Transmittal Number PT 07-009	Date February 26, 2007
Publication Distribution To: All Bridge Design Manual holders	
Publication Title Bridge Design Manual Revision M 23-50.01	Publication Number
Originating Organization Washington State Department of Transportation, and Bridge Design Office through Engineering Publications	

Remarks and Instructions

Remarks:

Instructions:

Page numbers and corresponding sheet-counts are given in the table below to indicate portions of the Bridge Design Manual that are to be removed and inserted to accomplish this revision.

Chapter	Remove		Insert	
	Pages	Sheets	Pages	Sheets
Contents	I-XVIII	9	I-XVIII	9
Chapter 5 Contents	5-I-5-VII	4	5-I-5-VII	4
Chapter 05 Concrete Structures 5.6 Precast Prestressed Girder Superstructures	5-111-5-112	1	5.6-21-5.6-22	1
Chapter 5 Appendix 5.3-A7 Slab Overhang Design-Interior Barrier Segment	5.3-A7-1	1	5.3-A7-1	1
Chapter 5 Appendix 5.3-A8 Slab Overhang Design-End Barrier Segment	5.3-A8-1	1	5.3-A8-1	1
Chapter 5 Appendix 5-A	5.6-A3-1 - 5.6-A12-10	41	5.6-A3-1 - 5.6-A12-8	37
	5.6-A19-1 - 5.6-A19-2	1	5.6-A19-1 - 5.6-A19-2	1
	5.6-A20-1 - 5.6-A20-2	1	5.6-A20-1 - 5.6-A20-2	1
	5.6-A21-1 - 5.6-A21-4	2	5.6-A21-1 - 5.6-A21-4	2

Chapter	Remove		Insert	
	Pages	Sheets	Pages	Sheets
Chapter 10 Contents	I-III	2	I-III	2
Chapter 10 Appendix 10-A	$10.2-A 6-1-10.2-\mathrm{A6}-3$	2	$10.2-\mathrm{A} 6-1-10.2-\mathrm{A6}-3$	2
Chapter 13 Contents	I- II	1	$13-\mathrm{I}-13-\mathrm{II}$	1
Chapter 13 Bridge Load Rating 13.1 General	$13-1-13-4$ $13.1-5-13.1-10$	5	$13.1-1-13.1-10$	5
Chapter 13 Bridge Load Rating 13.2 Special Rating Criteria	$13.2-1-13.2-4$	2	$13.2-1-13.2-3$	2
Chapter 13 Bridge Load Rating 13.3 Load Rating Software	N/A	N/A	$13.3-1$	1

Additional copies may be purchased from:
Washington State Department of Transportation
Finance and Administration
Directional Documents and Engineering Publications
PO BOX 47408
Olympia, WA 98504-7408
Phone: (360) 705-7430
Fax: (360) 705-6861
E-mail:engrpubs@wsdot.wa.gov
Please e-mail us if you no longer desire to receive updates, have a quantity change, or your address has changed.

| Distributed By | Signature | |
| :--- | :--- | :--- | :--- |
| Directional Documents and
 Engineering Publications | Phone Number
 (360) 705-7430
 FAX: 705-6861 | Saceran |

Bridge Design Manual LRFD
 M 23-50.01

February 26, 2007

Washington State Department of Transportation

Program Development Division
Bridge and Structures

Americans with Disabilities Act (ADA) Information

Materials can be provided in alternative formats: large print, Braille, cassette tape, or on computer disk for people with disabilities by calling the Office of Equal Opportunity (OEO) at 360-705-7097. Persons who are deaf or hard of hearing may contact OEO through the Washington Relay Service at 7-1-1.

Title VI Notice to Public

It is the Washington State Department of Transportation's (WSDOT) policy to assure that no person shall, on the grounds of race, color, national origin or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its federally funded programs and activities. Any person who believes his/her Title VI protection has been violated, may file a complaint with WSDOT's Office of Equal Opportunity (OEO). For Title VI complaint forms and advice, please contact OEO's Title VI Coordinator at 360-705-7098 or 509-324-6018.

To get the latest information on WSDOT administrative and engineering manuals, sign up for e-mail updates for individual manuals at: www.wsdot.wa.gov/publications/manuals

Washington State Department of Transportation
Administrative and Engineering Publications
PO Box 47304
Olympia, WA 98504-7304
Phone: 360-705-7430
E-mail: engrpubs@wsdot.wa.gov
Internet: www.wsdot.wa.gov/publications/manuals

Contents

Chapter 1 General Information

1.1 Manual Description

August 2006
1.1.1 Purpose
1.1.2 Specifications
1.1.3 Format
1.1.4 Revisions
1.2 Bridge and Structures Office Organization

August 2006
1.2.1 General
1.2.2 Organizational Elements of the Bridge Office
1.2.3 Design Unit Responsibilities and Expertise
1.3 Quality Control/Quality Assurance (QC/QA) Procedure

August 2006
1.3.1 General
1.3.2 Design/Check Procedures
1.3.3 Design/Check Calculation File
1.3.4 PS\&E Review Period
1.3.5 Addenda
1.3.6 Shop Plans and Permanent Structure Construction Procedures
1.3.7 Contract Plan Changes (Change Orders and As-Builts)
1.3.8 Archiving Design Calculations, Design Files, and S\&E Files
1.3.9 Public Disclosure Policy Regarding Bridge Plans
1.3.10 Use of Computer Software
1.4 Coordination With Other Divisions and Agencies

August 2006
1.4.1 Preliminary Planning Phase
1.4.2 Final Design Phase
1.5 Bridge Design Scheduling

August 2006
1.5.1 General
1.5.2 Preliminary Design Schedule
1.5.3 Final Design Schedule
1.6 Guidelines for Bridge Site Visits

August 2006
1.6.1 Bridge Rehabilitation Projects
1.6.2 Bridge Widening and Seismic Retrofits
1.6.3 Rail and Minor Expansion Joint Retrofits
1.6.4 New Bridges
1.6.5 Bridge Demolition
1.6.6 Proximity of Railroads Adjacent to the Bridge Site
1.99 Bibliography

August 2006
$\begin{array}{lll}\text { Appendix 1.5-A1 } & \text { Breakdown of Project Manhours Required Form } & \text { August } 2006 \\ \text { Appendix 1.5-A2 } & \text { Monthly Project Progress Report Form }\end{array}$
Appendix 1.5-A2 Monthly Project Progress Report Form
August 2006

Chapter 2 Preliminary Design

2.1	Preliminary Studies	
	2.1.1	Interdisciplinary Design Studies

2.1.2 Value Engineering Studies
2.1.3 Preliminary Recommendations for Bridge Rehabilitation Projects
2.1.4 Preliminary Recommendations for New Bridge Projects
2.1.5 Type, Size, and Location (TS\&L) Reports
2.2 Preliminary Plan

August 2006
2.2.1 Development of the Preliminary Plan
2.2.2 Documentation
2.2.3 General Factors for Consideration
2.2.4 Permits
2.2.5 Preliminary Cost Estimate
2.2.6 Approvals
2.3 Preliminary Plan Criteria

August 2006
2.3.1 Highway Crossings
2.3.2 Railroad Crossings
2.3.3 Water Crossings
2.3.4 Bridge Widenings
2.3.5 Detour Structures
2.3.6 Retaining Walls and Noise Walls
2.3.7 Bridge Deck Drainage
2.3.8 Bridge Deck Protective Systems
2.3.9 Construction Clearances
2.3.10 Design Guides for Falsework Depth Requirements
2.3.11 Inspection and Maintenance Access
2.4 Selection of Structure Type

November 17, 2006
2.4.1 Bridge Types
2.4.2 Wall Types
2.5 Aesthetic Considerations

November 17, 2006
2.5.1 General Visual Impact
2.5.2 End Piers
2.5.3 Intermediate Piers
2.5.4 Barrier and Wall Surface Treatments
2.5.5 Superstructure
2.6 Miscellaneous

November 17, 2006
2.6.1 Structure Costs
2.6.2 Handling and Shipping Precast Members and Steel Beams
2.6.3 Salvage of Materials
2.7 WSDOT Standard Highway Bridge November 17, 2006
2.7.1 Design Elements
2.7.2 Detailing the Preliminary Plan
2.99 Bibliography

November 17, 2006

4.6 Retrofit Guide August 2006
4.6.1 Vulnerability Study
4.6.2 Material Properties
4.6.3 Earthquake Restrainers
4.6.4 Shear Blocks and Catcher Beams
4.6.5 Post-tensioning Strengthening
4.6.6 Column jacketing
4.6.7 Steel Structures
4.6.8 Base Isolation and Energy Dissipation Devices
4.99 Bibliography August 2006
Appendix 4.1-A1 Earthquake Probability - Poisson Model August 2006
Appendix 4.6-B1 Design Examples of Seismic Retrofits August 2006
Chapter 5 Concrete Structures
5.0 General August 2006
5.1 Material Properties August 2006
5.1.1 Concrete Properties
5.1.2 Reinforcing Steel
5.1.3 Prestressing Steel
5.1.4 Prestress Losses
5.1.5 Prestressing Anchorage Systems
5.1.6 Ducts
5.1.7 Pretensioned Anchorage Zones
5.2 Design ConsiderationAugust 2006
5.2.1 Design Limit States (5.2-15 through 5.2-20 November 17, 2006)
5.2.2 Design Criteria
5.2.3 Service Limit State
5.2.4 Strength Limit State
5.2.5 Strut-and-tie Model
5.2.6 Deflection and Camber
5.2.7 Serviceability
5.2.8 Connections (Joints)
5.2.9 Revised Provisions for Flexural Design
5.2.10 Shrinkage and Temperature Reinforcement
5.2.11 Minimum Reinforcement Requirement
5.3 Reinforced Concrete Box Girder Bridges August 2006
5.3.1 Box Girder Basic Geometries
5.3.2 Reinforcement
5.3.3 Crossbeam
5.3.4 End Diaphragm
5.3.5 Dead Load Deflection and Camber
5.3.6 Thermal Effects
5.3.7 Hinges
5.3.8 Utility Openings
5.4 Hinges and Inverted T-Beam Pier CapsAugust 2006

5.5 Bridge Widenings

August 2006
5.5.1 Review of Existing Structures
5.5.2 Analysis and Design Criteria
5.5.3 Removing Portions of the Existing Structure
5.5.4 Attachment of Widening to Existing Structure
5.5.5 Expansion Joints
5.5.6 Possible Future Widening for Current Designs
5.5.7 Bridge Widening Falsework
5.5.8 Existing Bridge Widenings
5.6 Precast Prestressed Girder Superstructures

August 2006
5.6.1 WSDOT Standard Prestressed Girders (5.6-21 and 5.6-22 February 26, 2007)
5.6.2 Criteria for Girder Design
5.6.3 Fabrication and Handling
5.6.4 Superstructure Optimization
5.6.5 Repair of Damaged Girders at Fabrication
5.6.6 Repair of Damaged Bridge Girders
5.6.7 Short Span Precast Prestressed Bridges
5.6.8 Precast Tub Girders
5.6.9 Prestressed Girder Checking Requirement
5.6.10 Review of shop plans for pretensioned girders
5.7 Roadway Slab

November 17, 2006
5.7.1 Roadway Slab Requirements
5.7.2 Slab Reinforcement
5.7.3 Stay-In-Place Deck Panels
5.7.4 Concrete Bridge Deck Protection Systems
5.8 Cast-in-Place Bridges

August 2006
5.8.1 Design Parameters
5.8.2 Analysis
5.8.3 Post-tensioning
5.8.4 Shear
5.8.5 Temperature Effects
5.8.6 Construction
5.8.7 Post-Tensioning Notes - Cast-in-Place Girders
5.9 Spliced Precast Girders

August 2006
5.9.1 Definitions
5.9.2 WSDOT Criteria for use of Spliced Girders
5.9.3 Girder Segment Design
5.9.4 Joints Between Segments
5.9.5 Review of shop plans for precast post-tensioned spliced-girders
5.9.6 Post-Tensioning Notes \sim Precast Post-Tensioning Spliced-Girders
5.99 Bibliography

August 2006
Appendix 5.1-A1 Standard Hooks August 2006
Appendix 5.1-A2 Minimum Reinforcement Clearance and Spacing for Beams and Columns

August 2006
Appendix 5.1-A3
Appendix 5.1-A4
Appendix 5.1-A5
Reinforcing Bar Properties
August 2006
Tension Development Length of Deformed Bars August 2006
Compression Development Length and Minimum Lap Splice of Grade 60 Bars

August 2006
Appendix 5.1-A6 Tension Development Length of 90° and 180° Standard Hooks August 2006
Appendix 5.1-A7 Tension Lap Splice Lengths of Grade 60 Uncoated Bars ~ Class B August 2006
Appendix 5.1-A8 Prestressing Strand Properties and Development Length August 2006

Appendix 5.2-A1
Appendix 5.2-A2
Appendix 5.2-A3
Appendix 5.3-A1
Appendix 5.3-A2
Appendix 5.3-A3

Appendix 5.3-A4
Appendix 5.3-A5
Appendix 5.3-A6

Appendix 5.3-A7
Appendix 5.3-A8
Appendix 5.6-A1-1
Appendix 5.6-A1-2
Appendix 5.6-A1-3
Appendix 5.6-A1-4
Appendix 5.6-A1-5

Appendix 5.6-A1-6
Appendix 5.6-A1-7
Appendix 5.6-A1-8
Appendix 5.6-A1-9
Appendix 5.6-A1-10
Appendix 5.6-A1-11
Appendix 5.6-A1-12
Appendix 5.6-A1-13
Appendix 5.6-A1-1
Appendix 5.6-A1-2
Appendix 5.6-A1-3
Appendix 5.6-A1-4
Appendix 5.6-A1-5
Appendix 5.6-A1-6
Appendix 5.6-A1-7
Appendix 5.6-A1-8
Appendix 5.6-A1-9
Appendix 5.6-A1-10
Appendix 5.6-A1-11
Appendix 5.6-A1-12
Appendix 5.6-A1-13
Appendix 5.6-A1-14
Appendix 5.6-A1-15
Appendix 5.6-A2-1
Appendix 5.6-A2-2
Appendix 5.6-A2-3
Appendix 5.6-A3-1
Appendix 5.6-A3-2
Appendix 5.6-A3-3
Appendix 5.6-A3-4
Appendix 5.6-A3-5

Positive Moment Reinforcement
Negative Moment Reinforcement
Adjusted Negative Moment Case I
(Design for M@.Face of Support)
Adjusted Negative Moment Case II (Design for M @ 1/4 Point)
Cast-In-Place Deck Slab Design for Positive Moment Regions $\mathrm{f}^{\prime} \mathrm{c}=4,0 \mathrm{ksi}$
Cast-In-Place Deck Slab Design for Negative Moment Regions $\mathrm{f}^{\prime} \mathrm{c}=4,0 \mathrm{ksi}$
Slab Overhang Design-Interior Barrier Segment
Slab Overhang Design-End Barrier Segment
Span Capability of Prestressed I-Girders
Span Capability of Prestressed Wide Flange I-Girders
Span Capability of Thin Flange Bulb Tee Girders
Span Capability of Trapezoidal Tub Girders without Top Flange
Span Capability of Trapezoidal Tub Girders with Top Flange for S-I-P Deck Panels
Span Capability of 1'-0" Solid Slabs with 5" CIP Topping
Span Capability of 1'-6" Voided Slab with 5" CIP Topping
Span Capability of 2'-2" Voided Slab with 5" CIP Topping
Span Capability of Precast Prestressed Double Tee Girders
Span Capability Precast Prestressed Ribbed Girders
Span Capability of Deck Bulb Tee Girders
Span Capability of Post-Tensioned Spliced I-Girders
Span Capability of Post-Tensioned Spliced Tub Girders
I-Girder Sections
Wide Flange Girder Sections
Bulb Tee Girder Sections
Wide Flange bulb Tee Girder Sections
Trapezoidal Tub Girder Sections
Trapezoidal Tub Girders with Top Flange Sections
Decked Bulb Tee Girder Section
Precast Prestressed Slab Sections
Double-Tee and Ribbed Deck Girder Sections
Spliced I-Girder Sections
Spliced Trapezoidal Tub Girder Sections
I-Girder Sections
Decked Girder Sections
Spliced-Girder Sections
Trapezoidal Tub Sections
Single Span Prestressed Girder Construction Sequence
Multiple Span Prestressed Girder Construction Sequence
Raised Crossbeam Prestressed Girder Construction Sequence
W42G Girder Details 1 of 2
W42G Girder Details 2 of 2
W42G End Diaphragm on Girder Details
W42G Abutment Type Pier Diaphragm Details
W42G Fixed Flush-Face Diaphragm at Intermediate Pier Details

August 2006
August 2006
August 2006
August 2006
August 2006

August 2006
August 2006
August 2006

August 2006
February 26, 2007
February 26, 2007
August 2006
August 2006
August 2006
August 2006

August 2006
August 2006
August 2006
August 2006
August 2006
August 2006
August 2006
August 2006
August 2006
June 2006
February 2007
February 2007
February 2007
February 2007
January 2006

Appendix 5.6-A3-6
Appendix 5.6-A3-7
Appendix 5.6-A3-8
Appendix 5.6-A3-9
Appendix 5.6-A3-10
Appendix 5.6-A4-1
Appendix 5.6-A4-2
Appendix 5.6-A4-3
Appendix 5.6-A4-4
Appendix 5.6-A4-5
Appendix 5.6-A4-6
Appendix 5.6-A4-7
Appendix 5.6-A4-8
Appendix 5.6-A4-9
Appendix 5.6-A5-1
Appendix 5.6-A5-2
Appendix 5.6-A5-3
Appendix 5.6-A5-4
Appendix 5.6-A5-5
Appendix 5.6-A5-6
Appendix 5.6-A5-7
Appendix 5.6-A5-8
Appendix 5.6-A5-9
Appendix 5.6-A5-10
Appendix 5.6-A6-1
Appendix 5.6-A6-2
Appendix 5.6-A6-3
Appendix 5.6-A6-4
Appendix 5.6-A6-5
Appendix 5.6-A6-6
Appendix 5.6-A6-7
Appendix 5.6-A6-8
Appendix 5.6-A6-9
Appendix 5.6-A6-10
Appendix 5.6-A7-1
Appendix 5.6-A7-2
Appendix 5.6-A7-3
Appendix 5.6-A7-4
Appendix 5.6-A7-5
Appendix 5.6-A8-1
Appendix 5.6-A8-2
Appendix 5.6-A9-1
Appendix 5.6-A9-2
Appendix 5.6-A10-1
Appendix 5.6-A10-2
Appendix 5.6-A10-3
Appendix 5.6-A10-4
Appendix 5.6-A10-5
Appendix 5.6-A10-6

Appendix 5.6-A10-7
Appendix 5.6-A10-8

W42G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W42G Hinge Diaphragm at Intermediate Pier Details
January 2006
W42G Intermediate Diaphragm Details February 2007
W42G Miscellaneous Bearing Details February 2007
Multiple Simple Spans Intermediate Pier Details
W50G Girder Details 1 of 2
W50G Girder Details 2 of 2
W50G End Diaphragm on Girder Details
W50G Abutment Type Pier Diaphragm Details
January 2006
February 2007
February 2007
February 2007
February 2007
W50G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W50G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W50G Hinge Diaphragm at Intermediate Pier Details January 2006
W50G Intermediate Diaphragm Details February 2007
W50G Miscellaneous Bearing Details February 2007
W58G Girder Details 1 of $3 \quad$ February 2007
W58G Girder Details 2 of $3 \quad$ February 2007
W58G Girder Details 3 of $3 \quad$ February 2007
W58G End Diaphragm on Girder Details February 2007
W58G Abutment Type Pier Diaphragm Details February 2007
W58G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W58G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W58G Hinge Diaphragm at Intermediate Pier Details January 2006
W58G Intermediate Diaphragm Details January 2006
W58G Miscellaneous Bearing Details February 2007
W74G Girder Details 1 of $3 \quad$ February 2007
W74G Girder Details 2 of $3 \quad$ February 2007
W74G Girder Details 3 of $3 \quad$ February 2007
W74G End Diaphragm on Girder Details February 2007
W74G Abutment Type Pier Diaphragm Details February 2007
W74G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W74G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W74G Hinge Diaphragm at Intermediate Pier Details
January 2006
W74G Intermediate Diaphragm Details
February 2007
W74G Miscellaneous Bearing Details February 2007
Girder Details 3 of $3 \quad$ February 2007
Additional Extended Strands January 2006
Miscellaneous Bearing Details February 2007
WF42G Girder Details 1 of $3 \quad$ February 2007
WF42G Girder Details 2 of $3 \quad$ February 2007
WF50G Girder 1 of $3 \quad$ February 2007
WF50G Girder 2 of $3 \quad$ February 2007
WF58G Girder Details 1 of $3 \quad$ February 2007
WF58G Girder Details 2 of $3 \quad$ February 2007
WF74G Girder Details 1 of 3
WF74G Girder Details 2 of 3
WF74G End Diaphragm on Girder Details
WF74G Abutment Type Pier Diaphragm Details
February 2007
February 2007
February 2007
February 2007
WF74G Fixed Flush-Face Diaphragm at Intermediate Pier Details February 2007
WF74G Fixed Recessed-Face Diaphragm at
Intermediate Pier Details
WF74G Hinge Diaphragm at Intermediate Pier Details
WF74G Intermediate Diaphragm Details

February 2007
February 2007
February 2007

Appendix 5.6-A11-1
Appendix 5.6-A11-2
Appendix 5.6-A11-3
Appendix 5.6-A11-4
Appendix 5.6-A11-5
Appendix 5.6-A11-6

Appendix 5.6-A11-7
Appendix 5.6-A11-8
Appendix 5.6-A12-1
Appendix 5.6-A12-2
Appendix 5.6-A12-3
Appendix 5.6-A12-4
Appendix 5.6-A12-8
Appendix 5.6-A12-6

Appendix 5.6-A12-7
Appendix 5.6-A12-8
Appendix 5.6-A13-1
Appendix 5.6-A13-2
Appendix 5.6-A13-3
Appendix 5.6-A14-1
Appendix 5.6-A14-2
Appendix 5.6-A14-3
Appendix 5.6-A15-1
Appendix 5.6-A15-2
Appendix 5.6-A15-3
Appendix 5.6-A16-1
Appendix 5.6-A16-2
Appendix 5.6-A16-3
Appendix 5.6-A16-4
Appendix 5.6-A16-5
Appendix 5.6-A16-6
Appendix 5.6-A17-1
Appendix 5.6-A17-2
Appendix 5.6-A17-3
Appendix 5.6-A17-4
Appendix 5.6-A17-5

Appendix 5.6-A17-6

Appendix 5.6-A18-1
Appendix 5.6-A19-1
Appendix 5.6-A19-2
Appendix 5.6-A20-1
Appendix 5.6-A20-2
WF83G Girder Details 1 of 3
WF83G Girder Details 2 of 3
WF83G End Diaphragm on Girder Details
WF83G Abutment Type Pier Diaphragm Details
WF83G Fixed Flush-Face Diaphragm at Intermediate Pier Details February 2007
WF83G Fixed Recessed-Face Diaphragm at Intermediate

Appendix 5.6-A17-7 Trapezoidal Tub S-I-P Deck Panel Girder Miscellaneous Diaphragm Details
Pier Details
WF83G Hinge Diaphragm at Intermediate Pier Details
WF83G Intermediate Diaphragm Details
WF95G Girder Details 1 of 3
WF95G Girder Details 2 of 3
WF95G End Diaphragm on Girder Details
WF95G Abutment Type Pier Diaphragm Details
WF95G Fixed Flush-Face Diaphragm at Intermediate Pier Details February 2007
WF95G Fixed Recessed-Face Diaphragm at Intermediate
Pier Details
WF95G Hinge Diaphragm at Intermediate Pier Details
WF95G Intermediate Diaphragm Details
W32BTG Girder Details 1 of 3
W32BTG Girder Details 2 of 3
W32BTG Girder Details 3 of 3
W38BTG Girder Details 1 of 3
W38BTG Girder Details 2 of 3
W38BTG Girder Details 3 of 3
W62BTG Girder Details 1 of 3
W62BTG Girder Details 2 of 3
W62BTG Girder Details 3 of 3
Prestressed Trapezoidal Tub Girder Details 1 of 3
Prestressed Trapezoidal Tub Girder Detials 2 of 3
Prestressed Trapezoidal Tub Girder Detials 3 of 3
Prestressed Trapezoidal Tub Girder End Diaphragm on Girder Details
Prestressed Trapezoidal Tub Girder Raised Crossbeam Details
Prestressed Trapezoidal Tub Girder Miscellaneous Diaphragm Details
Trapezoidal Tub S-I-P Deck Panel Girder Details 1 of 4
Trapezoidal Tub S-I-P Deck Panel Girder Details 2 of 4
Trapezoidal Tub S-I-P Deck Panel Girder Details 3 of 4
Trapezoidal Tub S-I-P Deck Panel Girder Details 4 of 4
Trapezoidal Tub S-I-P Deck Panel Girder - End Diaphragm on Girder Details
Trapezoidal Tub S-I-P Deck Panel Girder - Raised Crossbeam Details

Precast Prestressed Stay-In-Place Deck Panel Details
Precast Prestressed 1'-0" Solid Slab Details 1 of 2
Precast Prestressed 1' -0 "' Solid Slab Details 2 of 2
Precast Prestressed 1'-6" Voided Slab - Details 1 of 2
Precast Prestressed 1'-6" Voided Slab - Details 2 of 2

February 2007

February 2007
February 2007
February 2007
June 2006

June 2006
June 2006

June 2006
June 2006
June 2006
June 2006
June 2006

June 2006

June 2006
June 2006
June 2006
February 2007
February 2007
February 2007
February 2007

February 2007
February 2007
February 2007
February 2007

Appendix 5.6-A21-1
Appendix 5.6-A21-2
Appendix 5.6-A21-3
Appendix 5.6-A21-4
Appendix 5.6-A21-5
Appendix 5.6-A21-6
Appendix 5.6-A21-7
Appendix 5.6-A22-1
Appendix 5.6-A22-2
Appendix 5.6-A22-3
Appendix 5.6-A23-1
Appendix 5.6-A23-2
Appendix 5.6-A24-1
Appendix 5.6-A24-2
Appendix 5.6-A24-3
Appendix 5.6-A25-1
Appendix 5.6-A25-2
Appendix 5.6-A25-3
Appendix 5.6-A26-1
Appendix 5.6-A26-2
Appendix 5.6-A26-3
Appendix 5.6-A27-1
Appendix 5.6-A27-2
Appendix 5.6-A27-3
Appendix 5.6-A27-4
Appendix 5.9-A1-1
Appendix 5.9-A1-2
Appendix 5.9-A1-3
Appendix 5.9-A1-4
Appendix 5.9-A1-5
Appendix 5.9-A2-1
Appendix 5.9-A2-2
Appendix 5.9-A2-3
Appendix 5.9-A2-4
Appendix 5.9-A2-5
Appendix 5.9-A3-1
Appendix 5.9-A3-2
Appendix 5.9-A3-3
Appendix 5.9-A3-4
Appendix 5.9-A3-5
Appendix 5.9-A4-1
Appendix 5.9-A4-2
Appendix 5.9-A4-3
Appendix 5.9-A4-4
Appendix 5.9-A4-5
Appendix 5.9-A4-6
Appendix 5.9-A4-7
Appendix 5.9-A4-8
Appendix 5.9-A5-1
Appendix 5.9-A5-2
Appendix 5.9-A5-3

Precast Prestressed 2'-2" Voided Slab - Details 1 of 2
Precast Prestressed 2'-2" Voided Slab - Details 2 of 2
Precast Prestressed Slab Layout
Precast Prestressed Slab End Pier Details 1 of 2
Precast Prestressed Slab End Pier Details 2 of 2
Precast Prestressed Slab Intermediate Pier Details 1 of 2
Precast Prestressed Slab Intermediate Pier Details 2 of 2
Precast Prestressed Double T Details 1 of 2
Precast Prestressed Double T Details 2 of 2
Precast Prestressed Ribbed Girder Pier Details
Precast Prestressed Ribbed Girder Details 1 of 2
Precast Prestressed Ribbed Girder Details 2 of 2
W35DG Deck Bulb Tee Girder Details 1 of 2
W35DG Deck Bulb Tee Girder Details 2 of 2
W35DG Deck Bulb Tee Diaphragm Details
W41DG Deck Bulb Tee Girder Details 1 of 2
W41DG Deck Bulb Tee Girder Details 2 of 2
W41DG Deck Bulb Tee Girder Diaphragm Details
W53DG Deck Bulb Tee Girder Details 1 of 2
W53DG Deck Bulb Tee Girder Details 2 of 2
W53DG Deck Bulb Tee Diaphragm Details
W65DG Deck Bulb Tee Girder Details 1 of 2
W65DG Deck Bulb Tee Girder Details 2 of 2
W65DG Deck Bulb Tee Girder Diaphragm Details
Deck Bulb Tee Girder Diaphragm Details
WF74PTG Spliced Girder Details 1 of 5
WF74PTG Spliced Girder Details 2 of 5
WF74PTG Girder Details 3 of 5
WF74PTG Girder Details 4 of 5
WF74PTG Spliced Girder Details 5 of 5
W83PTG Spliced Girder Details 1 of 5
W83PTG Spliced Girder Details 2 of 5
W83PTG Spliced Girder Details 3 of 5
W83PTG Spliced Girder Details 4 of 5
W83PTG Spliced Girder Details 5 of 5
W95PTG Spliced Girder Details 1 of 5
W95PTG Spliced Girder Details 2 of 5
W95PTG Spliced Girder Details 3 of 5
W95PTG Spliced Girder Details 4 of 5
W95PTG Spliced Girder Details 5 of 5
Trapezoidal Tub Spliced Girder Details 1 of 5
Trapezoidal Tub Spliced Girder Details 2 of 5
Trapezoidal Tub Spliced Girder Details 3 of 5
Trapezoidal Tub Spliced Girder Details 4 of 5
Prestressed Trapezoidal Tub Girder Details 5 of 5
Trapezoidal Tub Spliced Girder End Diaphragm on Girder Details
Trapezoidal Tub Spliced Girder Raised Crossbeam Details
Trapezoidal Tub Spliced Girder Miscellaneous Details
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 1 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 2 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 3 of 5

February 2007
February 2007
February 2007
February 2007
June 2006

Appendix 5.9-A5-4

Appendix 5.9-A5-5

Appendix 5.9-A5-6
Appendix 5.9-A5-7

Appendix 5.9-A5-8

Appendix 5-B1
Appendix 5-B1-1
Appendix 5-B1-2
Appendix 5-B1-3
Appendix 5-B2
Appendix 5-B3
Appendix 5-B4
Appendix 5-B5
Appendix 5-B6
Appendix 5-B7
Appendix 5-B8
Appendix 5-B9
Appendix 5-B10
Appendix 5-B11
Appendix 5-B12
Appendix 5-B13
Appendix 5-B14
Appendix 5-B15

Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 4 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 5 of 5
Trapezoidal Tub S-I-P Deck Panel Girder End Diaphragm on Girder Details
Trapezoidal Tub S-I-P Deck Panel Girder Raised Crossbeam Details
Trapezoidal Tub S-I-P Deck Panel Girder Miscellaneous Diaphragm Details
"A" Dimension for Prestressed Girder Bridges
Girder Details 3 of 3
Additional Extended Strands
Miscellaneous Bearing Details
Pre-approved Post-Tensioning Anchorages
Existing Bridge Widenings
P.T. Box Girder Bridges Single Span

Prestressed Girder Design Example
Cast-in-Place Slab Design Example
Precast Concrete Stay-In-Place (SIP) Deck Panel
W35DG Deck Bulb Tee, 48" Wide
Prestressed Voided Slab with Cast-in-Place Topping
Positive EQ Reinforcement at Interior Pier of a Prestressed Girder
LRFD Wingwall Design-Vehicle Collision
Flexural Strength Calculations for Composite T-Beams
Strut-and-Tie Model Design Example for Hammerhead Pier
Shear and Torsion Capacity of a Reinforced Concrete Beam
Sound Wall Design - Type D-2k

June 2006
June 2006

June 2006

June 2006

June 2006
November 17, 2006
February 2007
January 2006
February 2007
January 2006
August 2006

Chapter 6 Structural Steel

6.0	Structural Steel	August 2006
	6.0.1 Introduction	
6.1	Design Considerations	August 2006
	6.1.1 Codes, Specification, and Standards	
	6.1.2 Preferred Practice	
	6.1.3 Preliminary Girder Proportioning	
	6.1.4 Estimating Structural Steel Weights	
	6.1.5 Bridge Steels	
	6.1.6 Available Plate Sizes	
	6.1.7 Girder Segment Sizes	
	6.1.8 Computer Programs	
	6.1.9 Fasteners	

6.2 Girder Bridges

August 2006
6.2.1 General
6.2.2 I-Girders
6.2.3 Tub or Box Girders
6.2.4 Special Live Load Criteria for Curved Girders
6.3 Design of I-Girders

August 2006
6.3.1 Limit States for LRFD
6.3.2 Composite Section
6.3.3 Flanges
6.3.4 Webs
6.3.5 Transverse Stiffeners
6.3.6 Longitudinal Stiffeners
6.3.7 Bearing Stiffeners
6.3.8 Crossframes
6.3.9 Bottom Laterals
6.3.10 Bolted Field Splice for Girders
6.3.11 Camber
6.3.12 Roadway Slab Placement Sequence
6.3.13 Bridge Bearings for Steel Girders
6.3.14 Surface Roughness and Hardness
6.3.15 Welding
6.3.16 Shop Assembly
6.4 Plan Details
August 2006
6.4.1 General
6.4.2 Structural Steel Notes
6.4.3 Framing Plan
6.4.4 Girder Elevation
6.4.5 Typical Girder Details
6.4.6 Crossframe Details
6.4.7 Camber Diagram and Bearing Stiffener Rotation
6.4.8 Roadway Slab
6.4.9 Handrail Details and Inspection Access
6.5 Shop Plan Review6.99 ReferencesAppendix 6.4-A1 Framing PlanAugust 2006
Appendix 6.4-A2 Girder Elevation August 2006
Appendix 6.4-A3 Girder Details August 2006Appendix 6.4-A5Appendix 6.4-A6
Appendix 6.4-A7Appendix 6.4-A8Appendix 6.4-A9
Appendix 6.4-A4

Steel Plate Girder Field Splice
August 2006

Steel Plate Girder Crossframes
Steel Plate Girder Camber Diagram
Steel Plate Girder Roadway Section
Steel Plate Girder Slab Plan
Handrail

August 2006
August 2006
August 2006
August 2006
August 2006

Chapter 7 Substructure Design

7.1 General Substructure Considerations
7.1.1 Foundation Design Process
7.1.2 Foundation Limit States and Factors
7.1.3 Substructure and Foundation Loads
7.1.4 Concrete Class for Substructure
7.1.5 Foundation Seals
7.2 Foundation Modeling
7.2.1 General Modeling Concepts
7.2.2 Substructure Analysis Flow Chart
7.2.3 Bridge Model Section Properties
7.2.4 Bridge Model Verification
7.2.5 Deep Foundation Modeling
7.2.6 Spread Footing Modeling

August 2006
(7.2-21 and 7.2-22 November 17, 2006)

August 2006
(7.1-7 and 7.1-8 November 17, 2006)
7.3 Column DesignAugust 2006
7.3.1 Preliminary Plan Stage
7.3.2 General Column Criteria
7.3.3 Column Design Flow Chart
7.3.4 Slenderness Effects
7.3.5 Moment Magnification Method
7.3.6 Second-Order Analysis
7.4 Column Reinforcement August 2006
7.4.1 Minimum Longitudinal Reinforcement Ratio
7.4.2 Longitudinal Splices
7.4.3 Ties and Spirals
7.4.4 Longitudinal Development and Confinement Steel
7.4.5 Column Hinges
7.5 Abutment Design and Details August 2006
7.5.1 Abutment Types
7.5.2 Embankment at Abutments
7.5.3 Abutment Loading
7.5.4 WSDOT Temporary Construction Load Cases
7.5.5 Abutment Bearings and Girder Stops
7.5.6 Abutment Expansion Joints
7.5.7 Open Joint Details
7.5.8 Construction Joints
7.5.9 Abutment Wall Design
7.5.10 Drainage and Backfilling
7.6 Wing/Curtain Wall at Abutments August 2006
7.6.1 Traffic Barrier Loads
7.6.2 Wingwall BDM Design
7.6.3 Wingwall Detailing
7.7 Footing Design August 2006
7.7.1 General Footing Criteria
7.7.2 Loads and Load Factors
7.7.3 Geotechnical Report Summary
7.7.4 Spread Footing Structural Design
7.7.5 Footing Concrete Design on Pile Supports
7.8 Drilled Shafts August 2006
7.8.1 Drilled Shaft Design
7.8.2 Lateral Load Analysis
$7.9 \quad$ Piles and Piling August 2006
7.9.1 Pile Types
7.9.2 Pile Design Flow Chart
7.9.3 General Pile Design
7.9.4 Pile Axial Design
7.9.5 Pile Lateral Design
7.9.6 Pile Tip Elevations and Quantities

Chapter 8 Walls \& Buried Structures

8.1 Retaining Walls
 8.1.1 General

August 2006
8.1.2 Common Types of Walls
8.1.3 Design
8.1.4 Miscellaneous Items
8.2 Miscellaneous Underground Structures August 2006
8.2.1 General
8.2.2 Design
8.2.3 References

Appendix 8.1-A1 Pre-approved Proprietary Wall Systems August 2006
Appendix 8.1-A2-1 Sew Wall Elevation August 2006
Appendix 8.1-A2-2 Sew Well Section
August 2006
Appendix 8.1-A3-1 Soldier Pile/Tieback Wall Elevation
August 2006
Appendix 8.1-A3-2 Soldier Pile/Tieback Wall Details 1 of 2
August 2006
Appendix 8.1-A3-3 Soldier Pile/Tieback Wall Details 2 of 2
August 2006
Appendix 8.1-A3-4 Soldier Pile/Tieback Wall Fascia Panel Details
Appendix 8.1-A3-5 Soldier Pile/Tieback Wall Permanent Ground Anchor Details
Appendix 8.1-A4-1 Soil Nail Layout
Appendix 8.1-A4-2 Soil Nail Wall Section
August 2006
August 2006
August 2006
Appendix 8.1-A4-3 Soil Nail Wall Fascia Panel Details
August 2006
Appendix 8.1-A4-4 Soldier Pile/Tieback Wall Fascia Panel Details
Appendix 8.1-A5-1 Cable Fence
August 2006
August 2006
August 2006
Appendix 8.1-A5-2 Cable Fence - Top Mount
August 2006

Chapter 9 Bearings \& Expansion Joints

9.1 Expansion Joints

August 2006
9.1.1 General Considerations
9.1.2 General Design Criteria
9.1.3 Small Movement Range Joints
9.1.4 Medium Movement Range Joints
9.1.5 Large Movement Range Joints
9.2 Bearings

August 2006
9.2.1 General Considerations
9.2.2 Force Considerations
9.2.3 Movement Considerations
9.2.4 Detailing Considerations
9.2.5 Bearing Types
9.2.6 Miscellaneous Details
9.2.7 Contract Drawing Representation
9.2.8 Shop Drawing Review
9.2.9 Bearing Replacement Considerations

Appendix 9.1-A1-1 Expansion Joint Details Compression Seal
August 2006
Appendix 9.1-A2-1 Expansion Joint Details Strip Seal
August 2006
Appendix 9.1-A3-1 Silicone Seal Expansion Joint Details
August 2006

Chapter 10 Signs, Barriers, Approach Slabs \& Utilities

10.1 Sign and Luminaire Supports August 2006
10.1.1 Loads
10.1.2 Bridge Mounted Signs
10.1.3 Sign Bridges Mounted on Bridges
10.1.4 Monotube Sign Structures
10.1.5 Foundations
10.1.6 Truss Sign Bridges: Foundation Sheet Design Guidelines
10.2 Bridge Traffic BarriersAugust 2006
10.2.1 General Guidelines
10.2.2 Bridge Railing Test Levels
10.2.3 Available WSDOT Designs
10.2.4 Design Criteria
10.3 At Grade Cast-in-Place Barriers August 2006
10.3.1 Median Barriers
10.3.2 Shoulder Barriers
10.4 Bridge Traffic Barrier Rehabilitation August 2006
10.4.1 Policy
10.4.2 Guidelines
10.4.3 Design Criteria
10.4.4 WSDOT Bridge Inventory of Bridge Rails
10.4.5 Available Retrofit Designs
10.4.6 Available Replacement Designs
10.5 Bridge Railing August 2006
10.5.1 Design
10.5.2 Railing Types
10.6 Bridge Approach SlabsAugust 2006
10.6.1 Notes to Region for Preliminary Plan
10.6.2 Approach Slab Design and Detailing
10.6.3 Approach Expansion Joints
10.6.4 Skewed Approach Slabs
10.6.5 Bridge Approach Approach Detailing
10.6.6 Pavement Seats on Existing Bridges
10.7 Traffic Barrier on Approach Slabs August 2006
10.7.1 Approach Slab over Wing Walls, Cantilever Walls or Geosynthetic Walls
10.7.2 Approach Slab over SE Walls
10.8 Utilities Installed with New Construction August 2006
10.8.1 General Concepts
10.8.2 Utility Design Criteria
10.8.3 Box Girder Bridges
10.8.4 Traffic Barrier Conduit
10.8.5 Conduit Types
10.8.6 Utility Supports
10.9 Utility Review Procedure for Installation on Existing Bridges August 2006
10.9.1 Utility Review Checklist
10.10 Drainage Design
Appendix 10.1-A1-1 Monotube Sign Structures Sign Bridge Layout June 2006
Appendix 10.1-A1-2 Monotube Sign Structures Cantilever Layout June 2006Appendix 10.1-A2-1 Monotube Sign Structures Structural Details 1Appendix 10.1-A2-2 Monotube Sign Structures Structural Details 2
June 2006June 2006
Appendix 10.1-A3-1 Monotube Sign Structures foundation Type 1

Appendix 10.1-A3-2
Appendix 10.1-A4-1
Appendix 10.1-A4-2
Appendix 10.1-A5-1
Appendix 10.1-A5-2
Appendix 10.2-A1-1
Appendix 10.2-A1-2
Appendix 10.2-A1-3
Appendix 10.2-A2-1
Appendix 10.2-A2-2
Appendix 10.2-A2-3
Appendix 10.2-A3-1
Appendix 10.2-A3-2
Appendix 10.2-A3-3
Appendix 10.2-A4-1
Appendix 10.2-A4-2
Appendix 10.2-A4-3
Appendix 10.2-A5-1
Appendix 10.2-A5-2
Appendix 10.2-A5-3
Appendix 10.2-A6-1
Appendix 10.2-A6-2
Appendix 10.2-A6-3
Appendix 10.2-A7-1
Appendix 10.2-A7-2
Appendix 10.4-A1-1
Appendix 10.4-A1-2
Appendix 10.4-A1-3
Appendix 10.4-A1-4
Appendix 10.4-A1-5
Appendix 10.4-A2-1
Appendix 10.4-A2-2
Appendix 10.4-A2-3
Appendix 10.4-A5-1
Appendix 10.5-A1-1
Appendix 10.5-A1-2
Appendix 10.5-A2-1
Appendix 10.5-A2-2
Appendix 10.5-A3-1
Appendix 10.5-A3-2
Appendix 10.5-A4-1
Appendix 10.5-A4-2
Appendix 10.5-A5-1
Appendix 10.6-A1-1
Appendix 10.6-A1-2
Appendix 10.6-A2-1
Appendix 10.6-A2-2
Appendix 10.8-A1-1
Appendix 10.8-A1-2
Appendix 10.9-A1-1
Appendix 10.10-A1-1
Appendix 10.10-A1-2

Monotube Sign Structures foundation Type 2 and 3
Monotube Sign Structures Double Faced Barrier Foundation
Single Slope Barrier Foundation
Truss Sign Structures Double Faced Barrier Foundation
Truss Sign Structures Single Slope Barrier Foundation
Traffic Barrier - Shape F Detail 1 of 3
Traffic Barrier - Shape F Detail 2 of 3
Traffic Barrier - Shape F Detail 2 of 3
Traffic Barrier - Shape F - Details 1 of 3
Traffic Barrier - Shape F - Details 2 of 3
Traffic Barrier - Shape F - Details 3 of 3
Traffic Barrier - Single Slope Details 1 of 3
Traffic Barrier - Single Slope Details 2 of 3
Traffic Barrier - Single Slope Details 3 of 3
Pedestrian Barrier Details 1 of 3
Pedestrian Barrier Details 2 of 3
Pedestrian Barrier Details 3 of 3
Traffic Barrier - Shape E 42" Detail 1 of 3
Traffic Barrier - Shape E 42" Detail 2 of 3
Traffic Barrier - Shape E 42" Detail 3 of 3
Traffic Barrier - Single Slope 42" Details 1 of 3
Traffic Barrier - Single Slope 42" Details 2 of 3
Traffic Barrier - Single Slope 42" Details 3 of 3
Traffic Barrier - Shape F Luminarie Anchorage Details
Traffic barrier - Single Slope Luminaire Anchorage Details
Thrie Beam Retrofit Concrete Baluster
Thrie Beam Retrofit Concrete Railbase
Thrie Beam Retrofit Concrete Curb
WP Thrie Beam Retrofit SL1 - Details 1 of 1
WP Thrie Beam retrofit SL1 - Details 2 of 2
Traffic Barrier - Shape F Rehabilitation - Details 1 of 3
Traffic Barrier - Shape F Rehabilitation - Details 2 of 3
Traffic Barrier - Shape F Rehabilitation - Details 3 of 3
Collision Rail Connection
Bridge Railing Type Pedestrian Details 1 of 2
Bridge Railing Type Pedestrian Details 2 of 2
Bridge Railing Type BP Details 1 of 2
Bridge Railing Type BP Details 2 of 2
Bridge Railing Type S-BP Details 1 of 2
Bridge Railing Type S-BP Details 2 of 2
Pedestrian Railing Details 1 of 2
Pedestrian Railing Details 2 of 2
Bridge Railing Type Chain Link Snow Fence
Bridge Approach Slab Details 1 of 2
Bridge Approach Slab Details 2 of 2
Pavement Seat Repair Details
Pavement Seat Repair Details
Utility Hanger Details for Prestressed Girders
Utility Hanger Details for Concrete Box Structures
Utility hanger Detials
Bridge Drain Modification
Bridge Drain Types 2 thru 5 Modification for Overlay

June 2006
February 2007
February 2007
February 2007
June 2006

Chapter 11 Detailing Practice

11.1 Detailing Practice
11.1.1 Standard Office Practices
11.1.2 Bridge Office Standard Drawings and Office Examples
11.1.3 Plan Sheets
11.1.4 Structural Steel
11.1.5 Aluminum Section Designations
11.1.6 Abbreviations

Appendix 11.1-A1
Appendix 11.1-A2
Appendix 11.1-A3
Appendix 11.1-A4 Footing Layout

August 2006
August 2006
August 2006
August 2006

Chapter 12 Quantities, Costs \& Specifications

12.1 Quantities - General
August 2006
12.1.1 Cost Estimating Quantities
12.1.2 Not Included in Bridge Quantities List
12.2 Computation of Quantities

August 2006
12.2.1 Responsibilities
12.2.2 Procedure for Computation
12.2.3 Data Source
12.2.4 Accuracy
12.2.5 Excavation
12.2.6 Shoring or Extra Excavation, Class A
12.2.7 Piling
12.3 Construction Costs

August 2006
12.3.1 Introduction
12.3.2 Factors Affecting Costs
12.3.3 Development of Cost Estimates
12.4 Construction Specifications and Estimates

August 2006
12.4.1 General
12.4.2 Definitions
12.4.3 General Bridge S\&E Process
12.4.4 Reviewing Bridge Plans
12.4.5 Preparing the Bridge Cost Estimates
12.4.6 Preparing the Bridge Specifications
12.4.7 Preparing the Bridge Working Day Schedule
12.4.8 Reviewing Projects Prepared by Consultants
12.4.9 Submitting the PS\&E Package
12.4.10 PS\&E Review Period and Turn-in for AD Copy

August 2006
Appendix 12.1-A1 Not Included In Bridge Quantities List August 2006
Appendix 12.2-A1 Bridge Quantities
August 2006
Appendix 12.3-A1 Bridge and StructuresStructural Estimating Aids Construction Costs August 2006

Appendix 12.3-A2
Appendix 12.3-A3
Appendix 12.3-A4
Appendix 12.4-A1
Appendix 12.4-A2
Appendix 12.3-B1 Cost Estimate Summary
Appendix 12.4-B1 Construction Working Day Schedule August 2006

Chapter 13 Bridge Load Rating

13.1 General

February 26, 2007
13.1.1 WSDOT Rating (LRFR)
13.1.2 NBI Rating (LFR)
13.2 Special Rating Criteria

November 17, 2006
13.2.1 Dead Loads
(13.2-1 through 13.2-3 February 26, 2007)
13.2.2 Live Load Distribution Factors
13.2.3 Reinforced Concrete Structures
13.2.4 Concrete Decks
13.2.5 Concrete Crossbeams
13.2.6 In-Span Hinges
13.2.7 Concrete Box Girder Structures
13.2.8 Prestressed Concrete Girder Structures
13.2.9 Concrete Slab Structures
13.2.10 Steel Structures
13.2.11 Steel Floor Systems
13.2.12 Steel Truss Structures
13.2.13 Timber Structures
13.2.14 Widened or Rehabilitated Structures
13.3 Load Rating Software August 2006
13.4 Load Rating Reports August 2006
13.5 Bibliography August 2006

Appendix 13.4-A1 Bridge Rating Summary
August 2006

Contents

Chapter 5 Concrete Structures
5.0 GeneralAugust 2006
5.1 Material Properties August 2006
5.1.1 Concrete Properties
5.1.2 Reinforcing Steel
5.1.3 Prestressing Steel
5.1.4 Prestress Losses
5.1.5 Prestressing Anchorage Systems
5.1.6 Ducts
5.1.7 Pretensioned Anchorage Zones
5.2 Design ConsiderationAugust 2006
5.2.1 Design Limit States5.2.2 Design Criteria
5.2.3 Service Limit State
5.2.4 Strength Limit State
5.2.5 Strut-and-tie Model
5.2.6 Deflection and Camber
5.2.7 Serviceability
5.2.8 Connections (Joints)
5.2.9 Revised Provisions for Flexural Design
5.2.10 Shrinkage and Temperature Reinforcement
5.2.11 Minimum Reinforcement Requirement
5.3 Reinforced Concrete Box Girder Bridges August 2006
5.3.1 Box Girder Basic Geometries
5.3.2 Reinforcement
5.3.3 Crossbeam
5.3.4 End Diaphragm
5.3.5 Dead Load Deflection and Camber
5.3.6 Thermal Effects
5.3.7 Hinges
5.3.8 Utility Openings
5.4 Hinges and Inverted T-Beam Pier Caps August 2006
5.5 Bridge Widenings August 2006
5.5.1 Review of Existing Structures
5.5.2 Analysis and Design Criteria
5.5.3 Removing Portions of the Existing Structure
5.5.4 Attachment of Widening to Existing Structure
5.5.5 Expansion Joints
5.5.6 Possible Future Widening for Current Designs
5.5.7 Bridge Widening Falsework
5.5.8 Existing Bridge Widenings
5.6.1 WSDOT Standard Prestressed Girders (5.6-21 and 5.6-22 February 26, 2007)
5.6.2 Criteria for Girder Design
5.6.3 Fabrication and Handling
5.6.4 Superstructure Optimization
5.6.5 Repair of Damaged Girders at Fabrication
5.6.6 Repair of Damaged Bridge Girders
5.6.7 Short Span Precast Prestressed Bridges
5.6.8 Precast Tub Girders
5.6.9 Prestressed Girder Checking Requirement
5.6.10 Review of shop plans for pretensioned girders
5.7 Roadway Slab

November 17, 2006
5.7.1 Roadway Slab Requirements
5.7.2 Slab Reinforcement
5.7.3 Stay-In-Place Deck Panels
5.7.4 Concrete Bridge Deck Protection Systems
5.8 Cast-in-Place Bridges

August 2006
5.8.1 Design Parameters
5.8.2 Analysis
5.8.3 Post-tensioning
5.8.4 Shear
5.8.5 Temperature Effects
5.8.6 Construction
5.8.7 Post-Tensioning Notes - Cast-in-Place Girders
5.9 Spliced Precast Girders

August 2006
5.9.1 Definitions
5.9.2 WSDOT Criteria for use of Spliced Girders
5.9.3 Girder Segment Design
5.9.4 Joints Between Segments
5.9.5 Review of shop plans for precast post-tensioned spliced-girders
5.9.6 Post-Tensioning Notes \sim Precast Post-Tensioning Spliced-Girders

5.99 Bibliography

August 2006
Appendix 5.1-A1 Standard Hooks
August 2006
Appendix 5.1-A2
Appendix 5.1-A3
Appendix 5.1-A4
Appendix 5.1-A5
Appendix 5.1-A6
Appendix 5.1-A7
Appendix 5.1-A8
Appendix 5.2-A1
Appendix 5.2-A2
Appendix 5.2-A3
Appendix 5.3-A1
Appendix 5.3-A2
Appendix 5.3-A3
August 2006 Beams and Columns

August 2006
Reinforcing Bar Properties
August 2006
Tension Development Length of Deformed Bars
Compression Development Length and Minimum Lap Splice of Grade 60 Bars

August 2006
Tension Development Length of 90° and 180° Standard Hooks August 2006
Tension Lap Splice Lengths of Grade 60 Uncoated Bars ~ Class B August 2006
Prestressing Strand Properties and Development Length August 2006
August 2006
August 2006
August 2006
Positive Moment Reinforcement
August 2006
Negative Moment Reinforcement
August 2006
Adjusted Negative Moment Case I
(Design for M @ Face of Support)
August 2006

Appendix 5.3-A4
Appendix 5.3-A5
Appendix 5.3-A6
Appendix 5.3-A7
Appendix 5.3-A8
Appendix 5.6-A1-1
Appendix 5.6-A1-2
Appendix 5.6-A1-3
Appendix 5.6-A1-4
Appendix 5.6-A1-5
Appendix 5.6-A1-6
Appendix 5.6-A1-7
Appendix 5.6-A1-8
Appendix 5.6-A1-9
Appendix 5.6-A1-10
Appendix 5.6-A1-11
Appendix 5.6-A1-12
Appendix 5.6-A1-13
Appendix 5.6-A1-1
Appendix 5.6-A1-2
Appendix 5.6-A1-3
Appendix 5.6-A1-4
Appendix 5.6-A1-5
Appendix 5.6-A1-6
Appendix 5.6-A1-7
Appendix 5.6-A1-8
Appendix 5.6-A1-9
Appendix 5.6-A1-10
Appendix 5.6-A1-11
Appendix 5.6-A1-12
Appendix 5.6-A1-13
Appendix 5.6-A1-14
Appendix 5.6-A1-15
Appendix 5.6-A2-1
Appendix 5.6-A2-2
Appendix 5.6-A2-3
Appendix 5.6-A3-1
Appendix 5.6-A3-2
Appendix 5.6-A3-3
Appendix 5.6-A3-4
Appendix 5.6-A3-5
Appendix 5.6-A3-6
Appendix 5.6-A3-7
Appendix 5.6-A3-8
Appendix 5.6-A3-9
Appendix 5.6-A3-10
Appendix 5.6-A4-1
Appendix 5.6-A4-2

Adjusted Negative Moment Case II (Design for M @ 1/4 Point)
August 2006
Cast-In-Place Deck Slab Design for Positive Moment Regions $\mathrm{f}^{\prime} \mathrm{c}=4,0 \mathrm{ksi}$
Cast-In-Place Deck Slab Design for Negative Moment Regions $\mathrm{f}^{\prime} \mathrm{c}=4,0 \mathrm{ksi}$

August 2006
Slab Overhang Design-Interior Barrier Segment February 26, 2007
Slab Overhang Design-End Barrier Segment
Span Capability of Prestressed I-Girders
Span Capability of Prestressed Wide Flange I-Girders
Span Capability of Thin Flange Bulb Tee Girders
Span Capability of Trapezoidal Tub Girders without Top Flange
Span Capability of Trapezoidal Tub Girders with Top Flange for S-I-P Deck Panels
Span Capability of 1'-0" Solid Slabs with 5" CIP Topping
Span Capability of $1^{\prime}-6^{\prime \prime}$ Voided Slab with $5^{\prime \prime}$ CIP Topping
Span Capability of 2'-2" Voided Slab with 5" CIP Topping
Span Capability of Precast Prestressed Double Tee Girders
Span Capability Precast Prestressed Ribbed Girders
Span Capability of Deck Bulb Tee Girders
Span Capability of Post-Tensioned Spliced I-Girders
Span Capability of Post-Tensioned Spliced Tub Girders
I-Girder Sections
Wide Flange Girder Sections
Bulb Tee Girder Sections
Wide Flange bulb Tee Girder Sections
Trapezoidal Tub Girder Sections
Trapezoidal Tub Girders with Top Flange Sections
Decked Bulb Tee Girder Section
Precast Prestressed Slab Sections
Double-Tee and Ribbed Deck Girder Sections
Spliced I-Girder Sections
Spliced Trapezoidal Tub Girder Sections
I-Girder Sections
Decked Girder Sections
Spliced-Girder Sections
Trapezoidal Tub Sections
Single Span Prestressed Girder Construction Sequence
Multiple Span Prestressed Girder Construction Sequence
Raised Crossbeam Prestressed Girder Construction Sequence
W42G Girder Details 1 of 2
W42G Girder Details 2 of 2
W42G End Diaphragm on Girder Details
W42G Abutment Type Pier Diaphragm Details
W42G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W42G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W42G Hinge Diaphragm at Intermediate Pier Details
W42G Intermediate Diaphragm Details
W42G Miscellaneous Bearing Details
Multiple Simple Spans Intermediate Pier Details
W50G Girder Details 1 of 2
W50G Girder Details 2 of 2

January 2006
February 2007
February 2007
January 2006
February 2007
February 2007

Appendix 5.6-A4-3
Appendix 5.6-A4-4
Appendix 5.6-A4-5
Appendix 5.6-A4-6
Appendix 5.6-A4-7
Appendix 5.6-A4-8
Appendix 5.6-A4-9
Appendix 5.6-A5-1
Appendix 5.6-A5-2
Appendix 5.6-A5-3
Appendix 5.6-A5-4
Appendix 5.6-A5-5
Appendix 5.6-A5-6
Appendix 5.6-A5-7
Appendix 5.6-A5-8
Appendix 5.6-A5-9
Appendix 5.6-A5-10
Appendix 5.6-A6-1
Appendix 5.6-A6-2
Appendix 5.6-A6-3
Appendix 5.6-A6-4
Appendix 5.6-A6-5
Appendix 5.6-A6-6
Appendix 5.6-A6-7
Appendix 5.6-A6-8
Appendix 5.6-A6-9
Appendix 5.6-A6-10
Appendix 5.6-A7-1
Appendix 5.6-A7-2
Appendix 5.6-A7-3
Appendix 5.6-A7-4
Appendix 5.6-A7-5
Appendix 5.6-A8-1
Appendix 5.6-A8-2
Appendix 5.6-A9-1
Appendix 5.6-A9-2
Appendix 5.6-A10-1
Appendix 5.6-A10-2
Appendix 5.6-A10-3
Appendix 5.6-A10-4
Appendix 5.6-A10-5
Appendix 5.6-A10-6
Appendix 5.6-A10-7
Appendix 5.6-A10-8
Appendix 5.6-A11-1
Appendix 5.6-A11-2
Appendix 5.6-A11-3
Appendix 5.6-A11-4
Appendix 5.6-A11-5

W50G End Diaphragm on Girder Details
February 2007
W50G Abutment Type Pier Diaphragm Details
February 2007
W50G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W50G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W50G Hinge Diaphragm at Intermediate Pier Details January 2006
W50G Intermediate Diaphragm Details
W50G Miscellaneous Bearing Details
W58G Girder Details 1 of 3
W58G Girder Details 2 of 3
W58G Girder Details 3 of 3
W58G End Diaphragm on Girder Details
February 2007
February 2007
February 2007
February 2007
February 2007
February 2007
W58G Abutment Type Pier Diaphragm Details
February 2007
W58G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W58G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W58G Hinge Diaphragm at Intermediate Pier Details January 2006
W58G Intermediate Diaphragm Details January 2006
W58G Miscellaneous Bearing Details
W74G Girder Details 1 of 3
W74G Girder Details 2 of 3
W74G Girder Details 3 of 3
W74G End Diaphragm on Girder Details
W74G Abutment Type Pier Diaphragm Details
February 2007
February 2007
February 2007
February 2007
February 2007
February 2007
W74G Fixed Flush-Face Diaphragm at Intermediate Pier Details January 2006
W74G Fixed Recessed-Face Diaphragm at Intermediate Pier DetailsJanuary 2006
W74G Hinge Diaphragm at Intermediate Pier Details January 2006
W74G Intermediate Diaphragm Details February 2007
W74G Miscellaneous Bearing Details February 2007
Girder Details 3 of $3 \quad$ February 2007
Additional Extended Strands January 2006
Miscellaneous Bearing Details February 2007
WF42G Girder Details 1 of $3 \quad$ February 2007
WF42G Girder Details 2 of $3 \quad$ February 2007
WF50G Girder 1 of $3 \quad$ February 2007
WF50G Girder 2 of 3
WF58G Girder Details 1 of 3
WF58G Girder Details 2 of 3
WF74G Girder Details 1 of 3
WF74G Girder Details 2 of 3
WF74G End Diaphragm on Girder Details
WF74G Abutment Type Pier Diaphragm Details
February 2007
WF74G Fixed Flush-Face Diaphragm at Intermediate Pier Details February 2007
WF74G Fixed Recessed-Face Diaphragm at
Intermediate Pier Details
WF74G Hinge Diaphragm at Intermediate Pier Details
WF74G Intermediate Diaphragm Details
WF83G Girder Details 1 of 3
WF83G Girder Details 2 of 3
WF83G End Diaphragm on Girder Details
WF83G Abutment Type Pier Diaphragm Details
February 2007
WF83G Fixed Flush-Face Diaphragm at Intermediate Pier Details February 2007

Appendix 5.6-A11-6

Appendix 5.6-A11-7
Appendix 5.6-A11-8
Appendix 5.6-A12-1
Appendix 5.6-A12-2
Appendix 5.6-A12-3
Appendix 5.6-A12-4
Appendix 5.6-A12-8
Appendix 5.6-A12-6
Appendix 5.6-A12-7
Appendix 5.6-A12-8
Appendix 5.6-A13-1
Appendix 5.6-A13-2
Appendix 5.6-A13-3
Appendix 5.6-A14-1
Appendix 5.6-A14-2
Appendix 5.6-A14-3
Appendix 5.6-A15-1
Appendix 5.6-A15-2
Appendix 5.6-A15-3
Appendix 5.6-A16-1
Appendix 5.6-A16-2
Appendix 5.6-A16-3
Appendix 5.6-A16-4
Appendix 5.6-A16-5
Appendix 5.6-A16-6
Appendix 5.6-A17-1
Appendix 5.6-A17-2
Appendix 5.6-A17-3
Appendix 5.6-A17-4
Appendix 5.6-A17-5
Appendix 5.6-A17-6
Appendix 5.6-A17-7
Appendix 5.6-A18-1
Appendix 5.6-A19-1
Appendix 5.6-A19-2
Appendix 5.6-A20-1
Appendix 5.6-A20-2
Appendix 5.6-A21-1
Appendix 5.6-A21-2
Appendix 5.6-A21-3
Appendix 5.6-A21-4
Appendix 5.6-A21-5

WF83G Fixed Recessed-Face Diaphragm at Intermediate Pier Details
WF83G Hinge Diaphragm at Intermediate Pier Details
WF83G Intermediate Diaphragm Details
WF95G Girder Details 1 of 3
WF95G Girder Details 2 of 3
WF95G End Diaphragm on Girder Details
WF95G Abutment Type Pier Diaphragm Details
February 2007
WF95G Fixed Flush-Face Diaphragm at Intermediate Pier Details February 2007 WF95G Fixed Recessed-Face Diaphragm at Intermediate Pier Details
WF95G Hinge Diaphragm at Intermediate Pier Details
WF95G Intermediate Diaphragm Details
W32BTG Girder Details 1 of 3
W32BTG Girder Details 2 of 3
W32BTG Girder Details 3 of 3
W38BTG Girder Details 1 of 3
W38BTG Girder Details 2 of 3
W38BTG Girder Details 3 of 3
W62BTG Girder Details 1 of 3
W62BTG Girder Details 2 of 3
W62BTG Girder Details 3 of 3
Prestressed Trapezoidal Tub Girder Details 1 of 3
Prestressed Trapezoidal Tub Girder Detials 2 of 3
Prestressed Trapezoidal Tub Girder Detials 3 of 3
Prestressed Trapezoidal Tub Girder End Diaphragm on Girder Details
Prestressed Trapezoidal Tub Girder Raised Crossbeam Details
Prestressed Trapezoidal Tub Girder Miscellaneous Diaphragm Details
Trapezoidal Tub S-I-P Deck Panel Girder Details 1 of 4
Trapezoidal Tub S-I-P Deck Panel Girder Details 2 of 4
Trapezoidal Tub S-I-P Deck Panel Girder Details 3 of 4
Trapezoidal Tub S-I-P Deck Panel Girder Details 4 of 4
Trapezoidal Tub S-I-P Deck Panel Girder - End Diaphragm on Girder Details
Trapezoidal Tub S-I-P Deck Panel Girder - Raised Crossbeam Details
Trapezoidal Tub S-I-P Deck Panel Girder Miscellaneous Diaphragm Details
Precast Prestressed Stay-In-Place Deck Panel Details
Precast Prestressed 1'-0" Solid Slab Details 1 of 2
Precast Prestressed 1'-0" Solid Slab Details 2 of 2
Precast Prestressed 1'-6" Voided Slab - Details 1 of 2
Precast Prestressed 1'- $6^{\prime \prime}$ Voided Slab - Details 2 of 2
Precast Prestressed 2'-2" Voided Slab - Details 1 of 2
Precast Prestressed 2'-2" Voided Slab - Details 2 of 2
Precast Prestressed Slab Layout
Precast Prestressed Slab End Pier Details 1 of 2
Precast Prestressed Slab End Pier Details 2 of 2

February 2007
February 2007
February 2007
June 2006

June 2006
June 2006
June 2006
February 2007
June 2006

Appendix 5.6-A21-6
Appendix 5.6-A21-7
Appendix 5.6-A22-1
Appendix 5.6-A22-2
Appendix 5.6-A22-3
Appendix 5.6-A23-1
Appendix 5.6-A23-2
Appendix 5.6-A24-1
Appendix 5.6-A24-2
Appendix 5.6-A24-3
Appendix 5.6-A25-1
Appendix 5.6-A25-2
Appendix 5.6-A25-3
Appendix 5.6-A26-1
Appendix 5.6-A26-2
Appendix 5.6-A26-3
Appendix 5.6-A27-1
Appendix 5.6-A27-2
Appendix 5.6-A27-3
Appendix 5.6-A27-4
Appendix 5.9-A1-1
Appendix 5.9-A1-2
Appendix 5.9-A1-3
Appendix 5.9-A1-4
Appendix 5.9-A1-5
Appendix 5.9-A2-1
Appendix 5.9-A2-2
Appendix 5.9-A2-3
Appendix 5.9-A2-4
Appendix 5.9-A2-5
Appendix 5.9-A3-1
Appendix 5.9-A3-2
Appendix 5.9-A3-3
Appendix 5.9-A3-4
Appendix 5.9-A3-5
Appendix 5.9-A4-1
Appendix 5.9-A4-2
Appendix 5.9-A4-3
Appendix 5.9-A4-4
Appendix 5.9-A4-5
Appendix 5.9-A4-6
Appendix 5.9-A4-7
Appendix 5.9-A4-8
Appendix 5.9-A5-1
Appendix 5.9-A5-2
Appendix 5.9-A5-3
Appendix 5.9-A5-4
Appendix 5.9-A5-5
Appendix 5.9-A5-6

Precast Prestressed Slab Intermediate Pier Details 1 of 2
Precast Prestressed Slab Intermediate Pier Details 2 of 2
Precast Prestressed Double T Details 1 of 2
Precast Prestressed Double T Details 2 of 2
Precast Prestressed Ribbed Girder Pier Details
Precast Prestressed Ribbed Girder Details 1 of 2
Precast Prestressed Ribbed Girder Details 2 of 2
W35DG Deck Bulb Tee Girder Details 1 of 2
W35DG Deck Bulb Tee Girder Details 2 of 2
W35DG Deck Bulb Tee Diaphragm Details
W41DG Deck Bulb Tee Girder Details 1 of 2
W41DG Deck Bulb Tee Girder Details 2 of 2
W41DG Deck Bulb Tee Girder Diaphragm Details
W53DG Deck Bulb Tee Girder Details 1 of 2
W53DG Deck Bulb Tee Girder Details 2 of 2
W53DG Deck Bulb Tee Diaphragm Details
W65DG Deck Bulb Tee Girder Details 1 of 2
W65DG Deck Bulb Tee Girder Details 2 of 2
W65DG Deck Bulb Tee Girder Diaphragm Details
Deck Bulb Tee Girder Diaphragm Details
WF74PTG Spliced Girder Details 1 of 5
WF74PTG Spliced Girder Details 2 of 5
WF74PTG Girder Details 3 of 5
WF74PTG Girder Details 4 of 5
WF74PTG Spliced Girder Details 5 of 5
W83PTG Spliced Girder Details 1 of 5
W83PTG Spliced Girder Details 2 of 5
W83PTG Spliced Girder Details 3 of 5
W83PTG Spliced Girder Details 4 of 5
W83PTG Spliced Girder Details 5 of 5
W95PTG Spliced Girder Details 1 of 5
W95PTG Spliced Girder Details 2 of 5
W95PTG Spliced Girder Details 3 of 5
W95PTG Spliced Girder Details 4 of 5
W95PTG Spliced Girder Details 5 of 5
Trapezoidal Tub Spliced Girder Details 1 of 5
Trapezoidal Tub Spliced Girder Details 2 of 5
Trapezoidal Tub Spliced Girder Details 3 of 5
Trapezoidal Tub Spliced Girder Details 4 of 5
Prestressed Trapezoidal Tub Girder Details 5 of 5
Trapezoidal Tub Spliced Girder End Diaphragm on Girder Details
Trapezoidal Tub Spliced Girder Raised Crossbeam Details
Trapezoidal Tub Spliced Girder Miscellaneous Details
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 1 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 2 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 3 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 4 of 5
Trapezoidal Tub S-I-P Deck Panel Spliced Girder Details 5 of 5
Trapezoidal Tub S-I-P Deck Panel Girder End Diaphragm on Girder Details

June 2006

Appendix 5.9-A5-7 Trapezoidal Tub S-I-P Deck Panel Girder Raised Crossbeam Details

June 2006
Appendix 5.9-A5-8
Appendix 5-B1
Appendix 5-B1-1
Appendix 5-B1-2
Appendix 5-B1-3
Appendix 5-B2
Appendix 5-B3
Appendix 5-B4
Appendix 5-B5
Appendix 5-B6
Appendix 5-B7
Appendix 5-B8
Appendix 5-B9
Appendix 5-B10
Appendix 5-B11
Appendix 5-B12
Appendix 5-B13
Appendix 5-B14
Appendix 5-B15
Trapezoidal Tub S-I-P Deck Panel Girder Miscellaneous

Diaphragm Details
"A" Dimension for Prestressed Girder Bridges
Girder Details 3 of 3
Additional Extended Strands
Miscellaneous Bearing Details
Pre-approved Post-Tensioning Anchorages
Existing Bridge Widenings
P.T. Box Girder Bridges Single Span

Prestressed Girder Design Example
Cast-in-Place Slab Design Example
Precast Concrete Stay-In-Place (SIP) Deck Panel
W35DG Deck Bulb Tee, 48" Wide
Prestressed Voided Slab with Cast-in-Place Topping
Positive EQ Reinforcement at Interior Pier of a Prestressed Girder
LRFD Wingwall Design-Vehicle Collision
Flexural Strength Calculations for Composite T-Beams
Strut-and-Tie Model Design Example for Hammerhead Pier
Shear and Torsion Capacity of a Reinforced Concrete Beam
Sound Wall Design - Type D-2k

June 2006
November 17, 2006
February 2007
January 2006
February 2007
January 2006
August 2006

Type	Depth in	Unit Weight k/ft	Max. Span ft	Relative Cost Factor	Fabrication Cost Range		Final In-Place Cost**
W42G	42.00	0.424	85	0.75	$\$ 85$	$\$ 90$	$\$ 99$
W50G	50.00	0.585	110	0.83	$\$ 95$	$\$ 100$	$\$ 110$
W58G	58.00	0.672	125	0.92	$\$ 105$	$\$ 110$	$\$ 121$
W74G	73.50	0.831	150	1.00^{*}	$\$ 115$	$\$ 120$	$\$ 132$
WF42G	42.00	0.806	115	1.35	$\$ 150$	$\$ 155$	$\$ 178$
WF50G	50.00	0.859	130	1.44	$\$ 160$	$\$ 165$	$\$ 190$
WF58G	58.00	0.913	145	1.52	$\$ 170$	$\$ 175$	$\$ 201$
WF74G	74.00	1.020	165	1.61	$\$ 180$	$\$ 185$	$\$ 213$
W83G	82.61	1.087	175	1.70	$\$ 190$	$\$ 195$	$\$ 224$
W95G	94.49	1.167	160	2.00	$\$ 200$	$\$ 230$	$\$ 265$
WBT32G	32.00	0.598	75	1.57	$\$ 150$	$\$ 180$	$\$ 207$
WBT38G	38.00	0.638	90	1.61	$\$ 155$	$\$ 185$	$\$ 213$
WBT62G	62.00	0.798	130	1.74	$\$ 170$	$\$ 200$	$\$ 230$
U54G4	54.00	1.154	130	3.40	$\$ 290$	$\$ 390$	$\$ 449$
U54G5	54.00	1.234	130	3.44	$\$ 295$	$\$ 395$	$\$ 454$
U54G6	54.00	1.394	120	3.48	$\$ 300$	$\$ 400$	$\$ 460$
U66G4	66.00	1.343	155	3.44	$\$ 295$	$\$ 395$	$\$ 454$
U66G5	66.00	1.423	150	3.48	$\$ 300$	$\$ 400$	$\$ 460$
U66G6	66.00	1.583	145	3.53	$\$ 305$	$\$ 405$	$\$ 466$
U78G4	78.00	1.531	170	3.70	$\$ 325$	$\$ 425$	$\$ 489$
U78G5	78.00	1.611	170	3.79	$\$ 335$	$\$ 435$	$\$ 500$
U78G6	78.00	1.771	165	3.88	$\$ 345$	$\$ 445$	$\$ 512$
UF60G4	60.00	1.342	150	3.48	$\$ 300$	$\$ 400$	$\$ 460$
UF60G5	60.00	1.422	150	3.53	$\$ 305$	$\$ 405$	$\$ 466$
UF60G6	60.00	1.582	135	3.57	$\$ 310$	$\$ 410$	$\$ 472$
UF72G4	72.00	1.530	165	3.62	$\$ 315$	$\$ 415$	$\$ 477$
UF72G5	72.00	1.610	170	3.66	$\$ 320$	$\$ 420$	$\$ 483$
UF72G6	72.00	1.770	160	3.70	$\$ 325$	$\$ 425$	$\$ 489$
UF84G4	84.00	1.719	190	3.96	$\$ 355$	$\$ 455$	$\$ 523$
UF84G5	84.00	1.799	185	4.05	$\$ 365$	$\$ 465$	$\$ 535$
UF84G6	84.00	1.959	170	4.14	$\$ 375$	$\$ 475$	$\$ 546$
WF74PTG	74.00	1.020	175	1.31	$\$ 120$	$\$ 150$	$\$ 173$
W83PTG	82.61	1.087	205	1.35	$\$ 130$	$\$ 155$	$\$ 178$
W95PTG	94.49	1.167	235	1.31	$\$ 145$	$\$ 150$	$\$ 173$

* W74G is used as basis for relative cost analysis
** The final In-Place Cost is based on 1.15 x Fabrication Cost. Producers should be consulted for shipping circumstances

3. Girder Spacing

Consideration must be given to the slab cantilever length to determine the most economical girder spacing. This matter is discussed in Section 5.6.4.B. The slab cantilever length should be made a maximum if a line of girders can be saved. The spacing of the interior girders must be considered at the same time. Once the positions of the exterior girders have been set, the positions and lengths of interior girders can be established. The following guidance is suggested.
a. Straight Spans

On straight constant width roadways, all girders should be parallel to bridge centerline and girder spacing should be equal.
b. Tapered Spans

On tapered roadways, the minimum number of girder lines should be determined as if all girder spaces were to be equally flared. As many girders as possible, within the limitations of girder capacity should be placed. Slab thickness may have to be increased in some locations in order to accomplish this.
c. Curved Spans

On curved roadways, normally all girders will be parallel to each other. It is critical that the exterior girders are positioned properly in this case, as described in Subsection 5.6.4.B.
d. Geometrically Complex Spans

Spans which are combinations of taper and curves will require especially careful consideration in order to develop the most effective and economical girder arrangement. Where possible, girder lengths and numbers of straight and harped strands should be made the same for as many girders as possible in each span.
e. Number of Girders in a Span

Usually all spans will have the same number of girders. Where aesthetics of the underside of the bridge is not a factor and where a girder can be saved in a short side span, consideration should be given to using unequal numbers of girders. It should be noted that this will complicate crossbeam design by introducing torsion effects and that additional reinforcement will be required in the crossbeam.

B. Slab Cantilevers

The selection of the location of the exterior girders with respect to the curb line of a bridge is a critical factor in the development of the framing plan. This location is established by setting the curb distance, which is that dimension from centerline of the exterior girder to the adjacent curb line. For straight bridges, the distance between the edge of girder and the curb will normally be no less than $2^{\prime}-6^{\prime \prime}$ for W42G, W50G, and W58G; $3^{\prime}-0^{\prime \prime}$ for W74G; and $3^{\prime}-6^{\prime \prime}$ for WF74G, W83G, and W95G. Some considerations which affect this are noted below.

1. Appearance

In the past, some prestressed girder bridges have been designed by placing the exterior girders directly under the curb (traffic barrier). This gives a very poor bridge appearance and is uneconomical. Normally, for best appearance, the largest slab overhang which is practical should be used.

5.7 Roadway Slab

The following information is intended to provide guidance for slab thickness and transverse and longitudinal reinforcement of roadway slab. Information on deck deterioration prevention systems is section 5.7.4.

5.7.1 Roadway Slab Requirements

A. Slab Thickness

Slab thickness for prestressed girder bridges shall be taken as shown in Table 5.7.2-2.
The minimum slab thickness is established in order to ensure that overloads on the bridge will not result in premature slab cracking.
B. Computation of Slab Strength

The thickness for usual slabs are shown in Figure 5.7.1-1 and Figure 5.7.1-2. The slab design span and thickness are defined in Table 5.7.2-2

The thickness of the slab and reinforcement in the area of the cantilever may be governed by traffic barrier loading. Wheel loads plus dead load shall be resisted by the sections shown in Figure 5.7.1-2.

Cantilever loads may govern the slab thickness just inside the exterior girder as shown by " Z " in Figure 5.7.1-2.

Design of the cantilever is normally based on the expected depth of slab at centerline of girder span. This is less than the dimensions at the girder ends (somtimes).

Depths for Slab Design at Centerline of Girder Span

Depths for Slab Design at Deck Overhang Figure 5.7.1-2

C. Computation of "A" Dimension

The distance from the top of the slab to the top of the girder at centerline bearing is represented by the "A" Dimension. It is calculated in accordance with the guidance of Appendix B. This ensures that adequate allowance will be made for excess camber, transverse deck slopes, vertical and horizontal curvatures. Ideally the section at centerline of span will have the final geometry shown in Figure 5.7.1-1. Where temporary prestress strands at top of girder are used to control the girder stresses due to shipping and handling, the "A" dimension must be adjusted accordingly.

The note in left margin of the Layout Sheet should read: "A" Dimen. = X " (not for design).

Notes:

1. Top and bottom mats each carry one-half the tension impact load.
2. Only Design Case 1 of LRFD A13.4.1 is considered. Designer must also check Design Cases 2 and 3.
3. Section considered is a vertical section through the slab overhang at the toe of the barrier.
Prestressed Concrete Superstructure

8．FOR SAWTOOTH DETALS SEE W42G GIRDER DETALLS 2 OF 2 ．
 PRETENSIONED，THESE TEMPORARY STRANS SHALL BE UN
BUT THE END IO＇O＂OF THE GIRDER LENGTH．AS AN ALTERNATE，
IS TEMPORARY STRANDS MAY BE POST－TENSIONED BEFORE THE GIRDER IS
LIFTED FROM THEORM．TEMPORAY STRNDS SHAL BE CUT AFTER ALL
GIRDERS ARE ERECTED，BUT BEFORE DIAPARAGMS ARE CAST．

	$\stackrel{\sim}{\sim}$	\therefore		$\stackrel{\sim}{\sim}$	\％	
N	¢	\％	ぁ		\％	O
\times	10y	\％	0	$\begin{array}{\|c} \hline ⿳ 亠 口 冋 ⿱ 亠 䒑 口 阝 ~ \\ \hline \end{array}$	\％	
	$\stackrel{\stackrel{a}{\sim}}{\sim}$	$\stackrel{\sim}{\sim}$	\because	$\stackrel{1}{2}$	$\stackrel{4}{2}$	
恶范	＊	∞	\bigcirc	\bigcirc		
		0				发

BRIDGE DESIGN MANUAL
FEBRUARY 2007

Appendix A
Prestressed Concrete Superstructure
$42 G$ End Diaphragm
on Girder Details

Appendix A

Appendix A

Appendix A

Prestressed Concrete Superstructure

W42G Miscelleneous
Diaphragm Details

Appendix A

Appendix A

Appendix A
Prestressed Concrete Superstructure

Appendix A
Prestressed Concrete Superstructure

Prestressed Concrete Superstructure

WITH A $9^{\prime \prime}$ LONG 90° HOOK TO WITHIN $3^{\prime \prime}$ CLEAR OF THE BOTTOM OF THE
GIRDER． 6．CAUTION SHALL BE EXERCISED IN HANDLING AND PLACING GIRDERS．ALL
GIRDERS SHALL BE CHECKED BY THE CONTRACTOR TO ENSURE THAT THEY
ARE BRACED ADEQUATELY TO PREVENT TIPPING AND TO CONTROL LATERAL
BENDING DURING SHIPPING．ONCE ERECTED．ALL GIRDERS SHALL BE BRACED BENDING DURING SHIPPING．ONCE ERECTED，ALL GIRDERS SHALL BE BRACED
LATERALLY TO PREVENT TIPPING UNTIL THE DIAPHRAGMS ARE CAST AND LATERALLY
CURED．
 FOR SAWTOOTH DETAILS SEE W58G GIRDER DETAILS 2 OF 3. 9．TEMPORARY STRANDS ARE EITHER PRETENSIONED OR POST－TENSIONED．IF BUT THE END 10^{\prime}＇－O＂OF THE GIRDER LENGTH．AS AN ALTERNATE， TEMPORARY STRANDS MAY BE POST－TENSIONED BEFORE THE GIRDER IS
LIFTED FROM THE FORM．TEMPORARY STRANDS SHALL BE CUT AFTER ALL
GIRDERS ARE ERECTED，BUT BEFORE DIAPHRAGMS ARE CAST．

Hinge Diaph．on Interm．Pier	C	NO
Fixed Diaph．＠interm．Pier	D	NO

－
 STANDARD
PRESTRESSED CONCRETE GIRDERS \％ 1

．

解

$$
B 2=3^{\prime \prime}(65)
$$

＊＊The number of lifting strands shall be
basid on 10 kips per eech 1 ＂＂l strand and
14 kips per each $0.6^{\prime \prime} \otimes l \mid 1$ ting strand．

罡岂

APPLY APPROVED RET1
OR $1 / 4 "$ ETCH TO SIDE
bRIDGE DESIGN MANUAL
FEBRUARY 2007
Hdyla $=$

 3＂\because OPEN HOLE＊
END TYPE B

 | MARK LIZE |
| :--- | :--- | :--- |

\rightarrow

$=$

GIRDER ELEVATION

$2 \longdiv { 6 1 } * 4, \sqrt{63} * 5 \& 2 \sqrt{67} * 3$

品

（a）MヨI＾

$$
2
$$ GI WI2 TIES AT I2＂VERTICAL

SPACINGG STAGGER SPACING ON
ALT．STRRPPS．ADJUTS SPAING

END TYPE A

保

$\frac{\text { TYPICAL END ELEVATION }}{\text { END TYPE C SHOWN，OTHER END TYPES SIMLLAR．}}$
ρ FIELD BENDING REQUIRED TO OBTAIN $1 /{ }^{\prime \prime}{ }^{\prime \prime}$
CONCRETE COVER AT PAVEMENT SEAT．
${ }^{\rho}{ }_{\mathrm{C}}^{\mathrm{C}}$

＊＊＊－

$-\frac{1}{\square!}$

 -1WOVヌHdVIO ヨエVIGヨWヌヨ｜N｜
＊

10

Prestressed Concrete Superstructure

Appendix A
Prestressed Concrete Superstructure

$$
\begin{aligned}
& \frac{\text { CONSTRUCTION }}{\text { SEQUENCE }} \\
& \text { (1) CROSSBEAM } \\
& \text { (2) PLACE GIRDER ON BLOCKS } \\
& \text { (3) DIAPHRAGM STAGE } 2 \\
& \text { (4) ROADWAY SLAB } \\
& \text { (5) COMPLETE DIAPHRAGM }
\end{aligned}
$$

JANUARY 2006
Appendix A

JANUARY 2006

PLAN - HINGE DIAPHRAGM
100 MAX. SKEW FOR HINGE DIAPHRAGM.

* FOR EXTENDED STRAND DETALL SEE GIRDER SHEET

Appendix A
Prestressed Concrete Superstructure

GIRDER ELEVATION

$\begin{aligned} & \text { W74G } \text { Girder } \\ & \text { Details } 1 \text { of } 3\end{aligned}$

6．CAUTION SHALL BE EXERCISED IN HANDLING AND PLACING GIRDERS，ALL
GIIDERS SAALLE E HECKED BY THE CONTRACTOR TO ENSURE THAT THEY
ARE BRACED ADEUAELY TO PEVENTIPPING AND CONROLATERAL
BEEDING DURING SHIPPING．ONGE ERECTED．ALA GIRDERS SHALL BE

FORMS FOR BEARING PAD RECESSES SHALL BE CONSTRUCTED AND
FASTENED IN SUCH A MANNER AS TO NOT CAUSE DAMAGE TO THE GIRDER
DURING THE STRAND RELEASE OPERATION． FOR SAWTOOTH DETAILS SEE W74G GIRDER DETAILS 2 OF 3.
9．TEMPORARY STRANDS ARE EITHER PRETENSIONED OR POSTT－TENSIONED．IF BUT THE END 10＇O＂OF THE GIRDER LENGTT．AS AN ALTERNATE，
TEMPORARY STRAND MAY GE POSTTTENSIONED AEFORE THE GIRDER IS
LIITED FROM THE FORM．TEMPRARY STRAND SHAL BE CUT AFTER ALL
GIRDERS ARE ERECTED，BUT BEFORE DIAPHRAGMS ARE CAST．

BRIDGE DESIGN MANUAL
FEBRUARY 2007为

$\begin{aligned} & \text { I } \\ & \text { 岂 } \\ & \text { 岕 } \\ & \text { く } \\ & \text { 心 } \end{aligned}$	$\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{\underset{\sim}{2}}$	\because	$\underset{\sim}{\stackrel{\rightharpoonup}{u}}$	$\stackrel{\ddot{\sim}}{\underset{\sim}{\sim}}$	2
N	ぁ	亏	ぁ		亏
λ	$\begin{aligned} & 0 \\ & \vdots \\ & -2 \end{aligned}$	\％	$\begin{aligned} & 1 \\ & \vdots \\ & \vdots \end{aligned}$		亏
\times	$\begin{array}{\|c\|} \hline ⿳ 亠 二 口 斤 口 ⿱ 亠 䒑 口 \mid ~ \\ \vdots \end{array}$	\％	$\begin{array}{\|c} \hline ⿳ 亠 二 口 犬 \\ \vdots \\ \vdots \end{array}$	$\begin{aligned} & \hline \bar{\vdots} \\ & \vdots \end{aligned}$	亏
	$\stackrel{\stackrel{i n}{i}}{\underset{\sim}{4}}$	$\stackrel{\stackrel{4}{\sim}}{\underset{\sim}{2}}$	2	2	$\stackrel{\sim}{4}$
	\varangle	\oplus	u	－	山
	$\begin{array}{\|c} \frac{1}{5} \\ \frac{0}{0} \\ \frac{1}{0} \\ \frac{5}{0} \\ \frac{2}{2} \\ \frac{0}{0} \\ \frac{0}{0} \\ \frac{\pi}{4} \\ \hline \end{array}$				

bRIDGE DESIGN MANUAL

Appendix A

JANUARY 2006
HINGE BAR PLAN

typical hinge section

Appendix A
Girder Details 3 of 3
Prestressed Concrete Superstructure
BRIDGE DESIGN MANUAL
FEBRUARY 2007

z
z
\vdots
u
u
u

POST-TENSIONED ALTERNATE

JANUARY 2006

BRIDGE DESIGN MANUAL

FEBRUARY 2007

Appendix A

bRIdGE design manual

bRIDGE DESIGN MANUAL

Appendix A
Prestressed Concrete Superstructure
$\begin{aligned} & \text { WF74G } \text { Girder } \\ & \text { Details } 1 \text { of } 3\end{aligned}$

BRIDGE DESIGN MANUAL
Appendix A
Prestressed Concrete Superstructure

BRIDGE DESIGN MANUAL
FEBRUARY 2007

WF74G Abutment Type Pier
Diaphragm Details
 TVดNVW NงISAG Я૭aIצg
FEBRUARY 2007

$$
0
$$

Appendix A

Prestressed Concrete Superstructure

$$
01
$$

dimensions are along diaphragm

Appendix A
Prestressed Concrete Superstructure

WF83G Abutment Type Pier
Diaphragm Details
TVดNVW NפISAG G૭aIצg
FEBRUARY 2007

Appendix A

Appendix A
Prestressed Concrete Superstructure

Appendix A
Prestressed Concrete Superstructure STRAND PATTERN HAPPED STRAND LOCATION SERUENCE.
SHALL BE AS SHOWN (1), (2) ETC.

Appendix A
Prestressed Concrete Superstructure

WF95G Abutment Type Pier
bRIDGE DESIGN MANUAL
Appendix A
Prestressed Concrete Superstructure

Appendix A

Appendix A
bRIDGE DESIGN MANUAL

FEBRUARY 2007 at Intermediate Pier Details

Appendix A

Appendix A
Prestressed Concrete Superstructure

Appendix A
Prestressed Concrete Superstructure

Contents

Chapter 10 Signs, Barriers, Approach Slabs \& Utilities

10.1 Sign and Luminaire Supports

August 2006
10.1.1 Loads
10.1.2 Bridge Mounted Signs
10.1.3 Sign Bridges Mounted on Bridges
10.1.4 Monotube Sign Structures
10.1.5 Foundations
10.1.6 Truss Sign Bridges: Foundation Sheet Design Guidelines
10.2 Bridge Traffic Barriers

August 2006
10.2.1 General Guidelines
10.2.2 Bridge Railing Test Levels
10.2.3 Available WSDOT Designs
10.2.4 Design Criteria
10.3 At Grade Cast-in-Place Barriers

August 2006
10.3.1 Median Barriers
10.3.2 Shoulder Barriers
10.4 Bridge Traffic Barrier Rehabilitation August 2006
10.4.1 Policy
10.4.2 Guidelines
10.4.3 Design Criteria
10.4.4 WSDOT Bridge Inventory of Bridge Rails
10.4.5 Available Retrofit Designs
10.4.6 Available Replacement Designs
10.5 Bridge Railing

August 2006
10.5.1 Design
10.5.2 Railing Types
10.6 Bridge Approach Slabs

August 2006
10.6.1 Notes to Region for Preliminary Plan
10.6.2 Approach Slab Design and Detailing
10.6.3 Approach Expansion Joints
10.6.4 Skewed Approach Slabs
10.6.5 Bridge Approach Approach Detailing
10.6.6 Pavement Seats on Existing Bridges
10.7 Traffic Barrier on Approach Slabs

August 2006
10.7.1 Approach Slab over Wing Walls, Cantilever Walls or Geosynthetic Walls
10.7.2 Approach Slab over SE Walls
10.8 Utilities Installed with New Construction

August 2006
10.8.1 General Concepts
10.8.2 Utility Design Criteria
10.8.3 Box Girder Bridges
10.8.4 Traffic Barrier Conduit
10.8.5 Conduit Types
10.8.6 Utility Supports
10.9 Utility Review Procedure for Installation on Existing Bridges

August 2006
10.9.1 Utility Review Checklist
10.10 Drainage Design

Appendix 10.1-A1-1
Appendix 10.1-A1-2
Appendix 10.1-A2-1
Appendix 10.1-A2-2
Appendix 10.1-A3-1
Appendix 10.1-A3-2
Appendix 10.1-A4-1
Appendix 10.1-A4-2
Appendix 10.1-A5-1
Appendix 10.1-A5-2
Appendix 10.2-A1-1
Appendix 10.2-A1-2
Appendix 10.2-A1-3
Appendix 10.2-A2-1
Appendix 10.2-A2-2
Appendix 10.2-A2-3
Appendix 10.2-A3-1
Appendix 10.2-A3-2
Appendix 10.2-A3-3
Appendix 10.2-A4-1
Appendix 10.2-A4-2
Appendix 10.2-A4-3
Appendix 10.2-A5-1
Appendix 10.2-A5-2
Appendix 10.2-A5-3
Appendix 10.2-A6-1
Appendix 10.2-A6-2
Appendix 10.2-A6-3
Appendix 10.2-A7-1
Appendix 10.2-A7-2
Appendix 10.4-A1-1
Appendix 10.4-A1-2
Appendix 10.4-A1-3
Appendix 10.4-A1-4
Appendix 10.4-A1-5
Appendix 10.4-A2-1
Appendix 10.4-A2-2
Appendix 10.4-A2-3
Appendix 10.4-A5-1
Appendix 10.5-A1-1
Appendix 10.5-A1-2
Appendix 10.5-A2-1
Appendix 10.5-A2-2
Appendix 10.5-A3-1
Appendix 10.5-A3-2
Appendix 10.5-A4-1
Appendix 10.5-A4-2
Appendix 10.5-A5-1
Appendix 10.6-A1-1
Appendix 10.6-A1-2
Appendix 10.6-A2-1
Appendix 10.6-A2-2

Monotube Sign Structures Sign Bridge Layout
Monotube Sign Structures Cantilever Layout
Monotube Sign Structures Structural Details 1
Monotube Sign Structures Structural Details 2
Monotube Sign Structures foundation Type 1
Monotube Sign Structures foundation Type 2 and 3
Monotube Sign Structures Double Faced Barrier Foundation
Single Slope Barrier Foundation
Truss Sign Structures Double Faced Barrier Foundation
Truss Sign Structures Single Slope Barrier Foundation
Traffic Barrier - Shape F Detail 1 of 3
Traffic Barrier - Shape F Detail 2 of 3
Traffic Barrier - Shape F Detail 2 of 3
Traffic Barrier - Shape F - Details 1 of 3
Traffic Barrier - Shape F - Details 2 of 3
Traffic Barrier - Shape F - Details 3 of 3
Traffic Barrier - Single Slope Details 1 of 3
Traffic Barrier - Single Slope Details 2 of 3
Traffic Barrier - Single Slope Details 3 of 3
Pedestrian Barrier Details 1 of 3
Pedestrian Barrier Details 2 of 3
Pedestrian Barrier Details 3 of 3
Traffic Barrier - Shape E 42" Detail 1 of 3
Traffic Barrier - Shape E 42" Detail 2 of 3
Traffic Barrier - Shape E 42" Detail 3 of 3
Traffic Barrier - Single Slope 42" Details 1 of 3
Traffic Barrier - Single Slope 42" Details 2 of 3
Traffic Barrier - Single Slope 42" Details 3 of 3
Traffic Barrier - Shape F Luminarie Anchorage Details
Traffic barrier - Single Slope Luminaire Anchorage Details
Thrie Beam Retrofit Concrete Baluster
Thrie Beam Retrofit Concrete Railbase
Thrie Beam Retrofit Concrete Curb
WP Thrie Beam Retrofit SL1 - Details 1 of 1
WP Thrie Beam retrofit SL1 - Details 2 of 2
Traffic Barrier - Shape F Rehabilitation - Details 1 of 3
Traffic Barrier - Shape F Rehabilitation - Details 2 of 3
Traffic Barrier - Shape F Rehabilitation - Details 3 of 3
Collision Rail Connection
Bridge Railing Type Pedestrian Details 1 of 2
Bridge Railing Type Pedestrian Details 2 of 2
Bridge Railing Type BP Details 1 of 2
Bridge Railing Type BP Details 2 of 2
Bridge Railing Type S-BP Details 1 of 2
Bridge Railing Type S-BP Details 2 of 2
Pedestrian Railing Details 1 of 2
Pedestrian Railing Details 2 of 2
Bridge Railing Type Chain Link Snow Fence
Bridge Approach Slab Details 1 of 2
Bridge Approach Slab Details 2 of 2
Pavement Seat Repair Details
Pavement Seat Repair Details

June 2006
February 2007
February 2007
February 2007
June 2006

Appendix 10.8-A1-1 Utility Hanger Details for Prestressed Girders
June 2006
Appendix 10.8-A1-2 Utility Hanger Details for Concrete Box Structures
June 2006
Appendix 10.9-A1-1 Utility hanger Detials
Appendix 10.10-A1-1 Bridge Drain Modification
Appendix 10.10-A1-2 Bridge Drain Types 2 thru 5 Modification for Overlay

BRIDGE DESIGN MANUAL

Chapter 10

Contents

Chapter 13 Bridge Load Rating

$\begin{array}{lll}13.1 & \text { General } & \text { February 26, } 2007 \\ & \text { 13.1.1 WSDOT Rating (LRFR) } & \end{array}$
13.1.2 NBI Rating (LFR)
13.2 Special Rating Criteria
13.2.1 Dead Loads

November 17, 2006
13.2.2 Live Load Distribution Factors
13.2.3 Reinforced Concrete Structures
13.2.4 Concrete Decks
13.2.5 Concrete Crossbeams
13.2.6 In-Span Hinges
13.2.7 Concrete Box Girder Structures
13.2.8 Prestressed Concrete Girder Structures
13.2.9 Concrete Slab Structures
13.2.10 Steel Structures
13.2.11 Steel Floor Systems
13.2.12 Steel Truss Structures
13.2.13 Timber Structures
13.2.14 Widened or Rehabilitated Structures
13.3 Load Rating Software

August 2006
13.4 Load Rating Reports

August 2006
13.5 Bibliography

August 2006
Appendix 13.4-A1 Bridge Rating Summary
August 2006

13.1 General

Bridge Load Rating is a procedure to evaluate the adequacy of various structural components to carry predetermined live loads. The Bridge Load Rating Engineer in the WSDOT Bridge Preservation Office is responsible for the bridge inventory and load rating of existing and new bridges in accordance with the NBIS and the AASHTO Manual for Condition Evaluation of Bridges, latest edition. As presently required, only elements of the superstructure will be rated. Generally, the superstructure shall be defined as all structural elements above the column tops including drop crossbeams.

In order to provide a baseline rating for new bridges, load ratings are required for all new bridges, widened (one lane width or more throughout the length of the bridge), or rehabilitated bridges where the rehabilitation alters the load carrying capacity of the structure. The carrying capacity of a widened or rehabilitated structure shall equal or exceed the capacity of the existing structure.

The Bridge Design Section does not load rate new bridges during the design phase. However, copies of the computer models used in the design process shall be submitted to the Bridge Load Rating Engineer in the Bridge Preservation Section for the more complex structures where computer models were used in the design process.
The Bridge Preservation Office is responsible for maintaining an updated bridge load rating throughout the life of the bridge based on current bridge condition. Conditions of existing bridges change over time, resulting in the need for reevaluation of the load rating. Such changes may be caused by damage to structural elements, extensive maintenance or rehabilitative work, or any other deterioration identified by the Bridge Preservation Office through their regular inspection program.

This criteria applies only to concrete and steel bridges. For timber bridges, rating procedure shall be as per Chapters 6 and 7 of the 1994 AASHTO Manual for Condition Evaluation of Bridges.
Structural elements as defined above shall be evaluated for flexural, vertical shear, and torsional capacities based on Load Resistance Factor Design (LRFR) as outlined in the AASHTO 1989 Guide Specifications for Strength Evaluation of Existing Steel and Concrete Bridges and Load Factor Design (LFD) as outlined in the latest AASHTO Manual for Condition Evaluation of Bridges. Consider all reinforcing, including temperature/distribution reinforcement, in the rating analysis.

By definition, the adequacy or inadequacy of a structural element to carry a specified truck load will be indicated by the value of its rating factor (RF); that is, whether it is greater or smaller than 1.0. For a specific loading, the lowest RF value of the structural elements will be the overall rating of the bridge.

13.1.1 WSDOT Rating (LRFR)

Ratings shall be performed per the 1989 AASHTO Guide Specifications for Strength Evaluation of Existing Steel and Concrete Bridges. All bridges, except timber, shall be rated based on the Strength method.
A. Strength Method (LRFR)

The basic rating equations shall be:

$$
\mathrm{RF}=\frac{\Phi \mathrm{R}_{\mathrm{n}}-\gamma_{\mathrm{DL}} \mathrm{D} \pm \mathrm{S}}{\gamma_{\mathrm{L}} \mathrm{~L}(1+\mathrm{I})}
$$

When rating the full section of a bridge, like box girders, or crossbeams, which have two or more lanes, the following formulas apply for the overload trucks:

$$
\mathrm{RF}=\frac{\Phi \mathrm{R}_{\mathrm{n}}-\gamma_{\mathrm{DL}} \mathrm{D} \pm \mathrm{S}-\gamma_{\mathrm{L}} \mathrm{~L}_{\mathrm{Lcgal} \text { Load }}(1+\mathrm{I})}{\gamma_{\mathrm{L}} \mathrm{~L}(1+\mathrm{I})}
$$

The formulas for the overloads assume that there is one overload truck in one lane, and legal trucks occupy the remaining lanes. Trucks shall be placed, in the lanes, in a manner that produces the maximum forces.

Where:
R.F. $=$ Rating Factor (Ratio of Capacity to Demand)
$\underline{\mathrm{R}}_{\underline{n}} \quad=$ Nominal Capacity of Section
D $\quad=$ Calculated Dead Load
$\underline{\text { S }} \quad=$ Secondary Prestressing
$\underline{\mathrm{L}} \quad=$ Calculated Live Load
$\Phi \quad=$ Resistance Factor (Capacity Reduction Factor)
$\gamma_{\mathrm{DL}}=$ Dead Load Factor.
$\gamma_{\mathrm{L}} \quad=$ Live Load Factor
$\gamma_{\mathrm{P}} \quad=$ Prestress Factor
I $\quad=$ Impact
*For continuous structures, a one-half support width moment increase is to be used.
B. Service Method (LRFR)

Prestressed and Post- tensioned Members

Prestressed and post-tensioned members in positive moment regions, and where posttensioning is continuous over the supports, shall also be rated based on allowable stresses at service loads. The lowest rating factors between Service and Strength methods shall be the governing rating. The rating equations shall be:

Concrete Tension:

$$
\text { R.F. }=\frac{\mathrm{F}_{\mathrm{A}}-\left(F_{D}+F_{P}+F_{S}\right)}{\mathrm{F}_{\mathrm{L}(1+1)}}
$$

Concrete Compression:

$$
\begin{aligned}
& \text { R.F. }=\frac{\mathrm{F}_{\mathrm{A}}-\left(F_{D}+F_{P}+F_{S}\right)}{\mathrm{F}_{\mathrm{L}(1+\mathrm{I})}} \\
& \text { R.F. }=\frac{\mathrm{F}_{\mathrm{A}}-{ }^{1} /{ }_{2}\left(F_{D}+F_{P}+F_{S}\right)}{\mathrm{F}_{\mathrm{L}(1+1)}}
\end{aligned}
$$

Prestressing Steel:

$$
\text { R.F. }=\frac{\mathrm{F}_{\mathrm{A}}-\left(F_{D}+F_{P}+F_{S}\right)}{\mathrm{F}_{\mathrm{L}(1+\mathrm{I})}}
$$

R.F. $=$ Rating Factor (Ratio of Capacity to Demand)

Allowable Concrete Tensile Stress:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{A}} & =6 \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}} \\
& =3 \sqrt{ }{ }^{\prime}{ }_{\mathrm{c}} \text { for severe corrosive exposure } \\
& =0 \text { for members without bonded reinforcement }
\end{aligned}
$$

Allowable Concrete compressive Stress:
$\mathrm{F}_{\mathrm{A}}=0.6 \mathrm{f}^{\prime}{ }_{\mathrm{c}}$
$=0.4 \mathrm{f}{ }^{\prime}$ c when checking live load plus one half of the dead and prestress compressive stresses.
Allowable Prestressing Tensile Stress
$\mathrm{F}_{\mathrm{A}} \quad=0.80 \mathrm{f}^{*} \mathrm{y}$ (Allowable Prestressing Tensile Stress) where f^{*} y is the yield stress of the prestressing.
$\mathrm{F}_{\mathrm{D}}=$ Dead Load Stress
$\mathrm{F}_{\mathrm{p}} \quad=$ Stress due to Prestress Force after all losses
FS $=$ Stress due to Secondary Prestress forces
$\mathrm{F}_{\mathrm{L}(1+\mathrm{I})}=$ Stress due to Live Load including Impact
For all loadings, prestress losses shall be per design or current Bridge Design Manual.
For the overload trucks, the allowable stresses shall be increased by 15 percent.

When the bending moment rating for the overload vehicles is less than 1.0 based on the Service Method, and greater than 1.0 based on the Strength Method, the moment rating shall be calculated by dividing the strength rating factor by 1.30 , and the result cannot exceed 1.0.

Timber Members

R.F. $=\frac{F_{A}-F_{D}}{F_{L}}$
R.F. $=$ Rating Factor (Ratio of Capacity to Demand)
$\mathrm{F}_{\mathrm{A}}=$ Allowable bending stress
$\mathrm{F}_{\mathrm{D}}=$ Dead Load Stress
$\mathrm{F}_{\mathrm{L}}=$ Stress due to Live Load, does not include Impact
F_{A} is per AASHTO Standard Specs. with an increase of 33%.
C. Resistance Factors (LRFR)

The resistance factors shall be per Table 3b or Figure 4 of the 1989 AASHTO Guide Specifications for Strength Evaluation of Existing Steel and Concrete Bridges. The resistance factors can be increased up to a maximum of 0.95 , or decreased, depending on the condition, redundancy, type of inspection, and type of maintenance. For state owned bridges, assume careful inspection and vigorous maintenance and for local agency bridges, consult with the agency's Bridge Engineer.
Following are the NBI and BMS condition codes and their interpretation:
For NBI Codes $>$ or $=6($ BMS States 1 and 2$)$ - no deterioration
For NBI Codes $=5($ BMS State 3$)$ - some deterioration
For NBI Codes <5 (BMS State 4) - heavy deterioration
The BMS coding shall be used to identify the conditions of the elements being rated, and the appropriate resistance factors shall be applied.

When rating members that have section loss identified in the inspection report, the members should be modeled using the reduced section. Then, use the resistance factors for members in satisfactory condition.
D. Load Factors (LRFR)

Dead Load $\quad \gamma \mathrm{D}=1.20$
Prestress Load $\quad \gamma \mathrm{P}=1.00$
Live Load

1. Low volume roadways (ADTT less than 1,000), significant sources of over weight trucks without effective enforcement.

$$
\gamma \mathrm{L}=1.65
$$

2. Heavy volume roadways (ADTT equal to or greater than 1,000), significant sources of over weight trucks without effective enforcement. $\gamma \mathrm{L}=1.80$
3. OL-1 and OL-2 (or other permit vehicles). $\gamma \mathrm{L}=1.30$

If ADTT is unavailable from traffic data, it may be estimated as 20 percent of ADT. The listed factors are essentially the same as Table 2 of AASHTO Guide Specifications except that Live Load Category 1 and 2 have been eliminated based on the assumption that Washington State does not have effective enforcement or control of overloads.
E. Impact (LRFR)

For new bridge designs, impact shall be 10 percent (0.1).
For existing bridges, the impact factor shall be determined by the approach roadway and the deck condition. For approach roadway condition codes 6 or greater, assume 10 percent impact; for codes less than 6 , assume 20 percent impact. If the bridge deck condition is 6 or greater or has 0 to 4 percent scaling, assume 10 percent impact; if the deck condition is 5 or has between 5 and 15 percent scaling, assume 20 percent impact; if the deck condition is 4 or less and has greater than 15 percent scaling, assumes 30 percent impact.
F. Live Load Reduction Factors (LRFR)

Number of Loaded Lanes	Reduction Factor
One or two lanes	1.0
Three lanes	0.8
Four lanes or more	0.7

G. Live Loads (LRFR)

The moving loads for the rating shall be the HS-20 truck/lane loading (Figure 13.1-1), three legal trucks/ lane load (Figure 13.1-2), and two overload trucks. (Figure 13.1-3). The legal lane load shall be used to rate structures with spans over 200 feet. For the two overload trucks (OL-1 and OL-2), use only one overload truck occupying one lane in combination with one of the AASHTO legal trucks in each of the remaining lanes, when modeling the full section of the bridge or cross-beams. The number of lanes used shall be the actual striped lanes at the time of rating.
The three legal trucks and legal lane load, Type 3, Type 3S2, and Type 3-3, are to be used to determine posting limits. The two overload vehicles represent extremes in the limits of permitted vehicles in Washington State.
H. Rating Trucks

Design Trucks

HS-20 Truck

HS-20 Lane Load

* In negative moment regions of continuous spans, place an equivalent load in the other span to produce the maximum effect.

Figure 13.1-1

Legal Trucks

Type 3 Truck

Type 3S2 Truck

Type 3-3 Truck

Legal Lane Load
Figure 13.1-2

Overload Trucks

$10 \mathrm{~K} \quad 21.5 \mathrm{~K} \quad 21.5 \mathrm{~K} \quad 21.5 \mathrm{~K} \quad 21.5 \mathrm{~K}$

Overload 1

Overload 2
Figure 13.1-3

13.1.2 NBI Rating (LFR)

Ratings shall be performed per the latest AASHTO Manual for Condition Evaluation of Bridges. All bridges, except timber, shall be rated based on the Load Factor method. The HS20 Truck/ Lane shall be used to calculate the Inventory and Operating Ratings.
A. Strength Method (LFR)

The basic equation shall be:
R.F. $=\frac{\Phi \mathrm{R}_{\mathrm{n}}-\gamma_{\mathrm{DL}} \mathrm{D} \pm \mathrm{S}}{\gamma_{\mathrm{L}} \mathrm{L}(1+\mathrm{I})}$

Where:
R.F. $=$ Rating Factor (Ratio of Capacity to Demand)
$\mathrm{R}_{\mathrm{n}}=$ Nominal Capacity of the Member
$\Phi=$ Resistance Factor (Per AASHTO Standard Specs.)
D = Unfactored Dead Load
L = Unfactored Live Load
S = Unfactored Prestress Secondary Moment or Shear
I = Impact Factor, Span dependant (Per AASHTO Standard Specs.)
$\gamma_{\mathrm{DL}}=1.3$ (Dead Load Factor)
$\gamma_{\mathrm{L}}=2.17$ for Inventory (Live Load Factor)
$=1.30$ for Operating
Truck/Lane shall be used to calculate the Inventory and Operating Ratings.
B. Service Method (LFR)

1. Prestressed and Post-tensioned Members

Prestressed and post-tensioned members in positive moment regions, and where post-tensioning is continuous over the supports, shall also be rated based on allowable stresses at service loads. The lowest rating factor between Service and Load Factor methods shall be the governing Inventory rating. The Operating rating shall be based on the load factor method using a Live Load factor of 1.30. Service ratings for the HS20 shall be the same as stated in Section 13.1.1.B, except the impact factor shall be span dependant.
2. Timber Members
R.F. $=\frac{F_{A}-F_{D}}{F_{L}}$
R.F. $=$ Rating Factor (Ratio of Capacity to Demand)
$\mathrm{F}_{\mathrm{A}}=$ Allowable bending stress
$\mathrm{F}_{\mathrm{D}}=$ Dead Load Stress
$\mathrm{F}_{\mathrm{L}}=$ Stress due to Live Load, does not include Impact

* F_{A}, for Inventory rating, shall be per AASHTO Standard Specifications. For Operating Ratings, F_{A} shall be per AASHTO Standard Specifications with a 33% increase in the allowable stress.
C. Resistance Factors (LFR)

The resistance factors for NBI ratings shall be per the latest AASHTO Standard Specifications. Following are the NBI resistance factors:

Steel Members:	1.00 (Flexure)
	1.00 (Shear)
Prestressed Concrete	1.00 (Flexure, Positive moment)
	0.90 (Shear)
Post-tensioned, Cast in place:	0.95 (Flexure, Positive moment)
	0.90 (Shear)
Reinforced Concrete:	0.90 (Flexure)
	0.85 (Shear)

For prestressed and post-tensioned members, where reinforcing steel is used to resist negative moment, the resistance factors for reinforced concrete section shall be used in the ratings.
D. Live Loads

The HS-20 truck or lane shall be used to load rate bridge members. The number of lanes shall be per AASHTO Standard Specifications, Section 3.6. When multiple lanes are considered, apply the appropriate multilane reduction factor given in Section 13.1.2.F. Load distribution methods are discussed under specific bridge types. Do not consider sidewalk live loads in rating analysis.
E. Impact (LFR)

Impact is expressed as a fraction of the live load stress, and shall be determined by the following formula:
$I=\frac{50}{125+L}$
I = Rating Factor (Ratio of Capacity to Demand)
$\mathrm{L}=$ Length in feet of the portion of the span that is loaded to produce the maximum stress in the member.
*AASHTO Standard Specifications for Highway Bridges 3.8.2.1.
F. Live Load Reduction Factors (LFR)

Number of Loaded Lanes	Reduction Factor
One or two lanes	1.0
Three lanes	0.9
Four lanes or more	0.75

13.2 Special Rating Criteria

13.2.1 Dead Loads

Dead Loads shall be as defined in the AASHTO Standard Specifications for Highway Bridges, except concrete weight shall be 155 pcf .

13.2.2 Live Load Distribution Factors

Live Load distribution factors shall be per Chapter 3 of the AASHTO Standard Specifications for Highway Bridges. Distribution factors are selected assuming one traffic lane where the roadway is less than 20 feet wide or two or more traffic lanes where the roadway is 20 feet or wider.

13.2.3 Reinforced Concrete Structures

For conventional reinforced concrete members of existing bridges, checking of serviceability shall not be part of the rating evaluation.
Rating for shear in the longitudinal direction shall begin at a distance ${ }^{h} / 2$ from the centerline of the bearing or face of integral cross beams ($\mathrm{h}=$ total depth).

13.2.4 Concrete Decks

For all concrete bridge decks, except flat slab bridges, that are designed per current AASHTO criteria for HS-20 loading or heavier, loading will be considered structurally sufficient and need not be rated. However, for existing bridge decks having any of the following conditions, rating of the deck is required:

1. Deck was designed for live loads lighter than HS-20.
2. Deck overhang is more than half the girder spacing.
3. Bridge Inspection Report Code is 4 or below.
4. When the original traffic barrier(s) or rail have been replaced by heavier barrier.

When rating of the deck is required, live load shall include all vehicular loads as specified in Section 13.1.1.H. Live load moments for the HS20 truck shall be per Section 3.24.3.1 of the AASHTO Standard Specifications. Live load moments for the legal and overload trucks shall be per the AASHTO Manual for Maintenance Inspection of Bridges.

13.2.5 Concrete Crossbeams

Live loads can be applied to the crossbeam as moving point loads at any location between curbs that produce the maximum effect.

When rating for shear in crossbeams, current AASHTO Design Specifications requires shear design to be at the face of support if there is a concentrated load within a distance "d" from the face of support. This requirement is new relative to earlier editions of AASHTO Design Specifications that allowed shear reinforcement design to be at a distance " d " from the face of support. When rating existing crossbeams that show no indication of distress on the latest inspection report, but have a rating factor of less than one (1.0), a more detailed/accurate shear analysis should be performed. One acceptable method is the "Strut and Tie" model analysis. For existing box girders and T-beams integral with the crossbeams, in lieu of this detailed analysis, dead and live loads can be assumed as uniformly distributed and the shear rating performed at a distance "d" from the face of support.

13.2.6 In-Span Hinges

For in-span hinges, rating for shear and bending moment should be performed based on the reduced cross-sections at the hinge seat. Diagonal hairpin bars are part of this rating as they provide primary reinforcement through the shear plane.

13.2.7 Concrete Box Girder Structures

Bridges with spread box girders shall be rated on a per box basis. Otherwise, the rating shall be on the per bridge basis for all applied loads.

13.2.8 Prestressed Concrete Girder Structures

Rate on a per member basis.

13.2.9 Concrete Slab Structures

Rate cast-in-place solid slabs on a per foot of width basis. Rate precast panels on a per panel basis. Rate cast-in-place voided slabs based on a width of slab equal to the predominant center-to-center spacing of voids.

When rating flat slabs on concrete piling, assume pin-supports at the slab/pile interface of interior piers and the slab continuous over the supports. If ratings using this assumption are less than 1.0 , the piles should be modeled as columns with fixity assumed at 10 feet below the ground surface.

Pile caps are to be rated if deemed critical by the engineer.

13.2.10 Steel Structures

On existing bridges, checking of fatigue and serviceability shall not be part of the rating evaluation.

13.2.11 Steel Floor Systems

Floorbeams and stringers shall be rated as if they are simply supported. Assume the distance from outside face to outside face of end connections as the lengths for the analysis. Live loads can be applied to the floorbeam as moving point loads at any location between curbs, which produce the maximum effect.

Rating of connections is not required unless there is evidence of deterioration.

13.2.12 Steel Truss Structures

Rate on a per truss basis or perform a 3-D analysis or simplified distribution methods. Assume nonredundancy of truss members and pinned connections.

In general, rate chords, diagonals, verticals, end posts, stringers, and floorbeams. Do not rate connections unless there is evidence of deterioration, except connections with structural pins. For pin-connected trusses, analyze pins for shear, and the side plates for bearing capacity.

For truss members that have been heat-straightened three or more times, deduct 0.1 from $\phi(\mathrm{Phi})$.

13.2.13 Timber Structures

Unless the species and grade is known, assume Douglas fir, select structural for members installed prior to 1955 and Douglas fir, No. 1 after 1955. The allowable stresses for beams and stringers shall be as listed in the AASHTO Standard Specifications.
The nominal dimensions should be used to calculate dead load, and the net dimensions to calculate section modulus. If the member is charred, it may be assumed that $1 / 4$-inch of material is lost on all surfaces. Unless the member is notched or otherwise suspect, shear need not be calculated.

When calculating loads, no impact is assumed.

13.2.14 Widened or Rehabilitated Structures

For widened bridges, rate crossbeams in all cases.
For existing bridges, a load rating shall be performed if the load carrying capacity of the longitudinal members is altered, or the dead and live loads have increased due to the widening.
Longitudinal rating for the widened portion will be required only when the width of the widened portion on one side of the structure is greater than or equal to $10^{\prime}-0^{\prime \prime}$ or more throughout the length of the structure.

For rehabilitated bridges, a load rating will be required if the load carrying capacity of the structure is altered by the rehabilitation.

13.3 Load Rating Software

Rating of State bridges shall be performed using the BRIDG for Windows software, latest version.

For more complex structures such as Steel Curved girders and Arches, different software may be used to analyze the loads after obtaining approval from the Load Rating Engineer.

