LAKE WASHINGTON: A LOOK TO THE PAST

1. Some 17,000 years ago, large glaciers covered the land, creating the landscape we know today. When the glaciers melted, they formed lakes, including Lake Chelan and Lake Chelan, the second largest lake in Washington. It was formed, becoming the second largest lake in Washington, claiming plots of land for the future.

2. The Boldt Decision was signed on Jan. 22, 1855, by John Harvey and Edward A. Washburne, representing the United States, and representatives of the Puget Sound tribes, establishing boundaries for the Puget Sound tribes. This decision was significant because it helped the Puget Sound tribes establish their land rights and communities.

3. In the 19th century, Seattle was a small settlement, but with coal mining, logging, and farming, it began to grow. By 1890, Seattle had established towns to be established. Juanita, Kirkland, and Kirkland were established along Lake Washington.

4. During the 1800s, the Lake Washington Ship Canal was built by the Army Corps of Engineers between 1911 and 1917, connecting Lake Washington to Puget Sound. This canal lowered the lake level nearly nine feet and the Black River connected to the lake, providing a connection between the lake and Puget Sound.

5. One of the most significant changes to shape the landscape was the construction of the first floating bridge across Lake Washington in 1963. The first Seafair was held in 1950, and the tradition continues today with hydroplane races and aerial shows.

6. Lake Washington's waters have dramatically changed over time. Public concern about cleaning up the lake has increased, with many Eastside communities. The Boldt Decision allocated 50 percent of the annual catch to treaty tribes. The tribe was able to continue fishing in their traditional places. The Boldt Decision led to the rapid expansion of fishing activities in the lake.

7. In 2016, the floating bridge led to the rapid expansion of fishing activities in the lake. The tribe was able to continue fishing in their traditional places. The Boldt Decision led to the rapid expansion of fishing activities in the lake.

8. The last tollbooth for the original SR 520 Bridge was relocated in 1995 to its present location. The SR 520 Bridge was one of the most notable achievements and economic potential in the region. It was one of the most notable achievements and economic potential in the region.

9. The first SR 520 Bridge was longer discharged into the lake. This led to investments in regional waters. Public concern about cleaning up the lake has increased, with many Eastside communities.

10. The SR 520 Bridge was one of the most notable achievements and economic potential in the region. It was one of the most notable achievements and economic potential in the region.

LAKE WASHINGTON: A LOOK TO THE PAST

DO YOU KNOW?

1. The Discovery of a New Species

2. Underwater Photography

3. Lake Washington: A Look to the Past

4. Lake Washington Ship Canal

5. Seattle: A Look to the Past

6. Puget Sound: A Look to the Past

WANT TO LEARN MORE?

1. Points of Interest

2. Connections to the Eastside

3. Bridge Construction and Engineering

4. Additional Interpretive Sign Locations
Travel on Lake Washington today. Travel was a critical part of village life and its abundant resources. Canoe close relationship with the lake observed a vibrant society in visited Lake Washington they shores and its tributaries using canoes native people lived along the lake's region. For thousands of years, the earliest people to navigate Lake Washington's nautical origins of its nautical roots.

Traced through its nautical roots.

Lake Washington boats – progressing with the times

Liners were the primary mode of transportation people traveling to and from Lake Washington's region. For example, the steamers built by Captain John E. Wolff of Portland, won the 30-mile circuit race. With the opening of the Lake Washington Ship Canal and Hiram M. Chittenden Locks in 1917, another means of traveling the lake's waters.

LAKE WASHINGTON BOATS – PROGRESSING WITH THE TIMES

Small, light canoes were excellent for hunting and transport of belongings and other cargo. With the arrival of non-native settlers, row boats were also introduced as another means of traveling the lake's waters.

LAKE WASHINGTON LAKE LEVELS

This photo, taken between 1897 and 1900, shows steamboats near the coal docks of the Oregon Improvement Company. These vessels used coal to fuel their steam engines. The “Multnomah” was the first engine-driven boat to travel from Puget Sound.

LAKE WASHINGTON LAKE LEVELS

Lake levels affected the ancestors of modern day native peoples, displacing many from their villages along Lake Washington and its tributaries, the Black and Cedar Rivers.

LAKE WASHINGTON LAKE LEVELS

The drop in lake level limited available water, making the area a difficult place to sustain the native way of the Duwamish River. After the lowering of the lake during the summer of 1916, the Black River dried up and gradually disappeared. Before the building of the Lake Washington Ship Canal lowered the level of Lake Washington.

LAKE WASHINGTON - A LOOK TO THE PAST

Lake Washington: A Look to the Past

The construction of the Hiram M. Chittenden Locks created a significant drop in the water level of Lake Washington. Since 1920, local boating enthusiasts have kicked off boating season with the Opening Day celebration.

MARITIME CULTURE ON LAKE WASHINGTON

The maritime culture on Lake Washington began more prominently in the Coal Creek mine near Newcastle, another important maritime connection to the east.

MARITIME CULTURE ON LAKE WASHINGTON

Lake Washington hosted one of the nation’s first hydroplane races in 1950. During the first Seafair hydroplane race, Stanley Sayres piloted the hydroplane Slo-Mo-Shun, which set a new world record water speed of 160.32 mph.

MARITIME CULTURE ON LAKE WASHINGTON

Thrilling hydroplane races, crew and sailboat races and a celebrated boat parade, another important maritime celebration: Seafair.

MARITIME CULTURE ON LAKE WASHINGTON

The Montlake Bridge is open to allow the boats to pass through the cut on Seattle Yacht Club’s opening day in 1941. The Seattle Yacht Club has organized a boat parade on Opening Day since its inception in the early 1900’s.

MARITIME CULTURE ON LAKE WASHINGTON

SEATTLE YACHT CLUB OPENING DAY

Sailboats pass through the Montlake Cut on Opening Day of the boating season in 1941. The Montlake Bridge was the only opening since its construction in 1936. During the opening day of the boating season since its inception in the early 1900’s.
1. Lak e Washington: A Look to the P ast
2. Nautical and Maritime
3. Points of Interest
4. Ecology and the Environment
5. Bridge Construction and Engineering
6. Connections to the Eastside

Want to learn more?

Additional interpretive sign locations:

What a view! From where you are standing, you can see Lake Washington and adjacent neighborhoods, wetlands and parks. Looking south, you can view the outline of the Interstate 90 to SR 520 and also crosses Lake Washington.

On a clear day, you may see the Olympic Mountains to the west and the Cascade mountain range to the east. Two of the area’s tallest volcanic peaks may also be visible – Mount Rainier, to the south, is Washington’s tallest at 14,410 feet and Mount Baker, elevation 10,781 feet, to the north.

What’s on the bottom of Lake Washington?

There are many unseen features of the lake, like submerged forests – relics of landslides approximately 1,100 years ago. Divers have found a dozen wooden coal cars from a crash that sit just south of the SR 520 bridge, about 200 feet below the surface. The coal cars sit atop the barge Chehalis that was pulling the load from the Coal Creek mines in Newcastle before it sunk in 1875.

Depending on wind speed and direction, the bridge acts as a wind barrier creating choppy water on the other.

Kirkland

Now known for its beautiful downtown waterfront, non-natives were processed and dried. A tiny promontory jutting into Lake Union, where the boathouse of the University Boat Club now stands.

Montlake Cut

Formerly a portage from Lake Washington to Lake Union.

Laurelhurst & Webster Point Neighborhood

Subalpine prairie was processed and dried. It is now called Webster Point.

Wolf Bay

Windermere Neighborhood

Snowberry place where snowberries grew on the northern shore of the current day Sand Point.

Sand Point Neighborhood

Like a perforation in a canoe, the creek in this location runs into Union Bay and was an Hundreds of military planes buzzed overhead on their way to and from the station. Following its decommissioning in the 1970s, the city of Seattle converted much

Juanita Neighborhood

J. H. Powell’s fish cannery. As a result, Washington’s salmon and trout were not protected, exterminating them.

Union Bay

Montlake Cut and Lake Washington is a refuge for birds, I-5 Lake Washington Ship Canal opened in 1917, the lake level dropped nearly 9 feet, exposing many acres of land surrounding Union Bay.

Warren G. Magnuson Park

Thousands of birds use this area, and a small shipyard town was established in the 1880s.

Kirkland Pier

A small shipyard town established in the 1880s.

Medina Neighborhood

Regional Salish Villages

Lake Washington is an ancestral (or historical) homeland, playground, and resource for the Muckleshoot Indian Tribe. Text is written in Southern Lushootseed style, ( ). Broadly aligned Coast Salish peoples share a related language with regional dialect variants in the north and south portions of Puget Sound.

Lake Washington is 200 feet deep in places, this glacially-formed lake has supported tribal life, commerce and recreation for thousands of years.

Cedar bark.

An area where cedar bark was harvested at the inner end of the Sand Point promontory.

House of osprey.

A location.

Place has rock.

A location with a large boulder.

Mouth of face.

A location.

Elderberry house.

A level.

Climb upland.

Named for an open space near the present town of Juanita.

Promontories with narrow inlets between them.

A small creek of Anderson Bay.

By the water.

A place where the trail descends to the water.

An edge (dripping water).

A spring north of Kirkland.
More Than Thirty Native and Non-Native Fish Species Live In The Lake Washington Watershed.

**ECOLOGY AND THE ENVIRONMENT**

- **Cuwad**
  - **saCeb**
  - **sUespA**
- **SCULPIN**
- **COHO SALMON**
  - (beqelSuAucid)
- **sIexic**

Over 30 fish species inhabit Lake Washington, including:

- **COMPETING AND COEXISTING**
  
  Broadly aligned Coast Salish peoples share a related language with regional dialect variants in the north and south portions of Puget Sound.

- **Native** sculpins - invertebrate predators with a round sucker-like mouth.
- **Lamprey** - eel-like fish that lack jaws and have a round sucker-like mouth.

- **Feathered Friends**
  - **Cormorant** - can dive over 145 feet below the lake bottom and have a natural camouflage.
  - **Canadian Goose** - uses the surface of the water to fish. Cormorant's feathers are not waterproof like other waterfowl, so after fishing, they need to dry their wings.

- **Habitat Changes**
  - The Montlake Cut is part of the U.S. Army Corps of Engineers-built Lake Washington Ship Canal. The Montlake Cut is one of the U.S. Army Corps of Engineers' largest single projects.
  - Approximately 200 acres of wetlands were drained to improve navigation through the Ship Canal. This reduced important habitat for fish, wildlife and plant species.
  - Historically, these habitats included many resident and migratory fish species, including steelhead trout and coho salmon.
  - Changes to the river flow patterns and drainage pattern and affected the migration routes of native Chinook salmon, and eventually, adult salmon began the long journey back to their native streams.

- **JOURNEY IN LAKE WASHINGTON**
  - **A SOCKEYE SALMON'S JOURNEY**
    - Sockeye eggs are incubated in the gravel of cold, freshwater streams, such as the Cedar River, that drain into Lake Washington. Sockeye fry, make their way from the streams into Lake Washington. Sockeye fry spend several months or more in the lake, including freshwater streams, such as the Cedar River, that drain into Lake Washington. Sockeye fry hatch from the eggs.
    - Juvenile sockeye, called alevins, migrate to freshwater streams to begin feeding on Daphnia, a small crustacean commonly referred to as the "water flea.
    - As smolts — young sockeye preparing for the ocean, fish move into the Cedar River and other tributaries, as well as along Lake Washington's shoreline. They migrate back through the locks, the Ship Canal, and into Puget Sound. The elimination of the Black River, as well as the rerouting of the Cedar River into Lake Washington, changed the lake's natural drainage pattern and affected the migration routes of native Chinook salmon, and eventually, adult salmon began the long journey back to their native streams.

- **HABITAT CHANGES**
  - The Montlake Cut is part of the U.S. Army Corps of Engineers-built Lake Washington Ship Canal. The Montlake Cut is one of the U.S. Army Corps of Engineers' largest single projects.
  - Approximately 200 acres of wetlands were drained to improve navigation through the Ship Canal. This reduced important habitat for fish, wildlife and plant species.
  - Historically, these habitats included many resident and migratory fish species, including steelhead trout and coho salmon.
  - Changes to the river flow patterns and drainage pattern and affected the migration routes of native Chinook salmon, and eventually, adult salmon began the long journey back to their native streams.

- **WANT TO LEARN MORE?**
  - Points of Interest
    - Nautical and Maritime
    - Lake Washington: A Look to the Past
  - Additional Interpretive Sign Locations:
  

- **DESIGNING THE NEW BRIDGE AND HIGHWAY TO EXTEND WITHIN THE NATURAL ENVIRONMENT**
  - A Leadership in Energy and Environmental Design (LEED) Silver-registered project.
  - Adding sustainable design elements to reduce environmental impacts and create additional benefits to the local community.
  - A regional bicycle and pedestrian path, and environmentally sustainable features into the design and construction of the new floating bridge.

- **ECOLOGICAL BENEFITS**
  - Stormwater treatment and detention facilities to improve water quality by allowing high-quality rainwater to percolate and filter through the ground, creating a more natural water cycle.
  - Stormwater treatment and detention facilities provide additional benefits to the local economy and trade networks.

- **SUSTAINABLE FEATURES**
  - Stormwater treatment and detention facilities to improve water quality by allowing high-quality rainwater to percolate and filter through the ground, creating a more natural water cycle.
  - Stormwater treatment and detention facilities provide additional benefits to the local economy and trade networks.

- **Additional Benefits**
  - Stormwater treatment and detention facilities to improve water quality by allowing high-quality rainwater to percolate and filter through the ground, creating a more natural water cycle.
  - Stormwater treatment and detention facilities provide additional benefits to the local economy and trade networks.

- **DESIGNING THE NEW BRIDGE AND HIGHWAY TO EXTEND WITHIN THE NATURAL ENVIRONMENT**
  - A Leadership in Energy and Environmental Design (LEED) Silver-registered project.
  - Adding sustainable design elements to reduce environmental impacts and create additional benefits to the local community.
  - A regional bicycle and pedestrian path, and environmentally sustainable features into the design and construction of the new floating bridge.

- **ECOLOGICAL BENEFITS**
  - Stormwater treatment and detention facilities to improve water quality by allowing high-quality rainwater to percolate and filter through the ground, creating a more natural water cycle.
  - Stormwater treatment and detention facilities provide additional benefits to the local economy and trade networks.

- **SUSTAINABLE FEATURES**
  - Stormwater treatment and detention facilities to improve water quality by allowing high-quality rainwater to percolate and filter through the ground, creating a more natural water cycle.
  - Stormwater treatment and detention facilities provide additional benefits to the local economy and trade networks.
**BRIDGE CONSTRUCTION AND ENGINEERING**

**WASHINGTONG'S FLOATING BRIDGE HISTORY**

The floating bridges are a series of bridges built over Lake Washington, starting with the SR 520 Floating Bridge in 1963 and continuing to the SR 520 Bridge in 2015. The SR 520 Bridge, completed in 2015, is the world's longest floating bridge.

**WHY A FLOATING BRIDGE?**

Floating bridges are a cost-effective and efficient solution for crossing water bodies. The SR 520 Bridge is the longest floating bridge in the world, and the technology used to build it is considered a cutting-edge engineering achievement.

**MAKING CONCRETE FLOAT?**

Concrete is made of sand, gravel, and water, but to make it float, the SR 520 Bridge used a technique called precast concrete panels. These panels are made in a factory and then transported to the bridge site, where they are assembled on top of the lakebed.

**DESIGN INNOVATIONS**

The SR 520 Bridge is an example of the ongoing evolution of floating bridge design. It is the world's first floating bridge equipped with a fire detection system. Sensors report the location of the water so it can be detected.

**CONSTRUCTING A PONTON**

The pontoon is divided into chambers that can be hollow, which allows them to float. Each pontoon is made of concrete, and the pontoons are the largest structures ever built.

**ANCHORING SYSTEMS**

The bridge has 45 anchor systems, including gravity anchors, which are sunk into the lakebed, and shallow anchors, which are installed in solid soils near the shore. The bridge's five points of interest are: 1. The SR 520 Bridge; 2. The SR 520 Bridge; 3. The SR 520 Bridge; 4. The SR 520 Bridge; 5. The SR 520 Bridge.

**WANT TO LEARN MORE?**

Visit the Bridge Construction and Engineering website for additional information and resources.

---

**Bridge Construction and Engineering**

**Points of Interest**

1. The SR 520 Bridge
2. The SR 520 Bridge
3. The SR 520 Bridge
4. The SR 520 Bridge
5. The SR 520 Bridge

---

**Connecting to the Eastside**

The bridge is a vital connection to the Eastside of Seattle, providing access to the area for businesses and residents.

---

**Brisde Design**

The bridge's design includes a system of horizontal and vertical supports to keep the floating bridge plant up to two feet in any direction.

---

**Floating Bridge Construction**

The floating bridge's construction involved several stages, including the installation of the pontoons, the assembly of the bridge deck, and the installation of the anchor systems.

---

**Floating Bridge Engineering**

The engineering principles developed for floating bridges are based on a combination of physics, hydraulics, and structural engineering. The SR 520 Bridge is an example of the ongoing evolution of floating bridge design.

---

**Floating Bridge Maintenance**

The floating bridge requires regular maintenance to ensure its safety and effectiveness. The bridge maintenance facility in Medina is equipped with sensors and monitors to detect any potential issues with the bridge.

---

**Floating Bridge History**

The SR 520 Bridge is the world's first floating bridge equipped with a fire detection system. This bridge is an example of the ongoing evolution of floating bridge design.