potential for a historic district here.
Additional Photos for: Arntson, James House - formerly 76th Avenue NE at 2851 Evergreen Point Rd, Medina, WA 98004

View of east elevation of garage, facing Evergreen Point Road taken 1/22/2009
Photography Neg. No (Roll No./Frame No.): N/A
Comments: View looking west

View of east and south elevations taken 1/22/2009
Photography Neg. No (Roll No./Frame No.): N/A
Comments:

View of taken
Photography Neg. No (Roll No./Frame No.):
Comments:

View of taken
Photography Neg. No (Roll No./Frame No.): Comments:
Historic Inventory Property Form:
Helen Pierce House
Historic Property Inventory Report for

Pierce, Helen House - formerly 76th Avenue NE at 2857 Evergreen Point Rd, Medina, WA 98004

LOCATION SECTION

Field Site No.: SR520E2 OAHP No.: Pierce, Helen House - formerly 76th Avenue NE

Historic Name: Pierce, Helen House - formerly 76th Avenue NE

Property Address: 2857 Evergreen Point Rd, Medina, WA 98004

Common Name: 2857 Evergreen Point Road

Locality: Medina Community: Medina

Property Address: 2857 Evergreen Point Rd, Medina, WA 98004

County Township/Range/EW Section 1/4 Sec 1/4 Sec Quadrangle
King T25R04na 24 SW KIRKLAND

Tax No./Parcel No.: 2425049074

Supplemental Map(s): N/A

Acreage: 0.92

LOCATION SECTION

Survey Name: SR 520 Eastside Transit and HOV Project

Field Recorder: Lori Durio Date Recorded: 7/1/2008

Owner's Name: Gail W. Gowdy, John C. Wiseman

Owner Address: 9815 15th NW Seattle, WA 98117

Classification: Building Resource Status: Survey/Inventory

Within a District? No Contributing? No

National Register Nomination:

Identification Section

Survey Name: SR 520 Eastside Transit and HOV Project

Field Recorder: Lori Durio Date Recorded: 7/1/2008

Owner's Name: Gail W. Gowdy, John C. Wiseman

Owner Address: 9815 15th NW Seattle, WA 98117

Classification: Building Resource Status: Survey/Inventory

Within a District? No Contributing? No

National Register Nomination:

DESCRIPTION SECTION

Historic Use: Domestic - Single Family House

Current Use: Domestic - Single Family House

Plan: Irregular No. of Stories: 1

Structural System: Balloon Frame

Changes to plan: Slight Changes to interior: Unknown

Changes to original cladding: Intact Changes to other:

Changes to windows: Slight Other (specify):

Style Vernacular

Form/Type Single Family - Gable Front and Wing

View of north elevation, showing original part of house taken 1/30/2009

Photography Neg. No (Roll No./Frame No.): N/A

Comments:

Page 1 of 3 Printed on 11/19/2009 9:56:04 AM
This house appears to be one of the original buildings in the Medina area. Originally owned by Helen R. Pierce, it was built in 1920. Sited at the foot of the bluff near the shore of Lake Washington, it originally had a cistern/water tower and a concrete pump house; the remains of these structures are still on the site. The main house suffered a fire in 1929, and was rebuilt in 1932 and remodeled in 1937. The front portion of the house, facing the water, is what remains of the original 1920 structure, according to the owner. The building has had a few alterations and small rear additions since the 1930s. The front façade has had a large picture window with inoperable shutters added – this appears to be the most prominent alteration. A carport was added to the side of the house, but is not attached to it. The rear additions are marked by a combination of shed and gable roofs. The property retains integrity of feeling, location, and association, but the setting, materials, workmanship, and design have been impacted by alterations, additions, and the intrusion of SR 520 and the Evergreen Point Bridge. Therefore it does not qualify for the NRHP.

The house and grounds remain fairly isolated and relatively unchanged except for the intrusion of the Evergreen Point bridge, which is immediately adjacent to it. Despite its alterations, this remains one of the earliest houses in Evergreen Point that is still extant in this area of high property values and increasing modern residential development pressure. It is representative of some of the early residences of the Points area, many of which were summer houses or lake camps, most of which have been removed and/or replaced, or so altered that they no longer retain any visual evidence of the original house. Therefore it appears to be eligible for the WHR as a representative element of the early settlement of the community.

The history of Medina and its neighboring Points communities is associated with the scenic shoreline, the timber industry, and berry-growing. It was originally a summer retreat area for Seattle citizens who could afford the luxury of a country place across the lake. This house is on the Lake Washington shoreline and is one of the few older houses remaining in this area, which is dominated by new construction and experiences strong pressure from modern residential development. Those extant houses in the vicinity that date from before 1968 are generally not architecturally distinguished and have also been altered, with a few exceptions. This house and its neighboring structures do not form a cohesive collection of historic buildings that are able to convey the historic development of the community. Therefore, there is no potential for a historic district here.
1993. It is likely that this pump house and water tower served the purpose of pumping and storing water for this residence.

The house has had small additions on the rear elevation. The roof structure reflects the evolution of the house, with a front gable on the main section that faces the water, a side or cross gable on the 1932 addition, and another, parallel front gable on the south elevation wing. The rear additions have shed roofs.

King County Assessor's Records, Seattle, WA

Personal communication with property owner, March 8, 2004
Additional Photos for: Pierce, Helen House - formerly 76th Avenue NE at 2857 Evergreen Point Rd, Medina, WA 98004

View of west elevation that faces Lake Washington taken 3/8/2004
Photography Neg. No (Roll No./Frame No.): N/A
Comments:

View of remains of pumphouse, located west of main house taken 3/8/2004 near the coastline
Photography Neg. No (Roll No./Frame No.): N/A
Comments:

View of Remains of well/cistern, west of main house, near water’s edge taken 3/8/2004
Photography Neg. No (Roll No./Frame No.): N/A
Comments:

View of West and south elevations taken 3/8/2004
Photography Neg. No (Roll No./Frame No.): N/A
Comments:
National Register of Historic Places
Registration Form: Lake Washington Ship Canal Bridge
United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instruction. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter or computer, to complete all items.

1. Name of Property

historic name: Lake Washington Ship Canal Bridge
other names/site number: Bridge Number 5/570

2. Location

street and number: Interstate 5 through downtown Seattle and over Lake Washington Ship Canal
city or town: Seattle
state: Washington

3. State/Federal/Tribal Agency Certification

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets X does not meet the National Register criteria. I recommend that this property be considered significant nationally X statewide locally. (See continuation sheet for additional comments.)

Signature of certifying official/Title Date

State or Federal agency or Tribal Government

In my opinion, the property meets X does not meet the National Register criteria. (See continuation sheet for additional comments.)

Signature of certifying official/Title Date

State or Federal agency or Tribal Government

4. National Park Service Certification

I hereby certify that the property is:

☐ entered in the National Register.
 See continuation sheet.

☐ determined eligible for the National Register.
 See continuation sheet.

☐ determined not eligible for the National Register.

☐ removed from the National Register.

☐ other. (explain:)

Signature of the Keeper Date of Action
Lake Washington Ship Canal Bridge

Ownership of Property

<table>
<thead>
<tr>
<th>Check as many boxes as apply</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>private</td>
<td>building(s)</td>
<td>buildings</td>
</tr>
<tr>
<td>public-local</td>
<td>district</td>
<td>sites</td>
</tr>
<tr>
<td>public-State</td>
<td>site</td>
<td>structures</td>
</tr>
<tr>
<td>public-Federal</td>
<td>X structure</td>
<td>objects</td>
</tr>
</tbody>
</table>

Name of related multiple property listing

Bridges and Tunnels Built in Washington State, 1951-1960

Name of contributing resources previously listed in the National Register

N/A

6. Function or Use

Historic Functions

Enter categories from instructions

Transportation

Historic Subfunctions

Enter subcategories from instructions

Road-Related

Current Functions

Enter categories from instructions

Transportation

Current Subfunctions

Enter subcategories from instructions

Road-Related

7. Description

Architectural Classification

Enter categories from instructions

No Style

Materials

Enter categories from instructions

Foundation Concrete

Other Steel

Narrative Description

Describe the historic and current condition of the property on one or more continuation sheets.
Lake Washington Ship Canal Bridge
Name of Property

8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

X A Property is associated with events that have made a significant contribution to the broad patterns of our history.

B Property is associated with the lives of persons significant in our past.

X C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.

D Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark "x" in all the boxes that apply.)

Property is

A owned by religious institution or used for religious purposes.

B removed from its original location.

C a birthplace or grave.

D a cemetery.

E a reconstructed building, object, or structure.

F a commemorative property.

X G less than 50 years of age or achieved significance within the past 50 years.

Areas of Significance
(Enter categories from instructions)

Engineering
Transportation

Period of Significance
1958 - 1960

Significant Dates
1961
1958

Significant Person
(Complete if criterion B is marked above)
N/A

Cultural Affiliation

Architect/Builder
WA State Department of Highways, Designer
Scheumann and Johnson, Builder
Allied Structural Steel Company, Builder
9. Major Bibliographical References

Bibliography
(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.

Previous documentation on file (NPS:)
- ☐ preliminary determination of individual listing (36 CFR 67) has been requested.
- ☐ previously listed in the National Register
- ☐ previously determined eligible by the National Register
- ☐ designated a National Historic Landmark
- ☐ recorded by Historic American Buildings Survey
- ☐ recorded by Historic American Engineering Record

Primary location of additional data:
- ☑ State Historic Preservation Office
- ☑ Other State Agency (Repository Name: WSDOT)

☐ See continuation sheet for additional HABS/HAER documentation.

10. Geographical Data

Acreage of Property: 1.00

UTM References
(Place additional UTM references on a continuation sheet.)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>550977</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>550977</td>
</tr>
</tbody>
</table>

☐ See continuation sheet

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)
11. Form Prepared By

name/title: Oscar R. "Bob" George, Bridge Engineer
organization: Washington State Department of Transportation / Environmental Affairs Office
street & number: PO Box 47332
city or town: Olympia

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps

 A USGS map (7.5 or 15 minute series) indicating the property's location.

 A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs

Representative black and white photographs of the property

Additional Items
(Check with the SHPO or FPO for any additional items)

Property Owner
(Complete this item at the request of the SHPO or FPO.)

name: Washington State Department Of Transportation
street & number: PO Box 47300
city or town: Olympia

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.).

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Chief, Administrative Program Center, National Park Service, 1849 C Street NW, Washington DC 20240; and the Office of Management and Budget, Paperwork Reductions Projects (1024-0018), Washington, DC 20503.
The Lake Washington Ship Canal Bridge carries twelve lanes of traffic on north-south Interstate 5 through downtown Seattle and high over the busy Lake Washington Ship Canal. The 4,429-foot bridge spans the long gap created by the canal between Seattle’s North Capitol Hill District to the south and the University District to the north. As the bridge crosses the canal, it has a 2,294 feet double-deck configuration. The upper deck carries four lanes of traffic in each direction, while four lanes carried on the lower deck are reversible lanes directed either northbound or southbound to handle peak directional traffic.

The bridge is best described in three separate sections as a south approach, a “main crossing” and a north approach. The south approach, beginning just south of Seneca Street, has three elevated sections: the first carrying four northbound lanes towards the canal, the second carrying four southbound lanes away from the canal, and the third carrying four central reversible lanes down towards the lower deck of the main crossing. Starting at the south end, eight reinforced concrete slab spans varying in length from 28 feet to 36 feet carry the separated north and southbound lanes. The lanes continue to the north on separate converging bridges, each carried by nine reinforced concrete box girder spans with alternating span lengths of 90 and 120 feet, ending at the south end of the main crossing of the bridge. In the seventh span, the lanes are joined together on a single full-width roadway. The reversible lanes, starting at the south end, are supported on sub-grade material until they reach a location at the north end of the third box girder spans carrying the northbound and southbound lanes. From this point, the reversible lanes are carried north on six reinforced concrete box girder spans, supported on struts extending between the pier columns of the adjacent northbound and southbound spans, to their junction with the south end of the main crossing.

The southerly concrete slab span is carried on an end wall pier supported on a concrete spread footing. Intermediate supports for the slab spans are three rectangular column piers, with each column founded on an individual spread footing. Pier supports for the concrete box girder spans are two or three square concrete columns, with a common cap. The columns taper out in both directions, and the column corners are inset for architectural effect. Each column is supported on an individual concrete spread footing founded on multiple concrete piles.

The “main crossing” section of the bridge consists of three simply supported and three continuous riveted steel Warren truss spans. These spans function as a deck truss for the northbound and southbound lanes, and as a through truss for the reversible lanes. This section of the bridge has a main 552-foot span, flanked by and continuous with a 347 foot 8 inch anchor span at each end; two southerly spans, 348 feet 4 inches long and 349 feet 3 ½ inches long; and one 348 feet 7 ½ inch long northerly span. The lower chord of the main span has a parabolic shape. Depth of the main span truss varies from about 40 feet 6 inches at the centerline of span, where it provides 135 feet of vertical clearance to the channel below, to 70 feet 6 inches at the piers. The lower chords of the flanking spans rise in a parabolic curve from the pier to resume a 40 foot-6 inch depth at the end of the span. The two southerly spans and the northerly span have a constant 40 foot 6 inch depth. The main span truss is divided into sixteen 34 foot 6 inch panels. Each of the other truss spans are divided into ten 34 foot 6 inch panels. All trusses are 68 feet 6 inches wide.

All truss chord and web members are box shape, and constructed from steel plates and rolled s:eel angle or channel sections, riveted together. K-bracing within each panel at the upper and lower chords, provide lateral stability to the trusses. At each panel point, a 7-foot deep steel "I" section floor beam, built from a web plate and double-angle flanges with cover plates, extends between the lower portions of the outer trusses. The floorbeams support seven equally spaced longitudinal stringers in each adjacent panel. This floor system supports a 60-foot wide reinforced concrete slab roadway, carrying reversible-lane traffic through the truss. A second floorbeam spans transversely between the outer trusses at each panel point. This floorbeam is similar in configuration to the lower floorbeam in the area between the trusses except that it is about 9 feet deep. Also, the upper floorbeam cantilevers an additional 23 feet 9 inches from each truss for an out-to-out length of 116 feet. The upper floorbeams support thirteen longitudinal stringers in each adjacent panel [seven between the exterior...
truss sections and three on each cantilever). Floorbeams and stringers support the 112-foot wide reinforced concrete slab roadway carrying the northbound and southbound traffic lanes on the bridge. Floorbeams and stringers for both the upper and lower decks have stud shear connectors welded to their top flanges and act compositely with the roadway slabs in carrying traffic loads.

Supports for each of the truss spans are two column piers, varying in height from 90 to 139 feet from the pier top to the base of the footing or seal. Each column is square with recessed corners and tapers out in each direction from its top dimension. A 5-foot wide, variable depth concrete strut connects the tops of the columns. The bottom of the strut has an arched shape for architectural effect. Each column rests on an individual concrete spread footing.

The north approach section of the bridge ends at the north end of the northerly truss span. Starting at this location, the northbound and southbound lanes extend on a single structure for two reinforced concrete box girder spans about 100 feet and 130 feet in length. The northbound and southbound lanes then diverge and are carried on separate bridges. Seven additional reinforced box girder spans, 75 feet to 100 feet long, carry the southbound lanes, while nine similar spans carry the northbound lanes until they once again become at-grade roadways. Three reinforced concrete box girder spans (span lengths of 100 feet, 130 feet, and 100 feet) carry the reversible lanes north to grade, while a ramp, carried by four additional concrete box girder spans curves to the east and lands on East 42nd Street.

Pier supports for the concrete box girder spans are two square concrete columns with a common cap. The columns taper out in both directions and column corners are inset for architectural effect. Each column is supported on an individual concrete spread footing. Ramp piers are supported on concrete columns resting on concrete spread footings.
Begun in 1958, the Lake Washington Ship Canal Bridge is eligible for listing in the National Register of Historic Places under Criterion A for its association with bridge building in Washington in the 1950s as per the "Bridges and Tunnels Built in Washington State, 1951-1960" MPD. The bridge is also eligible under Criterion C for its type, period, materials, and method of construction. It is also noteworthy for its association with the historic Seattle freeway construction project, as well as the long history of the Ship Canal. For its exceptional engineering and role in local transportation development, the Ship Canal Bridge meets the threshold established by Criteria Consideration G for properties not yet 50 years of age.

The significant engineering features of the bridge are its double-deck spans, including nine reinforced concrete box girder spans, and five steel truss spans, providing an innovative approach to handling peak traffic loads with reversible lanes. The steel truss spans are the only steel double-deck bridge spans in Washington. The double-deck concrete box girder spans were preceded by the construction of the mile and one-half long double-deck concrete segment of the Alaskan Way Viaduct, constructed between 1950 and 1958. However, the configuration of the spans on the two bridges is quite different.

When constructed in 1958 to 1961, the 552-foot long main span was the longest steel deck truss span in Washington. This record stood until 1992, when the span was exceeded by the 600-foot deck truss span on the Hoffstadt Creek Bridge on State Route 504, the Highway leading to Mount St. Helens' National Volcanic Monument.

Floorbeams and stringers carrying the upper and lower decks have stud shear connectors welded to their upper flanges. The steel components act compositely with the roadway slab in carrying traffic loads. This was one of the first uses of shear connectors in the state.

The construction of the Lake Washington Ship Canal Bridge constituted the largest project on the historic Seattle Freeway, eventually to become Interstate 5. The long awaited freeway project began in 1958 with award of a contract for the construction of piers for this bridge.

This is the sixth and largest bridge to cross the historic Ship Canal.

Historic Context:

Seattle Pioneer Judge Thomas Mercer is credited with suggesting, at a Fourth of July picnic in 1854, the building of a canal between the fresh waters of Lake Washington and the saltwater of Puget Sound. (1) Mercer proposed the names for Union Bay and Lake Union, envisioning their eventual connection as a canal. (2)

Six years later Harvey L. Pike dug a shallow ditch at the current Montlake Cut to allow passage of logs from Lake Washington to the lower end of Portage Bay. This ditch was widened and deepened by the Lake Washington Improvement Company, under the direction of Judge Thomas Burke, in 1883. Then in 1867 the U. S. Navy endorsed the proposal for a canal to link Puget Sound and Lake Washington to provide their ships with a fresh water haven. At this time the only route from Elliott Bay to Lake Washington was via the Black River Slough and the Duwamish River, suitable only for shallow-draft boats and barges.

While the Navy continued to urge construction of a canal, delays in the project led the Navy to establish its shipyard near Bremerton, rather than on Lake Washington. The U. S. Army Corps of Engineers joined those in support of the canal in 1891. (1)

In 1895 former Territorial Governor Eugene Semple urged a controversial southern route through Beacon Hill for the canal, but supporters of the northern route quashed those efforts. In 1900, the Washington State Legislature endorsed the northern
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 8. Narrative Statement of Significance

route, and by 1906, the Federal Government had begun deepening the channel leading from Shilshole Bay to the Ballard
wharves. Developer James A. Moore received Congressional approval to organize a private company to begin work on the
canal. As new commander of the U.S. Army Corps of Engineers in 1906, General Hiram M. Chittenden urged completion of
the canal, even though he did not think highly of developer Moore's efforts. Chittenden continued his advocacy after his
retirement in 1908 and helped convince Congress to appropriate the $2,275,000 needed for construction of locks for the
canal, which they did on June 25, 1910. Construction began on November 10, 1911, and continued until October 21, 1916,
when a temporary dam at the Montlake cut was breached, uniting Lakes Washington and Union and lowering the level of
Lake Washington by nine feet. The "Government Locks" and waterway were opened for boat traffic on May 8, 1917. The
project cost had grown to more than $3 million. On July 4, 1917, a ceremonial flotilla, led by Admiral Perry's polar flagship
Roosevelt passed through the canal.(1)

Unfortunately, when the locks and canal opened in 1917, Hiram Chittenden had been confined to a wheelchair by a stroke.
(He died later that year.) In 1956, the Corps of Engineers renamed the Ballard locks to honor his memory. The locks and
canal have since been designated as a National Historic District.(1)

With the opening of Lake Union and Lake Washington via the canal, Seattle has become a focal point for commercial ships
and pleasure craft in the interlocking system of protected waterways formed by Puget Sound. The development of the
extensive shorelines of Lake Washington and Lake Union would fuel Seattle's economy for decades.

Advanced planning for a Seattle Freeway (known today as I-5) began with topographic studies in 1931, although studies had
been made well before that time. In September 1946, the Traffic Engineering Division of the city of Seattle prepared a plan
for a north-south freeway through the city. Planning became more serious in 1947 when an origin and destination study was
conducted by the State Highway Department in cooperation with the city of Seattle and the U.S. Bureau of Public Roads.
Preliminary design work began in 1950 by the State Department of Highways assisted by the Seattle Engineering
Department. As the work went on, it was concluded that this would be a costly proposition, well beyond what could be
handled with available highway funds.(3)

The concept of a toll road emerged as a way of financing the project. A study by the Washington State Council for Highway
Research found the plan for a toll road was feasible. As a result of this report in 1953, the Washington State Legislature
enacted laws authorizing the Washington Toll Bridge Authority to study the financial and engineering feasibility of building
and operating a toll road between Tacoma, Seattle and Everett. The Toll Authority hired the New York traffic engineering
firm, Coverdale and Colpitts, to conduct the study. Their recommendation was to finance the cost of the road through a $227
million bond issue until the road was underway and earning money. In the meantime, the 1955 Legislature authorized
construction of the toll road. The next step was to determine if enough traffic would use the road to support its cost.
Coverdale and Colpitts submitted a report in April 1955, indicating the toll road was feasible, but they recommended a $5
million guarantee from the motor vehicle fund to ensure salability of the bonds. Potential bond buyers wanted the toll road
law tested in the courts. After hearing the case, the Thurston County Superior Court held up the law to be constitutional and
it was appealed to the State Supreme Court for a final determination. Then on December 4, 1955 the Supreme Court ruled
that the 1955 Toll Road Act was unconstitutional. Shortly after the ruling, the Washington Toll Bridge Authority adopted a
formal resolution, turning the responsibility for building the new road, as a free facility, over to the State Highway
Commission.(4)

By this time, Seattle was suffering from acute traffic congestion. Traffic entering the city from the south spread itself out into
a number of four-to-six-lane streets leading to downtown Seattle. All went through the industrial area, mixing with heavy
truck traffic and heavy peak hour automobile and bus traffic. Traffic signals further impeded free traffic flow. With the
principal streets through Seattle carrying heavy volumes, traffic speeds during peak hours slowed to eight to ten miles per
hour.(5)
Enactment of the Federal Aid Highway Act of 1956 renewed hope for the freeway project. Under the provisions of the act, the freeway could be built as a free facility using federal funds plus state matching funds as a part of the National Interstate Highway Program. The State Department of Highways moved quickly to start the project.

In early 1958, the Department of Highways' Bridge Division began design of the bridge. The first contract on the Seattle Freeway project was awarded on August 5, 1958, to Scheumann and Johnson of Seattle, for construction of the seven piers supporting the truss spans for the Ship Canal Bridge for about $964,000. This was followed on January 20, 1959 with the award of the contract for construction of the six steel truss spans to Allied Structural Steel Company of Chicago, Illinois, for about $6,944,000. Structural steel for this project was fabricated in three locations under the overall coordination of the prime contractor. The fabricators were Midland Structural Steel Company of Hammond, Indiana, Clinton Bridge and Iron Works of Clinton, Iowa, and Isaacson Iron Works of Seattle.(6)

Following construction of the piers supporting the steel truss spans, erection of the more than 11,000 tons of steel for the spans began on May 10, 1960. The prime contractor had sub-contracted the steel erection to the Industrial Construction Company of Minneapolis, Minnesota. All the steel, except the stringers, was shipped to Seattle by rail. Materials to be erected over land were then moved by truck to the bridge site. Material erected over water was yawed at the Foss Launch and Tug Company site on Lake Union, and moved to the bridge site on barges. Two 125-ton cranes on shore unloaded trucks and placed falsework and steel whenever possible. All steel beyond the limits of the cranes was hoisted into position from travelers operating on top of the upper deck. The three simply supported truss spans and the anchor spans for the three-span continuous unit were erected on falsework. The 552-foot main span was erected using cantilever construction. The center section of the three-span continuous unit was jacked into position and closed on January 14, 1961.(6)

On February 18, a contract for construction of the north approach structures had been awarded to MacRae Brothers from Seattle for just under $1,840,000. This was followed by award of a contract to S. S. Mullen from Seattle for construction of the south approach structures for just under $2,480,000. The multiple contracts proceeded at full speed until completion of the bridge in the fall of 1961. The total cost of the four contracts on the bridge was just over $12.2 million.

George H. Andrews, the State Highway Department's Urban Bridge Engineer, was in overall charge of the construction project. (Andrews was later to become Director of the State Department of Highways.) Ed Wilkerson was the state's resident engineer.(6)

The new bridge was completed for more than a year before it was opened to traffic in December 1952. Delays caused by labor strikes, relocation of utility lines, and a controversial proposal for covering and developing areas above the downtown freeway, had put construction of adjacent parts of the Seattle freeway far behind schedule. Historian Paul Dorpat summed it up by saying, "Consequently, the bridge stood silently towering above the channel and the neighborhoods, all finished and freshly painted but with nothing to do."(7) During planning for the 1962 Seattle World's Fair, the World's Fair Commission, the State Department of Highways, and Seattle City Transit found a job for the "unemployed" bridge—they proposed to use it as a parking lot for up to 2500 cars. Because the bridge was more than two miles from the site of the fair, Seattle City Transit made plans to operate a shuttle between the bridge and the fairgrounds. The plan for this $12.2 million parking lot was abandoned when it was determined that a flurry of new private parking areas, provided closer to the fairgrounds, would be sufficient to handle the anticipated crowds.(7,8)

The multi-million dollar Seattle Freeway project was the largest transportation project in the state's history, presenting unprecedented problems and unique solutions. Contributing to the growth and economic success of the city of Seattle that was yet to come, the project began with the Lake Washington Ship Canal Bridge.
The double-deck configuration of the Lake Washington Ship Canal Bridge enables twelve lanes to pass through a relatively narrow transportation corridor in the heart of Seattle, with four lanes used in a reversible mode to flow in the direction of peak traffic. Use of a steel deck truss superstructure over the canal, not only handily accommodated the lower deck but also allowed the use of longer spans and fewer tall piers (canal piers reached a height of almost 140 feet).

The design also provides an appearance complementing the historic Aurora Avenue (George Washington Memorial) Bridge (listed in the National Register) that crosses the Ship Canal a mile and one-half to the west.

The composite design of the floor system for the upper and lower decks on this bridge was an early use of this concept in the state. Composite design was to become a standard on steel girder superstructures in the future.
9. Major Bibliographical References

Verbal Boundary Description
Longitudinal Boundaries: Extends to the pavement seats of the three ramps at either end of the bridge, and to the pavement seat of the reversible lanes ramp at the north end of the structure.

Lateral Boundaries: Extend to the edges of the structure.

Verbal Boundary Justification
The boundaries include all contributing elements and non-contributing elements of the structure.
Bridges, Trestles, and Aqueducts: University Bridge, Fremont Bridge, Ballard Bridge
The construction of several moveable spans was incorporated into the design of Seattle's Lake Washington Ship Canal. Between 1915 and 1919, three double-leaf trunnion bascule bridges of the transverse cross-girder type were constructed to span the waterway at Fremont Avenue, at 15th Avenue Northwest, and at Eastlake Avenue. The bridges, which are the earliest examples within the State of a double-leaf bascule bridge, were designed by the City of Seattle under the direction of A.H. Dimock, City Engineer. They were erected under the supervision of F.A. Rapp.

The bascule bridge design was selected over a fixed span and vertical lift design. The fixed span design was eliminated immediately because it necessitated the construction of extremely long approaches. In a letter to the city council, the city engineer wrote that a vertical lift bridge would require 200 foot towers in order to provide the necessary vertical clearance of 150 feet. "Such towers ... of steel are far from pleasing ornaments to any waterfront."
Description (continued)

He emphasized the merits of the bascule bridge design and claimed that "the advantage of this type from the navigator’s point of view is that it provides a perfectly clear and unobstructed channel permitting the passage of a vessel of any height. This feature of the bascule bridge was in direct contrast to the design of the lift bridge in which the height of the vessel passing beneath the bridge was limited by the height of the lift span.

The double-leaf trunnion bascule design adopted by the city of Seattle has its origins in a general design developed by the Chicago Department of Public Works in 1898. The three bridges consist of half-through type trusses with a horizontal top chord and a curved bottom chord. The trusses are raised and lowered by means of two counterweights that are built into the rear of the trusses, below the deck. These counterweights are composed of steel boxes that are filled with concrete. Two pockets were formed in the concrete to provide for a means of adjusting the weight according to wet and dry seasons.

The leaves are each operated by two direct current motors of 100 horsepower capacity at 550 volts. Each leaf was designed to be operated independently, and by one motor. The internal gears in the operating mechanism are composed of cast steel concave racks that were designed and patented by Alexander Van Bano, engineer of bridge design at the Chicago Department of Public Works. The gear trains drive operating pinions of forged steel that engage the innerfaces of the racks which are built into the counterweight arms of the trusses. There is also an emergency hand operating connection which can open the bridge in six hours. In 1928, auxiliary power equipment was placed in the three bridges.

All connections were assembled and reamed before the trusses were erected. The leaves were erected in the horizontal position. However, when one leaf was completed it was raised to the vertical position so that half of the channel remained unobstructed throughout construction.

Because the Federal government assumed a share of the cost of the canal, it placed conditions upon the general proportions of the bridges. The government maintained that "the structures should be of a permanent character and should give a clear channel width of 200 feet with a clearance height of 30 feet above the lake level for a width of 150 feet." All three bascule spans are greater than 200 feet in length. The curb of the Fremont Avenue Bridge is 37 feet above the waterline. The clearance height of the other two bridges is 52 feet, substantially above the height set by the Federal government. The additional height enabled small craft to pass beneath the bridges and minimized the number of openings. Because of the greater height of the Eastlake Avenue and 15th Avenue Bridges, there was no need to construct counterweight pits. The three bridges were each 40 feet wide and were designed to carry a double-track railway.

Construction began first on the University Bridge at Eastlake Avenue which was to replace two temporary timberdraw spans. However, the 291 foot structure which consists of a 218 foot bascule span, was not completed until 1919 because of delays in carrying out specifications for the substructure. The massive, concrete substructure is 20 feet thick, 65 feet high, and 40 feet wide. The foundation rested directly on firm material on one side of the channel. However, on the other side of the channel, it was necessary to drive deep pile foundations in order to support the bridge. Booker, Kiehl, and Whipple were the contractors for the substructure. The United States Steel Products Company was the contractor for the superstructure. Construction was supervised by E.K. Triol.

The total cost of constructing the University Bridge which included a permanent steel span and two temporary untreated timber trestle approaches was $825,275, almost twice the cost of each of the other two bascule bridges. This was due to the cost of the massive concrete foundations and to the reletting of portions of the work at wartime prices.
Description (continued)

In 1933, an open mesh deck was installed to reduce the floor weight which permitted the widening of the roadway. The decking was designed and built by the Irving Iron Works of Long Island City, New York. Shop-welded cantilever girders were extended from the steel span to support the two additional traffic lanes.

The 520 foot bridge at Fremont Avenue was completed in 1917, and provided the primary entranceway to the community of Fremont. The steel for the 242 foot bascule span was fabricated by the Pacific Coast Steel Company. The United States Steel Products Company was the contractor for the superstructure. The substructure was built by the Pacific States Construction Company. In contrast to the University Bridge, permanent concrete approaches were built initially at Fremont Avenue by the West Coast Construction Company. The Fremont Avenue Bridge was equipped with four 100 horsepower motors. The total cost of the bridge was $410,000. In 1928, the original wood block paving was removed and replaced with open, steel pavement. At this time, new operating motors with hydraulic variable speed transmission were also added. These motors were considered to be a "new venture in moveable bridge machinery."

In 1917, the 15th Avenue N.W. Bridge was also completed, firmly linking Seattle and Ballard. The 295 foot structure which consisted of a 218 foot bascule span cost $479,000. The steel was fabricated by the Dyer Brothers of San Francisco. Hans Pederson was the contractor for both the substructure and superstructure, and J. Charles Rathburn was the city's superintendent for the construction of the bridge. In 1941, the temporary approaches were replaced by permanent approach spans. The four towers were replaced by a single tower in 1969.

The design engineers in Seattle articulated the importance of aesthetics in city bridge design. On April 20, 1914 the city engineer wrote a letter to the city council: "of late years, it is recognized that it may be possible to secure graceful and pleasing lines, even in steel structures, without spending any large additional amount of money. It is fortunately possible owing to the height at which our bridges will be built above the water level to secure equal mechanical efficiency with a well balanced and pleasing effect." D.R. Huntington, City Architect, was responsible for the architectural treatment of the piers of the three bascule bridges. The massive, concrete piers of the University Bridge and the handsome towers on the Fremont Bridge provide an appropriate architectural frame for the passageway between Puget Sound and Lake Washington. However, the architectural treatment of these three bascule bridges do not equal the monumental stature of the cross-girder bascule bridge built across the canal at Montlake Avenue in 1924.

References (continued)

25. Sketch Map of Location

A Montlake Avenue Bridge
B University Bridge
C Fremont Bridge
D Ballard Bridge

50
51
52
CANAL BRIDGES

Montlake Bridge

University Bridge

Ballard Bridge
University Bridge, side elevation, looking northwest

University Bridge, looking northeast
Historic Property Inventory Forms:
Port of Tacoma and Port of Olympia
Historic Properties
Historic Name: Fire Station No. 15

Address: 3510 East Eleventh Street
City: Tacoma
County: Pierce

Download nomination form

Historic Use: Government
Style: Spanish - Spanish Colonial Revival
Built: 1929
Architect: Nicholson, Morton J.
Builder: Walesby Construction Co.

Smithsonian Number: 45PI00650
Date Listed: 5/2/1986
Listing Status: WHR/NR
Classification: BLDG(S)
Resource Count: 1
Area of Significance: Architecture
Level of Significance: Local
Listing Criteria: A, C

Statement of Significance

Photos
HISTORIC PROPERTY INVENTORY FORM

IDENTIFICATION SECTION

Site No:
Site Name: Historic
Field Recorder: Mark L Brack
Date Recorded: July 16, 1985
Owner's Name: City of Tacoma
Street: 787 Market Street
City/Town: Tacoma
County: Pierce
Zip Code: 98402

Status: National Register

Survey/Inventory
Determined Eligible
Other (NHL, HABS, HAER) Indicate

Classification

View: NW and SW elevations, facing east

Location Section

Street Number: 3510 E. 11th Street
City/Town: Tacoma
County: Pierce
Tax No./Parcel No: 227 520-043-0
UTM References: Zone 10
Easting 545 660
Northing 5235720

Acreage: less than one
Legal Boundary Description: Ashton's Replat of Tacoma Tidelands, Block 10
Lots 1 - 3.

PHOTOGRAPHY

Photography Neg. No: Roll 1, Neg. #2
View: NW and SW elevations, facing east
Date: August 1985

DESCRIPTION SECTION

Matteats & Features/Structural Types:

<table>
<thead>
<tr>
<th>Roof Material</th>
<th>Roof Type</th>
<th>Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Shingle</td>
<td>X</td>
<td>Hip</td>
</tr>
<tr>
<td>Asbestos/Asphalt Shingle</td>
<td>X</td>
<td>Log</td>
</tr>
<tr>
<td>Sheet Metal</td>
<td>X</td>
<td>Post & Pier</td>
</tr>
<tr>
<td>Tar</td>
<td>X</td>
<td>Stone</td>
</tr>
<tr>
<td>Metal (specify)</td>
<td>X</td>
<td>Concrete</td>
</tr>
<tr>
<td>Other (specify)</td>
<td></td>
<td>Block</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poured</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brick</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other (specify)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cllading (Exterior Wall Surfaces):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log</td>
</tr>
<tr>
<td>Horizontal Wood Siding</td>
</tr>
<tr>
<td>Spilt Shakes</td>
</tr>
<tr>
<td>Wood Shingle</td>
</tr>
<tr>
<td>Asbestos/Asphalt Shingle</td>
</tr>
<tr>
<td>Brick Masonry</td>
</tr>
<tr>
<td>Stone Masonry</td>
</tr>
<tr>
<td>Stucco</td>
</tr>
<tr>
<td>Terra Cotta</td>
</tr>
<tr>
<td>Carrara Glass</td>
</tr>
<tr>
<td>Vinyl/Aluminum Siding</td>
</tr>
<tr>
<td>Other (specify)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height/No. of Stories:</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
</tr>
<tr>
<td>One and one-half</td>
</tr>
<tr>
<td>Two</td>
</tr>
<tr>
<td>Two and one-half</td>
</tr>
<tr>
<td>Three</td>
</tr>
<tr>
<td>Other (specify)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Style/Form: (Check one or more of the following)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pioneer/Homestead</td>
</tr>
<tr>
<td>Greek Revival</td>
</tr>
<tr>
<td>Gothic Revival</td>
</tr>
<tr>
<td>Italianate</td>
</tr>
<tr>
<td>Second Empire</td>
</tr>
<tr>
<td>Stick/Eastlake</td>
</tr>
<tr>
<td>Queen Anne</td>
</tr>
<tr>
<td>Shingle Style</td>
</tr>
<tr>
<td>Richardsonian Romanesque</td>
</tr>
<tr>
<td>Chicago School</td>
</tr>
<tr>
<td>Sullivanese</td>
</tr>
<tr>
<td>Beau Arts Classician</td>
</tr>
<tr>
<td>Princess Anne</td>
</tr>
<tr>
<td>Neo-Colonial</td>
</tr>
<tr>
<td>Dutch Colonial</td>
</tr>
<tr>
<td>Spanish Colonial</td>
</tr>
<tr>
<td>English Revival</td>
</tr>
<tr>
<td>Bungalow</td>
</tr>
<tr>
<td>Craftsman</td>
</tr>
<tr>
<td>American Foursquare/</td>
</tr>
<tr>
<td>Classic Box</td>
</tr>
<tr>
<td>Prairie Style</td>
</tr>
<tr>
<td>Art Deco/Moderne</td>
</tr>
<tr>
<td>Commercial Vernacular</td>
</tr>
<tr>
<td>Vernacular</td>
</tr>
<tr>
<td>Spanish Period Revival</td>
</tr>
</tbody>
</table>

Integrity: (include detailed description in 'Additional Description' section)

Additions to house plan: X
Changes to windows: X
Changes to roof shape: X
Changes to interior plan: X
Other (specify): X

Intact | Moderate | Excessive

Impact | Slight | Moderate | Excessive

State of Washington
Office of Archaeology and Historic Preservation
111 W. 21st Ave. KL-11
Olympia, WA 98504
(206) 753-5010
NARRATIVE SECTION
Areas of Significance/Study Unit Themes: (check one or more of the following)

- Agriculture
- Architecture/Landscape Architecture
- Arts
- Commerce
- Communications
- Community Planning/Development
- Conservation
- Education
- Entertainment/Recreation
- Ethnic Heritage (specify)
- Health/Medicine
- Manufacturing/industry
- Military
- Politics/Government/Law
- Religion
- Science & Engineering
- Social Movements/Organizations
- Transportation
- Other (Specify)

Statement of Significance: (Reference names, dates, events, areas of significance/study unit themes)

1928 - 1929 (Period of significance: 1928 - 1935)

Fire Station No. 15 is significant for its association with the development of Tacoma's port/industrial area and the growth of the city's vital municipal services. The building is also an important local example of the innovations in fire station design that followed the motorization of firefighting equipment. Station No. 15 was erected in a newly annexed tideflat section of the city, and it shared the fireboat's responsibilities for answering calls along the waterfront. Its jurisdiction also included the industrial zones further removed from the water and a residential district in northeast Tacoma. The introduction of motorized equipment allowed stations to be reduced in height to one story, as firemen no longer required separation from the station's horses. Consequently, fire stations developed an even greater appearance character. Zeumer describes these buildings as 'bungalow' stations. Station No. 15 utilized an enlarged version of the floor plan of Nos. 10 and 14 yet stylistically it is articulated quite differently. The station's Hispanic design reflects popular Period Revival tendencies of the 1920's, which were shared by fire stations across the country. It is the only fire station in the city to display such Hispanic-inspired details. Like the Fireboat Station, its picturesque quality is very different from the utilitarian character of the surrounding area. The growth of the city and the general economic prosperity which preceded the Depression (cont'd)

Additional Description of Physical Appearance & Significant Architectural Features:

Architectural significance: can include interior & site features: address integrity (issues specifically) Fire Station No. 15 is located in a port/industrial area characterized by warehouses, factories and undeveloped land. The simple Spanish-inspired detailing of the building is typical of Period Revival structures of this era. The station was constructed of hollow tile, with a finish coat of rough textured stucco. Projecting from the northwest facade is the two bay apparatus room, which is covered by a gable roof perpendicular to the primary roofline. The main pedestrian entrance to the building is through a small porch recessed behind the arcade on the west corner of the building. The corner pier of this facade has a small buttress. The dormitory wing is located at the rear of the main gabled section. It has a flat roof behind a tiled parapet wall. The hose tower is also on the rear of the station and is articulated with arched louvered vents, a pyramidal roof and exposed beams in imitation of Hispanic vigas. Windows are 1/1 and 3/1 double-hung wood sash. A band of five 1/1 windows illuminates the station's dayroom. The interior is in an excellent state of preservation. Original features include: a tiled bathroom with marble stall partitions, plywood lockers in the dormitories, and a dining nook with Craftsman style furniture. (cont'd)

Major Bibliographic References: (Include books, periodicals, manuscripts, newspapers, legal documents, maps, photos, oral sources, etc.)

Tacoma Daily Ledger, March 14, 1928, p. 1; December 28, 1929, p.12.
Tacoma Fire Department Annual Report, 1929 (available at Northwest Room, Tacoma Public Library)
Tacoma Fire Department Records (901 South Fawcett Avenue, Tacoma, Washington)

(cont'd)
HISTORIC PROPERTY INVENTORY FORM
(Continuation Sheet)

Site No.:
Site Name: Historic Common

Fire Station No. 15

Additional Photographs: (include roll no. & frame no.; date; & view)

Significance (cont'd)

prompted voters to approve a bond issue in 1928 that included funds for four new stations, the fire alarm station and the fireboat. Fire Station No. 15 exemplifies the growth of the city and its services, and it continues to refl
 the important legacy of the Tacoma Fire Department.

Description (cont'd)

most notable alterations include: the remodeling of kitchen cabinetry and the replacement of the original segmentally-arched wooden apparatus doors with flat-arch metal and glass roll-up doors.

Bib. References (cont'd)

Talbot, Clyde and Decker, Ralph, 100 Years of Firefighting in the City of Destiny, Tacoma: Pyro Press, 1981.
Original 1928 blueprints (available at the City of Tacoma's Building Division)
FIRE STATION NO 15. TACOMA, WA
Location

Field Site No. Ghabor

Historic Name: Concrete Technology Corporation Plant

Common Name: Concrete Technology Corporation Plant

Property Address: 1123 Port of Tacoma Rd, Tacoma, WA 98421

Comments:

Tax No./Parcel No. 6965000202, 8888877420

Plat/Block/Lot

Acreage

Supplemental Map(s)

<table>
<thead>
<tr>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 1/4 Sec</th>
<th>County</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>T21R03E</td>
<td>34</td>
<td></td>
<td></td>
<td>Pierce</td>
<td>TACOMA NORTH</td>
</tr>
</tbody>
</table>

Coordinate Reference

Easting: 1168082

Northing: 711115

Projection: Washington State Plane South

Datum: HARN (feet)
Identification

Survey Name: SR 520 Pontoon Construction Project
Field Recorder: Hetzel, Christopher
Owner's Name: Concrete Technology Corporation
Owner Address: P.O. Box 2259
City: Tacoma
State: WA
Zip: 98401-2259
Date Recorded: 03/09/2009

Classification: Building
Resource Status: Survey/Inventory
Comments: Eligible
Within a District? No
Contributing? No
National Register: No
Local District: No

National Register District/Thematic Nomination Name:
Eligibility Status: Determined Eligible - SHPO
Determination Date: 6/3/2009

Description

Historic Use: Commerce/Trade - Professional
Current Use: Commerce/Trade - Professional
Plan: Rectangle
Stories: 2
Structural System: Platform Frame
Changes to Plan: Intact
Changes to Interior: Unknown
Changes to Original Cladding: Intact
Changes to Windows: Slight
Changes to Other:
Other (specify):
Style: Modern
Cladding:
Veneer
Veneer - Stucco
Foundation:
Concrete - Poured
Form/Type: Commercial
Roof Type: Flat with Eaves
Roof Material: Unknown

Narrative

Study Unit
Manufacturing/Industry
Architecture/Landscape Architecture

Date of Construction: 1956 Built Date
Builder:
Engineer: Anderson, Arthur and Thomas
Historic Property Inventory Report

Architect: Price, Robert B.

Property appears to meet criteria for the National Register of Historic Places: Yes

Property is located in a potential historic district (National and/or local): Yes - Local

Property potentially contributes to a historic district (National and/or local): Yes

Statement of Significance:

The two-story administration building at 1123 Port of Tacoma Road was evaluated at a reconnaissance level in a cultural resources survey completed for the SR520 Pontoon Construction Project in the City of Tacoma, Pierce County, Washington. The building is one of several structures that comprise the facilities of the Concrete Technology Corporation at the Port of Tacoma. It was constructed circa 1956, based on its appearance in aerial photographs in the collections of the Tacoma Public Library, and was designed by Robert B. Price, a well-known Tacoma architect. The integrity of the building is fair due to possible alterations to the existing fenestration, including the full-height mirror-glass curtain wall at the south elevation.

The Concrete Technology Corporation is recognized as being historically significant for having pioneered the development of the pre-stressed concrete industry in the United States. After serving in World War II, where he directed testing of a prototype of the United State's first pre-stressed concrete bridge (the Walnut Lane Bridge in Philadelphia), Arthur R. Anderson and his brother Thomas Anderson moved back to Tacoma and founded Concrete Technology Corporation and ABAM Engineers. The brothers, both engineers with degrees from the Massachusetts Institute of Technology, established the company's initial production facility in 1951 at the Port of Tacoma. Pre-stressed concrete was a new technology in the United States, and the Andersons' Tacoma facility was the first pre-stressing factory plant in the country. According to the company's website, the modest four-employee company was the culmination of a yearlong investigation by the Andersons throughout Europe to see the few pre-stressed concrete structures in existence at that time.

The Andersons developed and promoted the technology of pre-stressed elements for construction throughout the 1950s and 1960s. The company invented and marketed the Anderson Post-tensioning System, developed a family of bridge I-girders that was adopted by the Washington State Department of Transportation as a construction standard, and devised new methods for producing long hollow concrete members and segmental bridge construction, among other innovations. The Concrete Technology Corporation's success led to growth in sales and demand, and the company's involvement in many significant, large capital improvement projects in the Pacific Northwest and across the country. This success resulted in the expansion of the company's facilities at the Port of Tacoma. The original production facility, which is now the research and development laboratory, was constructed in 1951. The company's expansion in the 1950s included the construction of two office and administration buildings circa 1956 and completion of the main Structural Plant between 1956 and 1960. Tacoma architect Robert B. Price is credited with the design of the administration buildings and the Structural Plant, along with Thomas and Arthur Anderson who provided the engineering. Robert B. Price is recognized as one of the most prolific architects in the Tacoma area from the 1950s to the 1970s. His work spanned a variety of building types, from single-family homes to banks and public buildings, but he is probably best known for his specialization in his design of schools throughout the Puget Sound region. During his career, Price received 59 national, regional and local awards for design excellence. Among his award winning projects was the Tacoma Fire Station No. 17 (1955); the Joe Long Jr. House on American Lake (1956); Hoyt Elementary School in Tacoma (1958); and his own architectural Tacoma office (1963). Many of Price’s other projects were featured in a variety of magazines including Sunset, House and Garden and Architectural Record.

The Concrete Technology Corporation added a second major production building to its Port of Tacoma facility in 1967 to accommodate the rising demand for precast building elements. Production expansion in the 1970s included facilities for semi-automated casting of hollow-core slabs, and the construction of the existing 150’ x 500’ graving dock for the construction of floating concrete structures.
The building's east and west elevations are each five bays wide with large plate glass windows on both the first and second stories. Nearly all of the bays are inset from the elevation and delineated by two-story high, engaged buttresses that end at the roof's overhanging eaves. The northernmost bay on the east elevation is not recessed and features a narrow ribbon of reflecting glass clerestory windows above an unadorned, stucco clad exterior wall. A freestanding abstract sculpted pillar of exposed concrete is present to the southeast of the entryway, marking the entrance to the facility. It features four vertical columns set within a water feature. Mature bush and tree specimens are present in front of the street facing elevation. The mirror-glass window bank at the street facing elevation appears to be a later alteration.

The property contains a two-story administration building, constructed circa 1956 for the Concrete Technology Corporation at the Port of Tacoma. It is one of four extant structures that make up the company's industrial facility from the 1950s. The other structures are grouped to the east and northeast of the building. The administration building and structures of the adjacent research and development laboratory are located within a rectangular area of land, defined by a mature hedgerow. The entire area between the buildings has been paved with concrete.

The property has been evaluated according to the eligibility criteria for listing in the National Register of Historic Places (NRHP). The property appears eligible for listing in the NRHP under Criteria A and C at the local level of significance. Under NRHP Criterion A, the administration building is considered historically significant for its association with the Concrete Technology Corporation and its pioneering role in the development of the pre-stressed concrete industry in the United States. Under NRHP Criterion C, the building embodies the characteristics and method of construction of the Modern style in 1950s, and is a commercially designed building associated with Robert B. Price, who is considered a well-known master architect in the Tacoma area, and engineers Arthur and Thomas Anderson. The administration building strongly exhibits its style and, except for alterations to the fenestration, the building remains essentially unaltered and retains good integrity.

Based on our review, the property has fair integrity and appears eligible for individual listing in the National Register of Historic Places, or as a contributor to an eligible historic district associated with the Concrete Technology Corporation.
Major Bibliographic References:

Pierce County Tax Assessor Online Records

Tacoma Public Library Image Archives—Port of Tacoma Aerial Photographs

Sanborn Fire Insurance Maps

Washington State Digital Archives

Photos

South and East Elevations, Looking North South and East Elevations, Looking North
Identification

Survey Name: SR 520 Pontoon Construction Project
Date Recorded: 03/09/2009

Field Recorder: Hetzel, Christopher

Owner's Name: Concrete Technology Corporation

Owner Address: P.O. Box 2259

City: Tacoma
State: WA
Zip: 98401-2259

Classification: Building

Resource Status: Survey/Inventory
Comments: Eligible

Within a District? No

Contributing?

National Register:

Local District:

National Register District/Thematic Nomination Name:

Eligibility Status: Not Determined - SHPO

Determination Date: 1/1/0001

Determination Comments:

Description

Historic Use: Industry/Processing/Extraction - Manufacturing Facility

Current Use: Industry/Processing/Extraction - Manufacturing Facility

Plan: Rectangle
Stories: 2

Structural System: Unknown

Changes to Plan: Intact

Changes to Interior: Unknown

Changes to Original Cladding: Intact

Changes to Windows: Intact

Changes to Other:

Other (specify):

Style: Vernacular
Modern - International Style

Cladding: Veneer - Stucco

Roof Type: Gable

Roof Material: Asphalt / Composition - Shingle

Foundation: Concrete - Poured

Form/Type: Industrial

Narrative

Study Unit:

Manufacturing/Industry

Architecture/Landscape Architecture

Date of Construction:
Builder:
1951 Built Date

Engineer: Anderson, Arthur and Thomas

Architect:

Property appears to meet criteria for the National Register of Historic Places: Yes

Property is located in a potential historic district (National and/or local): Yes - Local

Property potentially contributes to a historic district (National and/or local): Yes

Statement of Significance:

The two-story laboratory building at 1123 Port of Tacoma Road was evaluated at a reconnaissance level in a cultural resources survey completed for the SR520 Pontoon Construction Project in the City of Tacoma, Pierce County, Washington. The building is one of several structures that comprise the facilities of the Concrete Technology Corporation at the Port of Tacoma. It was constructed in 1951, based on historical information and its appearance in aerial photographs in the collections of the Tacoma Public Library. The building appears to be essentially unaltered.

The Concrete Technology Corporation is recognized as being historically significant for having pioneered the development of the pre-stressed concrete industry in the United States. After serving in World War II, where he directed testing of a prototype of the United State’s first pre-stressed concrete bridge (the Walnut Lane Bridge in Philadelphia), Arthur R. Anderson and his brother Thomas Anderson moved back to Tacoma and founded Concrete Technology Corporation and ABAM Engineers. The brothers, both engineers with degrees from the Massachusetts Institute of Technology, established the company’s initial production facility in 1951 at the Port of Tacoma. The initial production facility appears to have consisted of what are now the laboratory building and an adjacent one-story building immediately to the north. Pre-stressed concrete was a new technology in the United States, and the Andersons’ Tacoma facility was the first pre-stressing factory plant in the country. According to the company’s website, the modest four-employee company was the culmination of a yearlong investigation by the Andersons throughout Europe to see the few pre-stressed concrete structures in existence at that time.

The Andersons developed and promoted the technology of pre-stressed elements for construction throughout the 1950s and 1960s. The company invented and marketed the Anderson Post-tensioning System, developed a family of bridge I-girders that was adopted by the Washington State Department of Transportation as a construction standard, and devised new methods for producing long hollow concrete members and segmental bridge construction, among other innovations. The Concrete Technology Corporation’s success led to growth in sales and demand, and the company’s involvement in many significant, large capital improvement projects in the Pacific Northwest and across the country. This success resulted in the expansion of the company’s facilities at the Port of Tacoma. The original production facility, which is now the research and development laboratory, was constructed in 1951. The company’s expansion in the 1950s included the construction of two office and administration buildings circa 1956 and completion of the main Structural Plant between 1956 and 1960. The Concrete Technology Corporation added a second major production building to its Port of Tacoma facility in 1967 to accommodate the rising demand for precast building elements. Production expansion in the 1970s included facilities for semi-automated casting of hollow-core slabs, and the construction of the existing 150’ x 500’ graving dock for the construction of floating concrete structures.

Thousands of bridges, buildings, piers, tanks, floats and other structures throughout the Pacific Northwest and Alaska have been constructed with Concrete Technology Corporation products, in addition to other projects throughout the United States. The company manufactured structural members for the original Seattle monorail, the Disney World monorail, the Interstate-90 lid, Freeway Park in Seattle, and most freeway overpasses in the region. The facility was also involved in casting beams for Safeco Field and Husky Stadium. It now focuses on beams and pilings.
The property has been evaluated according to the eligibility criteria for listing in the National Register of Historic Places (NRHP). The property appears eligible for listing in the NRHP under Criteria A and C at the local level of significance, and possibly at the state or national levels as well. Under NRHP Criterion A, the laboratory building is considered historically significant for its association with the Concrete Technology Corporation and its pioneering role in the development of the pre-stressed concrete industry in the United States. Under NRHP Criterion C, the building embodies the characteristics and method of construction of a pre-stressed concrete industrial plant from the early 1950s and is recognized as being the first of its kind in the United States. The laboratory building strongly exhibits its style and associations, and remains essentially unaltered with good integrity.

Based on our review, the property has good integrity and appears eligible for individual listing in the National Register of Historic Places, or as a contributor to an eligible historic district associated with the Concrete Technology Corporation.

Description of Physical Appearance:

The property contains a two-story industrial building, constructed in 1951 for the Concrete Technology Corporation at the Port of Tacoma. It functions as the part of the company’s research and design laboratory, and is one of four extant structures that make up the company’s industrial facility from the 1950s. The other structures are located to the west and northeast of the building, with a smaller one-story structure situated immediately to the north. The laboratory building and two other structures are located within a rectangular area of land, defined by a mature hedgerow. The entire area between the buildings has been paved with concrete.

The laboratory building is oriented to the east-west situated parallel to the north side of Port of Tacoma Road. It has a rectangular-shaped plan and consists of wood-frame construction on a poured concrete foundation. The building was originally designed in a modernist style exhibiting International style influences in an industrial form. The roof is a low-pitched (nearly flat) side-gable roof clad with composition asphalt shingles and featuring exposed structural beams in the gable ends. The exterior walls are finished with smooth stucco. The building’s north and south elevations are similarly designed. Each elevation is seven bays wide with large banks of ribbon windows on the second story of each bay. The banks of windows each consist of two stacked rows of clerestory windows with eight openings in each row. The openings contain single-pane fixed sash windows set in from the exterior wall with no visible window frame. A narrow band course separates the first story from the second, and a narrow, two-story, reverse-angled, engaged buttress ending at the roof’s overhanging eaves defines each bay. The north elevation is further articulated by large vehicular freight door openings in two of the center bays and a second-story pedestrian entrance, accessed by a flight of steps, at the building’s northwest corner.

Additional door openings are located on the building’s east and west elevations. The secondary elevations are further characterized by a small shed-roofed one-story addition at the east elevation, and four twelve-light fixed industrial sash windows at the west elevation—three on the second story and one on the first.

Major Bibliographic References:

Concrete Technology Corporation Website. Http://www.concretetech.com/history.htm.

Pierce County Tax Assessor Online Records

Tacoma Public Library Image Archives—Port of Tacoma Aerial Photographs

Sanborn Fire Insurance Maps

Washington State Digital Archives

Photos

West and South Elevations, Looking East
Identification

Survey Name: SR 520 Pontoon Construction Project Date Recorded: 03/09/2009
Field Recorder: Hetzel, Christopher
Owner’s Name: Concrete Technology Corporation
Owner Address: P.O. Box 2259
City: Tacoma State: WA Zip: 98401-2259
Classification: Building
Resource Status: Contributing?
Within a District?
National Register: Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:

Description

Historic Use: Industry/Processing/Extraction - Manufacturing Facility Current Use: Industry/Processing/Extraction - Manufacturing Facility
Plan: Irregular Stories: 1 Structural System: Platform Frame
Changes to Plan: Slight Changes to Interior: Unknown
Changes to Original Cladding: Intact Changes to Windows: Intact
Changes to Other:
Other (specify):
Style: Modern Cladding: Veneer - Stucco
Foundation: Concrete - Poured Form/Type: Industrial
Roof Type: Gable Roof Material: Asphalt / Composition

Narrative

Study Unit Other
Manufacturing/Industry
Architecture/Landscape Architecture
Date of Construction: 1951 Built Date
Builder:
Engineer: Anderson, Arthur and Thomas
Property appears to meet criteria for the National Register of Historic Places: Yes

Property is located in a potential historic district (National and/or local): Yes - Local

Property potentially contributes to a historic district (National and/or local): Yes

Statement of Significance:

The one-story research building at 1123 Port of Tacoma Road was evaluated at a reconnaissance level in a cultural resources survey completed for the SR520 Pontoon Construction Project in the City of Tacoma, Pierce County, Washington. The building is one of several structures that comprise the facilities of the Concrete Technology Corporation at the Port of Tacoma. It was constructed in 1951, based on historical information and its appearance in aerial photographs in the collections of the Tacoma Public Library. The building appears to be essentially unaltered.

The Concrete Technology Corporation is recognized as being historically significant for having pioneered the development of the pre-stressed concrete industry in the United States. After serving in World War II, where he directed testing of a prototype of the United State's first pre-stressed concrete bridge (the Walnut Lane Bridge in Philadelphia), Arthur R. Anderson and his brother Thomas Anderson moved back to Tacoma and founded Concrete Technology Corporation and ABAM Engineers. The brothers, both engineers with degrees from the Massachusetts Institute of Technology, established the company's initial production facility in 1951 at the Port of Tacoma. The initial production facility appears to have consisted of what are now the research building and an adjacent two-story building immediately to the south. Pre-stressed concrete was a new technology in the United States, and the Andersons' Tacoma facility was the first pre-stressing factory plant in the country. According to the company's website, the modest four-employee company was the culmination of a yearlong investigation by the Andersons throughout Europe to see the few pre-stressed concrete structures in existence at that time.

The Andersons developed and promoted the technology of pre-stressed elements for construction throughout the 1950s and 1960s. The company invented and marketed the Anderson Post-tensioning System, developed a family of bridge I-girders that was adopted by the Washington State Department of Transportation as a construction standard, and devised new methods for producing long hollow concrete members and segmental bridge construction, among other innovations. The Concrete Technology Corporation's success led to growth in sales and demand, and the company's involvement in many significant, large capital improvement projects in the Pacific Northwest and across the country. This success resulted in the expansion of the company's facilities at the Port of Tacoma. The original production facility, which is now the research and development laboratory, was constructed in 1951. The company's expansion in the 1950s included the construction of two office and administration buildings circa 1956 and completion of the main Structural Plant between 1956 and 1960. The Concrete Technology Corporation added a second major production building to its Port of Tacoma facility in 1967 to accommodate the rising demand for precast building elements. Production expansion in the 1970s included facilities for semi-automated casting of hollow-core slabs, and the construction of the existing 150’ x 500’ graving dock for the construction of floating concrete structures.

Thousands of bridges, buildings, piers, tanks, floats and other structures throughout the Pacific Northwest and Alaska have been constructed with Concrete Technology Corporation products, in addition to other projects throughout the United States. The company manufactured structural members for the original Seattle monorail, the Disney World monorail, the Interstate-90 lid, Freeway Park in Seattle, and most freeway overpasses in the region. The facility was also involved in casting beams for Safeco Field and Husky Stadium. It now focuses on beams and pilings.
The property has been evaluated according to the eligibility criteria for listing in the National Register of Historic Places (NRHP). The property appears eligible for listing in the NRHP under Criteria A and C at the local level of significance, and possibly at the state or national levels as well. Under NRHP Criterion A, the research building is considered historically significant for its association with the Concrete Technology Corporation and its pioneering role in the development of the pre-stressed concrete industry in the United States. Under NRHP Criterion C, the building embodies the characteristics and method of construction of a pre-stressed concrete industrial plant from the early 1950s and is recognized as being the first of its kind in the United States. The research building strongly exhibits its style and associations, and remains essentially unaltered with good integrity.

Based on our review, the property has good integrity and appears eligible for listing in the National Register of Historic Places as a contributor to an eligible historic district associated with the Concrete Technology Corporation.

Description of Physical Appearance:

The property contains a one-story industrial building, constructed in 1951 for the Concrete Technology Corporation at the Port of Tacoma. It functions as the part of the company’s research and design laboratory, and is one of four extant structures that make up the company’s industrial facility from the 1950s. The other structures are located to the west and northeast of the building, with a two-story industrial building situated immediately to the south. The research building and two other structures are located within a rectangular area of land, defined by a mature hedgerow. The entire area between the buildings has been paved with concrete.

The research building is oriented to the east-west situated parallel to the north side of Port of Tacoma Road. It has two sections, consisting of what could be defined as two attached buildings. Situated to the south, one has a rectangular-shaped plan and consists of wood-frame construction on a poured concrete foundation. It exhibits a modernist style similar to that of the adjacent two-story industrial building, with International style influences. The roof is a low-pitched (nearly flat) side-gable roof clad with composition roofing and featuring open eaves with wide fascia. The exterior walls are finished with smooth stucco.

The building’s south elevation is four bays wide. Horizontal, eight-light industrial sash windows with a wood sill punctuate all but one of the bays. The elevation’s westernmost bay contains a larger multiple-light fixed window. Reverse-angled, engaged buttresses ending at the roof’s overhanging eaves defines each bay. The structure’s east and west elevations are each punctuated by three-regularly space multiple-light windows with wood sills.

Attached to the building’s north elevation is the large secondary structure. The structure has a wide rectangular plan. It has a flat roof punctuated by several mechanical units and metal ductwork. The north and south elevations are each six bays wide. Vertical pilasters define each bay. Except for a single door opening on the north elevation, the north and south elevations are otherwise unadorned. The building’s east and west elevations each contain a row of clerestory windows. There are six windows on the west elevation and four on the east. The east elevation also contains freight door openings at the section’s southeast corner.

Major Bibliographic References:

- Pierce County Tax Assessor Online Records
- Tacoma Public Library Image Archives—Port of Tacoma Aerial Photographs
- Sanborn Fire Insurance Maps
- Washington State Digital Archives
Photos

West and South Elevations, Looking East
Historic Property Inventory Report

Identification

Survey Name: SR 520 Pontoon Construction Project Date Recorded: 03/09/2009
Field Recorder: Hetzel, Christopher
Owner's Name: Concrete Technology Corporation
Owner Address: P.O. Box 2259
City: Tacoma State: WA Zip: 98401-2259
Classification: Building
Resource Status: Survey/Inventory Comments: Eligible
Within a District?
Contributing?
National Register:
Local District:
National Register District/Thematic Nomination Name:
Eligibility Status: Not Determined - SHPO
Determination Date: 1/1/0001
Determination Comments:

Description

Historic Use: Industry/Processing/Extraction - Manufacturing Facility Current Use: Industry/Processing/Extraction - Manufacturing Facility
Plan: Irregular Stories: 3
Changes to Plan: Slight
Changes to Original Cladding: Intact
Changes to Other:
Other (specify):
Style: Modern - International Cladding: Concrete - Poured Roof Type: Other Roof Material: Other
Foundation: Concrete - Poured Form/Type: Industrial

Narrative

Study Unit Other
Manufacturing/Industry Architecture/Landscape Architecture
Date of Construction: 1956 Built Date Builder:
Property appears to meet criteria for the National Register of Historic Places: Yes
Property is located in a potential historic district (National and/or local): Yes - Local
Property potentially contributes to a historic district (National and/or local): Yes

Statement of Significance:
The Structural Plant at 1123 Port of Tacoma Road was evaluated at a reconnaissance level in a cultural resources survey completed for the SR520 Pontoon Construction Project in the City of Tacoma, Pierce County, Washington. The plant is one of several structures that comprise the facilities of the Concrete Technology Corporation at the Port of Tacoma. It was constructed in 1956-1960, based on historical information and its appearance in aerial photographs in the collections of the Tacoma Public Library. Some of the plant’s fenestration has been modified and several small additions added, but overall it appears to have good integrity.

The Concrete Technology Corporation is recognized as being historically significant for having pioneered the development of the pre-stressed concrete industry in the United States. After serving in World War II, where he directed testing of a prototype of the United State's first pre-stressed concrete bridge (the Walnut Lane Bridge in Philadelphia), Arthur R. Anderson and his brother Thomas Anderson moved back to Tacoma and founded Concrete Technology Corporation and ABAM Engineers. The brothers, both engineers with degrees from the Massachusetts Institute of Technology, established the company's initial production facility in 1951 at the Port of Tacoma. The initial production facility appears to have consisted of what are now two buildings associated with the company’s research and development laboratory located to the southwest of the Structural Plant. Pre-stressed concrete was a new technology in the United States, and the Andersons’ Tacoma facility was the first pre-stressing factory plant in the country. According to the company’s website, the modest four-employee company was the culmination of a yearlong investigation by the Andersons throughout Europe to see the few pre-stressed concrete structures in existence at that time.

The Andersons developed and promoted the technology of pre-stressed elements for construction throughout the 1950s and 1960s. The company invented and marketed the Anderson Post-tensioning System, developed a family of bridge I-girders that was adopted by the Washington State Department of Transportation as a construction standard, and devised new methods for producing long hollow concrete members and segmental bridge construction, among other innovations. The Concrete Technology Corporation’s success led to growth in sales and demand, and the company’s involvement in many significant, large capital improvement projects in the Pacific Northwest and across the country. This success resulted in the expansion of the company’s facilities at the Port of Tacoma. The original production facility, which is now the research and development laboratory, was constructed in 1951. The company's expansion in the 1950s included the construction of two office and administration buildings circa 1956 and completion of the Structural Plant between 1956 and 1960. Tacoma architect Robert B. Price is credited with the design of the administration buildings and the Structural Plant, along with Thomas and Arthur Anderson who provided the engineering. Robert B. Price is recognized as one of the most prolific architects in the Tacoma area from the 1950s to the 1970s. His work spanned a variety of building types, from single-family homes to banks and public buildings, but he is probably best known for his specialization in his design of schools throughout the Puget Sound region. During his career, Price received 59 national, regional and local awards for design excellence. Among his award winning projects was the Tacoma Fire Station No. 17 (1955); the Joe Long Jr. House on American Lake (1956); Hoyt Elementary School in Tacoma (1958); and his own architectural Tacoma office (1963). Many of Price’s other projects were featured in a variety of magazines including Sunset, House and Garden and Architectural Record.
The property contains a two to three-story industrial plant, constructed in 1956-1960 for the Concrete Technology Corporation at the Port of Tacoma. It functions as the main structural plant for the construction of pre-stressed concrete products, and is one of four extant structures that make up the company's industrial facility from the 1950s. The other structures are located to the southwest of the plant. The entire area between the buildings has been paved with concrete.

The structural plant is oriented to the north-south situated perpendicular to the north side of Port of Tacoma Road and south of the Blair Waterway. Much of the plant is contained within a three-part central massing that has an irregular rectangular plan and poured concrete construction. The three sections stand parallel to each other on a north-south axis. The westernmost section is two-stories tall and contains enclosed office and warehouse space. It has a unique roof comprised of a series of cast concrete barrel vaults set side by side in a north-south configuration. The section's south elevation, and a portion of its west elevation, was originally designed with International style elements and feature courses of ribbon windows on the first and second stories. The structural plant’s main entrance is located in the center of the first story of the south elevation.

The central massing’s center section is three-stories tall and has a similarly designed barrel vaulted roof. The roof shelters a full-height production area that is completely open on the north and south elevations. The section’s eastern elevation is characterized by a band of clerestory windows in the ends of the roof’s barrel vaults. Extending north and south of the central section are large concrete structural beams and support columns that form craneways in and out of the plant. The craneways extend from the plant north into the Blair Waterway and south to Port of Tacoma Road.

The plant’s easternmost section is two-stories tall and continues the roof configuration and overall design of the other two sections. It consists of an enclosed warehouse area. There is an exterior freight entrance in the center of the section's south elevation.

In addition to the three-part central massing and craneways, the structural plant contains an integrated concrete production facility at its northeast corner and several smaller one-story additions along the east and west elevations. The concrete production facility is characterized by pairs of engaged, free-standing concrete silos, metal storage tanks set on steel frame bases, conveyors, and a two-story metal support structure.
Major Bibliographic References:

Pierce County Tax Assessor Online Records

Tacoma Public Library Image Archives—Port of Tacoma Aerial Photographs

Sanborn Fire Insurance Maps

Washington State Digital Archives

Photos

Structural Plant, Looking East

South Elevation, Looking East

South Elevation, Looking Northeast

South Elevation, Looking Northeast
West and South Elevations, Looking Northeast
Historic Property
Inventory Report for

Port of Olympia Rail Line

Port of Olympia Rail Line

Field Site No.: OAHP No.: Common Name: Port of Olympia Rail Line

Historic Name: Port of Olympia Rail Line

Property Address: Olympia, WA 98501

Location Section

County: Thurston
Township/Range/EW: T18R14W
Section: 14

1/4 Sec 1/4 1/4 Sec

Quadrangle: TUMWATER

UTM Reference

Zone: 10
Spatial Type: Point
Acquisition Code: Unknown
Sequence: 1
Easting: 507498
Northing: 5210865

Property Address: Olympia, WA 98501

Survey Name: Port of Olympia Intermodal

Survey Recorder: Pam Trautman
Date Recorded: 2/8/2008

Owner's Name: Port of Olympia
Owner Address: 915 Washington Street NE
City/State/Zip: Olympia, WA 98501

Classification: Object
Resource Status: Survey/Inventory
Comments:

Within a District? No
Contributing?

National Register Nomination:

National Register District/Thematic Nomination Name:

Identification Section

Description Section

Historic Use: Transportation - Rail-Related
Current Use: Transportation - Rail-Related

Plan: Other No. of Stories:

Structural System:

Changes to plan: Extensive Changes to exterior: Style
Changes to original cladding: Changes to other:
Changes to windows: Other (specify):

View of Port of Olympia Rails adjacent to the Port of Olympia Office, view facing NW, taken 2/8/2008

Photography Neg. No (Roll No./Frame No.): Comments:

Form/Type

Page 1 of 3 Printed on 1/19/2010 2:11:05 PM
NARRATIVE SECTION

Property appears to meet criteria for the National Register of Historic Places: No

Property is located in a potential historic district (National and/or local): No

Property potentially contributes to a historic district (National and/or local):

As the fledgling Washington territory expanded, competition between cities was intense to establish a rail terminal, but Tacoma won out over Olympia in 1873, even though Olympia had the best claim as state capital and the Northern Pacific had purchased land in Olympia via an agent. The agent died just before the terminal decision was to be made. It would have taken too long to sort out the legalities of property ownership and the decision went to Tacoma (Miller 1921). Olympia was bypassed altogether for the time being and passengers had to disembark from the train in Tenino and take a wagon to Olympia (Stevenson and Fowler). Fears of economic loss and suggestions that the capital should actually be moved to a more accessible location drove the citizens of Olympia to take matters into their own hands (Miller 1921).

In 1878 the citizens of Olympia constructed a narrow gauge spur line from the main line in Tenino. Nearly every citizen in the cash-strapped Olympia subscribed to the initial fund by contributing cash, land, materials and labor. Money was raised in part by exchanging land for stock. Once Congress passed a bill allowing the county to issue bonds, construction could begin (Miller 1921).

Dubbed the “Tenino Cannonball” because of the way the train pitched and rolled down the roller coaster road bed on homemade cars (Dwelley 1987, Newell 1985), this narrow gauge line was purchased by the Port Townsend Southern Railway (PT&S) in 1890. The line came into town from the south onto a trestle on the west side of the Deschutes waterway and under the 4th Avenue Bridge to terminate at a depot on West Bay Drive. Olympia was able to fend off attempts by other cities to wrest away the capital and thus become successful as a major lumber export and milling center for years to follow (Dwelley 1987). The PT&S became a subsidiary of the Northern Pacific Railroad in 1902 (Hannum 2006), but the railroad is now abandoned (Robins & Martin 2007).

By 1891 the Northern Pacific had constructed its own branch line on another route from Tacoma to Grays Harbor, with a spur to Olympia (Newell 1950). However, this proved inadequate because the Northern Pacific Railroad did not actively support the development of the Olympia waterfront (Hannum 2006).

In 1909-1911, much of the today’s downtown area north of Olympia Avenue and the Deschutes Parkway were filled from intensive dredging of the bay (Stevenson 1982). This dynamic dredging operation—called the Carlyon Fill after its originator, P.H. Carlyon—extended the original Olympia area nearly a mile to the north from Olympia Avenue, creating 29 new city blocks from over 2 million cubic yards of fill (Stevenson and Fowler 1997).

In response to newly created development on the waterfront, the Olympia Terminal Railway Company was created and incorporated by Carlyon with plans to connect rail service with the Northern Pacific’s Point Defiance line. Once the line was completed between the waterfront and East Olympia, ownership was deeded on the very last day of 1915 to a subsidiary of the Union Pacific Railroad—the Oregon Washington Railroad and Navigation Company. This transaction was the death knell to the PT&S which soon abandoned all of its line south of Capitol Lake (Hannum 2006).

In 1916, the Northern Pacific completed its Point Defiance line. After that the Northern Pacific and the Union Pacific’s Oregon Washington Railway and Navigation company both maintained mainline service to the East Olympia depot (Dwelley 1987).

A vote of the citizens of Thurston County later established the Port of Olympia on November 7, 1922, capitalizing on Legislation in 1911 to allow the formation of port districts. The
Historic Property
Inventory Report for

Port of Olympia Rail Line at Olympia, WA 98501

Description of Physical Appearance

- The tracks are currently wooden creosote-treated railroad ties and the rails are now considered substandard in this area compared to the rest of the track on the Port Marine Terminal. They have been consistently repaired and upgraded over the years, and the alignment altered to meet the needs of the Port of Olympia. The rails are in good condition.

Major Bibliographic References

- Robbins, Jeff, and Dan Martin 2007, Archaeological site form for the Roadbed of the Olympia and Chehalis Valley Railroad on file at the DAHP, Olympia.
<table>
<thead>
<tr>
<th>View of</th>
<th>Port of Olympia Rails as they exit the Port complex, view facing SE.</th>
<th>taken 2/8/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography Neg. No (Roll No./Frame No.):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>View of</th>
<th>Port of Olympia Rails as they enter the Port complex, view facing NW.</th>
<th>taken 2/8/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photography Neg. No (Roll No./Frame No.):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

View of		taken

Photography Neg. No (Roll No./Frame No.):		
Comments:		

View of		taken

Photography Neg. No (Roll No./Frame No.):		
Comments:		
Historic Property
Inventory Report for
Port of Olympia Office at 915 NE Washington St, Olympia, WA 98501

LOCATION SECTION

<table>
<thead>
<tr>
<th>Field Site No.:</th>
<th>OAHP No.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Historic Name:</th>
<th>Common Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Olympia Office</td>
<td>(#34-640)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property Address:</th>
<th>915 NE Washington St, Olympia, WA 98501</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>County</th>
<th>Township/Range/EW</th>
<th>Section</th>
<th>1/4 Sec</th>
<th>1/4 Sec</th>
<th>Quadrangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thurston</td>
<td>T18R02W</td>
<td>14</td>
<td>NW</td>
<td></td>
<td>TUMWATER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tax No./Parcel No.</th>
<th>Plat/Block/Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td>91001400000</td>
<td>FCT Ptn NICA Lot 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UTM Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone: 10</td>
</tr>
<tr>
<td>Spatial Type: Point</td>
</tr>
<tr>
<td>Sequence: 1</td>
</tr>
<tr>
<td>Easting: 507500</td>
</tr>
<tr>
<td>Northing: 5209740</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplemental Map(s)</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IDENTIFICATION SECTION

<table>
<thead>
<tr>
<th>Field Recorder:</th>
<th>Pam Trautman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Recorded:</td>
<td>12/6/2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner's Name:</th>
<th>Owner Address:</th>
<th>City/State/Zip:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Olympia</td>
<td>915 Washington Street NE</td>
<td>Olympia, WA 98501</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification:</th>
<th>Resource Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>Survey/Inventory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Register Nomination:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local District:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Register District/Thematic Nomination Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION SECTION

<table>
<thead>
<tr>
<th>Historic Use:</th>
<th>Current Use:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commerce/Trade - Business</td>
<td>Commerce/Trade - Professional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan:</th>
<th>No. of Stories:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural System:</th>
<th>Changes to plan:</th>
<th>Changes to original cladding:</th>
<th>Changes to windows:</th>
<th>Style:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete - Block</td>
<td>Moderate</td>
<td>Intact</td>
<td>Slight</td>
<td>Art Deco - Zig Zag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Changes to interior:</th>
<th>Changes to other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>View of</th>
<th>Photography Neg. No (Roll No./Frame No.):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port of Olympia General Office Building, front facade.</td>
<td>taken 12/6/2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 3 Printed on 1/19/2010 2:08:21 PM
Port of Olympia Office

at 915 NE Washington St, Olympia, WA 98501

Cladding
Concrete - Block

Foundation
Concrete - Block

Roof Material
Asphalt / Composition - Rolled

Roof Type
Hip

NARRATIVE SECTION

Architect: Wohleb, Joseph
Date Of Construction:

Property appears to meet criteria for the National Register of Historic Places: Yes
Property is located in a potential historic district (National and/or local): No

Exports were shipped from Olympia as early as 1848. The principal exports were salmon, logs, and firewood. As shipping increased over the years, the need for a deep water port became acute. Dredging of the shallow harbor took place during 1909-1911 to accommodate that need. The dredging spoils were used to create much of the today’s downtown area north of Olympia Avenue and the Deschutes Parkway (Stevenson 1982). This dynamic dredging operation—called the Carlyon Fill after its originator, P.H. Carlyon—extended the original Olympia commercial area nearly a mile to the north from Olympia Avenue (Stevenson 1982), creating 29 new city blocks from over 2 million cubic yards of fill.

A vote by the citizens of Thurston County later established the Port of Olympia on November 7, 1922, capitalizing on legislation in 1911 to allow the formation of port districts. The first vessel shipped out from the new Port of Olympia in 1925. Shipping from 1928 to 1930 totaled 298 million board feet of lumber. During WWII, The Port warehoused and shipped an assortment of materials for the war effort. The 1950s signified another lumber export boom period. Demand from Japan for raw logs influenced exports during the 1960s. Port expansion includes a marina, the airdustrial center and the airport (Stevenson 1982 and 1985).

The Port of Olympia Office Building was one of the many at the Port designed by Olympia Architect Joseph Wohleb between 1927 and 1949. He designed at least 12 structures for the Port including transit sheds, one of the docks and a cold storage building, since demolished. The Port of Olympia Office Building is the only remaining example of Joseph Wohleb’s work at the Port (Maddox 1985). However, another building, the KCY Radio station located at 1240 North Washington Street was later designed by Robert Wohleb and Associates and constructed by Philips Construction in 1960 (Stevenson 1982 and 2003).

The Port of Olympia Office Building was constructed in 1947 and utilized by the Washington Veneer Company, which was then owned by the Weyerhaeuser Company. One year after completion of the building, Weyerhaeuser sold its interest in Washington Veneer to the Georgia-Pacific Corporation. Georgia-Pacific soon constructed new headquarters on Capitol Way and moved there in 1952 (Christie 2006). The building was then used for other purposes, such as a doctor’s office for mill employees, until the Port remodeled it as their headquarters in 1966 (Eric Egge, Port of Olympia, personal communication 2007).

The Port Office Building was inventoried in 1985 and at that time determined not eligible for inclusion in the NRHP (Stevenson 1985) likely because it had not reached the 50 year threshold. It is not listed on the Olympia Heritage Register Properties Listing Through 2007 (City of Olympia 2007). However, this building mostly retains its original exterior finishes and is in good physical condition. It has been somewhat altered from its original design by replacing the wood windows with the vinyl units. Although designed by famed architect, Joseph Wohleb, finer examples of his work are present in southern Puget Sound. Nevertheless, the building’s historic significance lies in being the only remaining example of Wohleb’s 12 original designs for the Port of Olympia property. As the sole Wohleb structure and as the original administrative building associated with the historic port district, the Port Office building meets the criteria for the listing NRHP under Criteria A and B.

Statement of Significance

A vote by the citizens of Thurston County later established the Port of Olympia on November 7, 1922, capitalizing on legislation in 1911 to allow the formation of port districts. The first vessel shipped out from the new Port of Olympia in 1925. Shipping from 1928 to 1930 totaled 298 million board feet of lumber. During WWII, The Port warehoused and shipped an assortment of materials for the war effort. The 1950s signified another lumber export boom period. Demand from Japan for raw logs influenced exports during the 1960s. Port expansion includes a marina, the airdustrial center and the airport (Stevenson 1982 and 1985).

The Port of Olympia Office Building was one of the many at the Port designed by Olympia Architect Joseph Wohleb between 1927 and 1949. He designed at least 12 structures for the Port including transit sheds, one of the docks and a cold storage building, since demolished. The Port of Olympia Office Building is the only remaining example of Joseph Wohleb’s work at the Port (Maddox 1985). However, another building, the KCY Radio station located at 1240 North Washington Street was later designed by Robert Wohleb and Associates and constructed by Philips Construction in 1960 (Stevenson 1982 and 2003).

The Port of Olympia Office Building was constructed in 1947 and utilized by the Washington Veneer Company, which was then owned by the Weyerhaeuser Company. One year after completion of the building, Weyerhaeuser sold its interest in Washington Veneer to the Georgia-Pacific Corporation. Georgia-Pacific soon constructed new headquarters on Capitol Way and moved there in 1952 (Christie 2006). The building was then used for other purposes, such as a doctor’s office for mill employees, until the Port remodeled it as their headquarters in 1966 (Eric Egge, Port of Olympia, personal communication 2007).

The Port Office Building was inventoried in 1985 and at that time determined not eligible for inclusion in the NRHP (Stevenson 1985) likely because it had not reached the 50 year threshold. It is not listed on the Olympia Heritage Register Properties Listing Through 2007 (City of Olympia 2007). However, this building mostly retains its original exterior finishes and is in good physical condition. It has been somewhat altered from its original design by replacing the wood windows with the vinyl units. Although designed by famed architect, Joseph Wohleb, finer examples of his work are present in southern Puget Sound. Nevertheless, the building’s historic significance lies in being the only remaining example of Wohleb’s 12 original designs for the Port of Olympia property. As the sole Wohleb structure and as the original administrative building associated with the historic port district, the Port Office building meets the criteria for the listing NRHP under Criteria A and B.
Description of Physical Appearance

This rectangular two-story structure was constructed in the Art Moderne style of painted concrete blocks and remains much the same as it was when originally inventoried in 1985 by Stevenson: "Its shallow hip roof is covered with composition shingles and surrounded by a flat parapet painted a contrasting color. The walls are topped by a tiered concrete cornice below the parapet band, and between stories is a scalloped belt course. Across the fact of the parapet on the front (east) walls are Modern-style letters reading ‘PORT OF OLYMPIA – GENERAL OFFICE.’ Centered on the façade is a one-story, flat-roofed porch with glass doors; the porch shelters the main entry door with a glass block sidelights. Fenestration is a single, paired and tripartite double-hung sash with narrow horizontal mullions and projecting concrete sills. A two-story extension to the south has similar fenestration and a side-entry door. The building is maintained in good condition."

The building today continues to be used by the Port of Olympia as an office building. The interior was remodeled in 1966 when the Port moved in (Eric Egge, Port of Olympia, personal communication). The exterior of the building is close to original, except the windows have been replaced with vinyl units. The building is maintained and in good condition.

Major Bibliographic References

- Maddox, Dawn
 - Stevenson, S.
 - 1985, Historic Property Inventory Form for Port of Olympia Office Building, on file at the DAHP, Olympia.
 - 2003, Historic Property Inventory Form for KGY Radio Station, on file at the DAHP, Olympia.
 - City of Olympia