Olympic Region Design Consulting Engineering Services –
SR 3/SR 16/SR 166/Gorst Vicinity – Remove Fish Barriers

Submitted to: Washington State Department of Transportation
Submitted by: WSP
Qualifications/Expertise of Firms on Team

Staffed. Swift. Strategic. WSP USA (WSP) has been working with the Washington State Department of Transportation (WSDOT) for more than 50 years, delivering some of the largest civil infrastructure projects in the state. We bring a resource-loaded team with an approach to deliver the SR 3/SR 16/SR 166/Gorst Vicinity Fish Barrier Removal Project (the Project) quickly and deliberately.

Staffed: WSP knows how critical it is that WSDOT build capacity in consultant teams that can deliver fish barrier removal work. With Olympic Region alone tasked with addressing 42 fish barriers in the 2021–2023 biennium and another 114 barriers slated for removal in the 2023–2025 biennium, new consultant support can help the region remove more fish barriers faster and increase the resource pool for similar projects in future biennia. WSP brings a team with fish barrier removal experience from roadway projects that is skilled and ready to take on a major fish barrier removal contract like this Project. WSP, combined with HW Lochner and 11 specialized partner firms, brings a team with a wide breadth of local, regional, and national resources to make this project successful.

Swift: WSP understands the Olympic Region’s fish barrier removal delivery plan emphasizes urgency to be accomplished program of work over the next biennium through robust resource scheduling, communication, and staff augmentation with local and national experts. WSP team brings a sense of urgency to the Project with a plan in place to expedite delivery by using two design teams to provide sufficient resources, allowing us to concurrently advance design on all five sites. We have intentionally selected Gordon Roycroft, PE, to lead the team as project manager. As a former Olympic Region leader, Gordon knows WSDOT’s internal processes and communication protocols, which will streamline internal coordination and collaboration, allowing the team to deliver more work faster. He understands and will implement the extensive level of coordination needed between technical disciplines for effective design integration and rapid project delivery.

Strategic: WSP has examined each fish barrier site, and our approach employs strategies to address the unique challenges at each location (illustrated in detail in Exhibit 6.). Our strategies leverage our team’s WSDOT Olympic Region experience, success resolving similar challenges on other projects, and proven tactics to expedite delivery. These strategies include developing a detailed construction staging concept; streamlining Maintenance of Traffic (MOT) strategies; leveraging work on current Preliminary Hydraulic Designs (PHDs) for the Gorst area (completed by team firm WEST Consultants); utilizing current communications with stakeholders in the Gorst area through team firm PRR to implement tailored outreach; and leveraging Gordon’s strong understanding of WSDOT Olympic Region project development, WSDOT process and procedures, WSDOT DB delivery, and relevant relationships to streamline project delivery.

A. & B. Proposed Team with the Breadth and Depth of Experience WSDOT Needs

WSP is bringing together a team of firms with the depth, knowledge and agility to deliver this project quickly. The size of our firm and the depth of our team’s resources will allow us to quickly scale up and down as required. A full listing of our team (Exhibit 1) highlights staff and capabilities in Washington and the Portland Metro area. Our team’s organizational chart follows as Exhibit 2.
Exhibit 1: Section A.1, A.2, A.3, A.4 and B.1 WSP team resources and capabilities

<table>
<thead>
<tr>
<th>Firm</th>
<th>Years of Expertise</th>
<th>National Staff</th>
<th>Washington State and Portland Offices</th>
<th>Expertise Provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSP – Prime Consultant: project and team management, engineering management and execution, environmental management and execution, risk management, project controls</td>
<td>137</td>
<td>10,891</td>
<td>665</td>
<td>Project management, roadway engineering, structural engineering, stream design, geotechnical engineering, drainage and stormwater, traffic and transportation analysis, environmental and permitting, project controls, risk management, owner’s representative services*</td>
</tr>
<tr>
<td>1 Alliance Geomatics – Survey MBE</td>
<td>9</td>
<td>70</td>
<td>70</td>
<td>Comprehensive survey services*</td>
</tr>
<tr>
<td>Aqua Terra Cultural Resource Consultants (CRC) – Cultural resources, environmental WBE</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>Cultural resource management, archaeology, historic preservation</td>
</tr>
<tr>
<td>Blue Trident – Design services during construction MVBE</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>Construction management, structural, architectural, electrical engineering</td>
</tr>
<tr>
<td>Concord Engineering, Inc. – Traffic operations modeling MWBE</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>Traffic analysis and design</td>
</tr>
<tr>
<td>Confluence Environmental Company – Tribal coordination, contract development SSE</td>
<td>15</td>
<td>22</td>
<td>22</td>
<td>Environmental documentation (predesign through construction), tribal coordination, field investigations, fish ecology, wetland and stream science, critical areas studies, permitting*</td>
</tr>
<tr>
<td>Dossier – Document Control MVBE</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>Document control, document retrieval, database management, project coordination, archiving, submittals</td>
</tr>
<tr>
<td>HW Lochner – Civil and structural engineering, construction staging, maintenance of traffic (MOT) strategy, contract development</td>
<td>78</td>
<td>614</td>
<td>27</td>
<td>Bellevue: Civil and structural engineering, planning, hydrology, roadway and traffic design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Burlington and Lacey: Roadway design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Everett: Roadway and traffic design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spokane: Structural engineering and roadway design</td>
</tr>
<tr>
<td>Osborn Consulting, Inc. – Stream design, drainage WBE</td>
<td>17</td>
<td>75</td>
<td>75</td>
<td>Bellevue and Seattle: Stormwater engineering, hydraulic and hydrologic engineering, fish passage planning and design, landscape architecture and restoration, urban planning and design</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bellingham and Spokane: Stormwater engineering, hydraulic and hydrologic engineering, fish passage planning and design</td>
</tr>
<tr>
<td>PRR, Inc. – Public outreach WBE</td>
<td>40</td>
<td>91</td>
<td>73</td>
<td>Seattle: Community engagement, research, marketing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bellevue and Portland, OR: Community engagement</td>
</tr>
<tr>
<td>Stell Environmental – Environmental VBE</td>
<td>18</td>
<td>75</td>
<td>45</td>
<td>Environmental, cultural resources, wetlands, infrastructure</td>
</tr>
<tr>
<td>TranTech Engineering, LLC – Civil and structural engineering, utility coordination VBE</td>
<td>17</td>
<td>51</td>
<td>51</td>
<td>Structural engineering, civil engineering, construction management, fish passage design*</td>
</tr>
<tr>
<td>WEST Consultants – Hydraulic design</td>
<td>34</td>
<td>65</td>
<td>15</td>
<td>Bellevue: Fish passage planning and design, floodplain mapping, hydraulics, coastal hydraulics, hydraulic and hydrologic modeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vancouver: Hydraulic field measurements, stream gaging, surveying</td>
</tr>
</tbody>
</table>

* Services offered at each office location listed.
Exhibit 2: Section A.5 Organizational chart

The WSP team is organized with two design teams to concurrently advance design on all five sites. Single discipline managers will provide oversight to both teams to promote design consistency and interdisciplinary coordination, provide direction and accountability, and to pragmatic delivery.

- **Principal-in-Charge**
 - Linae Laird, PE

- **Project Manager**
 - Gordon Roycroft, PE, PMP, Associate DBIA

- **Risk Management**
 - Alan Keizur, PE

- **Quality Management**
 - Tara Olsen, PE

- **Deputy Project Manager**
 - Jessica Aguilar, PE

- **Project Controls**
 - Scheduling: Steve Abiador
 - Document Control: Karla Butler
 - Internal Communications: Scott Keillor, AICP

- **Subconsultants**

 - **SR 16 and SR 166 Design Team**
 - **Roadway**
 - Steve Morales, PE
 - Kate Van Velzer, EIT
 - **Structures**
 - Matt Barber, PE, PMP
 - Scott Shih, PE
 - **Stormwater Design**
 - Jon Vanier, PE
 - Janina Glovatchi, PE
 - **Stream Design**
 - Yingle Jiang, PE
 - Dillon Zang, EIT
 - **Constructability/Staging/MOT**
 - Daniel Shafer, PE
 - Jeff Cook, PE
 - **Traffic Design**
 - Lawrence Guan, PE
 - Chao Chen, PhD
 - **Utilities**
 - Scott White, CESCL
 - Paul Kimani, PE
 - **DB Documentation**
 - Aaron Butters, PE, PMP

 - **SR 3 Design Team**
 - **Roadway**
 - Yingle Jiang, PE
 - Dillon Zang, EIT
 - **Structures**
 - Jon Vanier, PE
 - Matt Barber, PE, PMP
 - **Stormwater Design**
 - Janina Glovatchi, PE
 - Karen Chi, PE
 - **Stream Design**
 - Chao Chen, PhD
 - James Ellis, PE
 - **Utilities**
 - Scott White, CESCL
 - Karen Chi, PE
 - **Constructability/Staging/MOT**
 - Devin Lenn, PE

- **Programmatic Delivery Resources**

 - **Environmental/Permitting/Pre-NEPA Lead**
 - Karissa Kawamoto, AICP
 - **Community Engagement and Local/Interagency Coordination Lead**
 - Diana Barreto
 - **Traffic Operations Modeling**
 - Tony Woody, PE, PTDO
 - **Coastal Engineering**
 - Ray Walton, PhD, PE
 - **Cost Estimating**
 - Shwana Lenn, PE

- **Technical Resources**

 - **Right of Way Plans**
 - Phi Nguyen, EIT
 - **DSDC Coordination**
 - Loren Waldapfel
 - **Construction Scheduling**
 - Loren Waldapfel
 - **Structural Design Innovation**
 - Jugesh Kapur, PE, SE

CRITERION 1

CRITERION 2

CRITERION 3

CRITERION 4

CRITERION 5

All staff are WSP unless noted. = Key personnel.

- **1AL** 1 Alliance Geomatics (MBE)
- **AQT** AquaTerra Cultural Resources Consultants (WBE)
- **BT** Blue Trident (MBE)
- **CON** Concord Engineering Inc. (MBE)
- **COF** Confluence Environmental Company (SBE)
- **DOS** Dossier (MBE)
- **LOC** HW Lochner
- **OSB** Osborn Consulting, Inc. (WBE)
- **PRR** PRR, Inc. (WBE)
- **STE** Stell Environmental (VBE)
- **TT** TranTech Engineering LLC (SBE)
- **WST** WEST Consultants
C. WSP’s Experience Working with Subconsultants

A shared delivery history between the prime and its partner firms helps quickly build team chemistry and enables the team to deliver higher-quality work more efficiently by relying on a proven communication, quality management and disciplined coordination approach. We also recognize the value of building partnerships with firms we haven’t worked with before to help them develop capacity and delivery experience on larger projects. With that in mind, WSP is including Blue Trident, a growing MVBE firm focused on construction scheduling and DSDC support, on our team to help deliver the work and build its experience for these key project elements. In addition, WSP has worked with HW Lochner and Dossier outside the three year window and we look forward to partnering with them again on this project. A summary of our recent experience working with the other firms is included in Exhibit 3.

Exhibit 3: WSP’s experience working with subconsultant partners

<table>
<thead>
<tr>
<th>Subconsultant / Project</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Alliance: WSDOT, SR 167 Completion General Engineering Consultant (GEC) Services</td>
<td>Engineering design base mapping and construction survey services</td>
</tr>
<tr>
<td>Blue Trident: WSP is serving as mentor through the WSDOT mentor protege Cohort IV program.</td>
<td>Blue Trident is WSP’s mentee; this is not a project-specific effort</td>
</tr>
<tr>
<td>Aqua Terra CRC: Pierce County Canyon Road Northerly Extension</td>
<td>Cultural resources, archaeology and historic preservation</td>
</tr>
<tr>
<td>Concord Engineering: WSDOT SR 18: Deep Creek to Issaquah–Hobart Rd Corridor Widening</td>
<td>Traffic analysis and modeling</td>
</tr>
<tr>
<td>Confluence Environmental Company: Sound Transit Downtown Redmond Link Extension</td>
<td>Environmental compliance and permitting for the DB project management team</td>
</tr>
<tr>
<td>Osborn Consulting: Washington State Ferries Colman Dock Multimodal Ferry Terminal</td>
<td>Stormwater and temporary erosion and sediment control (TESC) lead</td>
</tr>
<tr>
<td>PRR: WSDOT Puget Sound Gateway Megaprogram</td>
<td>Community engagement throughout design and construction</td>
</tr>
<tr>
<td>Stell Environmental: WSDOT SR 167 Completion GEC</td>
<td>Providing wetland and stream assessment and mitigation</td>
</tr>
<tr>
<td>TranTech Engineering: WSDOT Bridge Load Ratings</td>
<td>Load rating and analysis</td>
</tr>
<tr>
<td>WEST Consultants: City of Sumner Stewart Road Bridge</td>
<td>Hydraulic analysis including no rise, scour analysis, rip-rap & levee design</td>
</tr>
</tbody>
</table>

D. Availability of Key Staff and Resources

WSP has brought together a team with the capacity and depth of resources to deliver the Project quickly and strategically. Availability of delivery staff is included in Exhibit 4 below.

Exhibit 4: Hours of availability for key staff and resources. Note: Availability of staff is shown as average hours available per month through September 2022 and then average hours per month per quarter for the duration of the project.

<table>
<thead>
<tr>
<th>Name</th>
<th>2022 A</th>
<th>2022 M</th>
<th>2022 J</th>
<th>2022 J</th>
<th>2022 A</th>
<th>2022 S</th>
<th>2022 Q4</th>
<th>2023 Q1</th>
<th>2023 Q2</th>
<th>2023 Q3</th>
<th>2023 Q4</th>
<th>2024 Q1</th>
<th>2024 Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon Roycroft</td>
<td>90</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Jessica Aguilar</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Karissa Kawamoto</td>
<td>120</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Stuart Bennion</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Deepa Mungasavalli</td>
<td>32</td>
<td>32</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Keelan Jensen</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Jeff Cook</td>
<td>110</td>
<td>60</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>85</td>
<td>105</td>
<td>100</td>
<td>95</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Diane Sheesley</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>90</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Diana Barreto</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Aaron Butters</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>45</td>
<td>40</td>
<td>55</td>
<td>70</td>
<td>90</td>
<td>80</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>2022 A</th>
<th>2022 M</th>
<th>2022 J</th>
<th>2022 J</th>
<th>2022 A</th>
<th>2022 S</th>
<th>2022 Q4</th>
<th>2023 Q1</th>
<th>2023 Q2</th>
<th>2023 Q3</th>
<th>2023 Q4</th>
<th>2024 Q1</th>
<th>2024 Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Morales</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Kate Van Velzer</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>95</td>
<td>95</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Yingle Jiang</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Dillon Zang</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Steve Johnson</td>
<td>70</td>
<td>50</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>105</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Jennifer Davis</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Matt Barber</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Scott Shih</td>
<td>40</td>
<td>50</td>
<td>55</td>
<td>55</td>
<td>50</td>
<td>50</td>
<td>60</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Janina Glovachi</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>145</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Sklyer Bearman</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Jon Vanier</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Matt Gray</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Corinne Horner</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>90</td>
<td>130</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td>Chao Chen</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>130</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
</tr>
</tbody>
</table>
E. WSP Project Examples

WSDOT SR 18 Widening: Issaquah – Hobart Road to Deep Creek

King County, Washington - WSP Fee: $8.9 million - Dates: Alternatives Evaluation Phase 3/2020–12/2020; Conceptual Design Phase 1/2021–present

SERVICES: Alternatives development, evaluation and preferred alternative selection, civil/roadway design; structural design and conceptual plans, hydraulics, stormwater/drainage design; wetland and stream delineation, impact analysis, and mitigation planning; utility impact and relocations; traffic and safety analysis; NEPA documentation support; public involvement and communications support

WSP is providing design services to improve capacity and enhance safety on 5.2 miles of SR 18 from Issaquah-Hobart Road to Deep Creek. The project team is developing and evaluating alternatives using WSDOT’s practical design methodology, supporting the selection of a preferred alternative, preparing construction cost estimates and advancing a funding proposal. Conceptual design of the preferred alternative is being advanced to support an anticipated future DB procurement.

Fish Barrier Removal: WSP is working with WSDOT to correct fish barriers in 11 locations. The preferred alternative provides wildlife crossings to connect wildlife habitat previously segmented by the highway along this corridor. The design incorporates resilient structural elements to mitigate challenging geotechnical conditions, high groundwater conditions and unsuitable embankment materials.

Accelerated Delivery/Schedule Strategies: The project team established an aggressive schedule to complete the alternatives development and selection of a preferred alternative, then drove project execution to select the preferred alternative in six and a half months. Conceptual engineering was advanced, and a conceptual construction cost estimate prepared in an additional two months to meet project management commitments for inclusion in the proposed transportation budget and consideration in the 2021 legislative session. Concurrent with the early weeks of the 2021 legislative session, multiple cost reduction alternatives were generated that reduced total construction cost by more than $160 million.

MOT Strategies: The team developed a set of constructability strategies and maintenance of traffic concepts were fundamental to realizing construction cost reductions. The project team engaged representatives from Northwest Region (NWR) and Headquarters (HQ) Traffic (operations, safety, and construction traffic control), HQ Design, NWR project development and program management to identify and endorse the approaches.

CRITERION 1 CRITERION 2 CRITERION 3 CRITERION 4 CRITERION 5

<table>
<thead>
<tr>
<th>Name</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>M</td>
<td>J</td>
<td>J</td>
</tr>
<tr>
<td>James Ellis</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Lawrence Guan</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Arianne Mizuta</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Dan Shafer</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Paul Kimani</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Larry Dominguez</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dan Roscoe</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Brandon Stimac</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Anne Broache</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Sarah Amell</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Sarah Steinkraus</td>
<td>80</td>
<td>80</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Cindy Talley</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Scott Keilor</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Conny Garcia Gaitan</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Shawna Lenn</td>
<td>60</td>
<td>60</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Gavin VanClifford</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Tony Woody</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Erik Van Buskirk</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Josh Hanson</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Peter Fehringer</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Sasha Visconty</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Phi Nguyen</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Scott White</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Karen Chi</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Loren Waldapfel</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Jugesh Kapur</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Steve Abidor</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Jinyi Meng</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Tara Olsen</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Alan Keizur</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>
WSDOT Southbound HOV, I-5/Portland Avenue to Port of Tacoma Road
Tacoma, Washington - WSP Fee: $2 million - Dates: Conceptual Design Phase 2013-2018; Construction ongoing

SERVICES: Preliminary design services, including channelization plans, design of horizontal and vertical roadway alignments, deviations, stormwater and drainage, hydraulic reports and traffic modeling; structural design services included demolition plans for the bridges over the Puyallup River and L Street bridge, girder erection plans, walls plans and staging plans; construction support that includes review of change orders, schedules, designs and RFIs; development of construction staging and traffic management strategies.

WSP supported the Olympic Region as lead DB RFP for DB developer for the I-5 southbound high-occupancy-vehicle (HOV) project. WSP provided 30% design and construction staging plans that were used to widen I-5 for HOV lanes and replace the Puyallup River bridges.

The construction staging work included staging plans that detailed the demolition of the existing bridges over the Puyallup River and L Street. This information was used to support the development of the RFP and the various environmental approvals including the updates to the biological assessment. WSP provided Joint Aquatic Resources Permit Application (JARPA) documents prior to the RFP to determine impacts to wetland and streams impacts per WSDOT standards. Impacts were separated into permanent and temporary categories due to stream slide slope projection and construction access to the Puyallup River.

Following the completion of the 30% design of the overall project and 90% construction staging, the WSP team completed a detailed practical design/least-cost planning evaluation that resulted in a savings of more than $100 million—a reduction of more than one-third of the original project cost. WSP is currently providing construction support that includes review of DB documents and design package documentation.

Fish-bearing River Work: At the heart of the southbound HOV project is replacing the I-5 bridge over the Puyallup River, a significant fish-bearing river and cultural resource. While not a barrier, working in and around the Puyallup River is regulated and permitted in the same manner as all fish passage construction projects, while also accounting for tribal fishing practices and adhering to tribal water quality standards, which exceed Washington Department of Ecology (WADOE) requirements.

WSP redefined the construction period and construction sequencing for the southbound HOV project to align with fish passage windows for the Puyallup River and the extended construction duration. The stages used short winter work windows to remove existing structures and longer summer work windows to install structures, all while balancing the number of platforms or trestles in the river to maintain existing river traffic and flows.

WSDOT SR 167 Completion GEC
Pierce County, Washington - WSP Fee: $22 million - Dates: Stage 1A 2017-2021; Stage 1B Design 2017-2021; Construction 2022-present

SERVICES: Conceptual engineering design, including civil/roadway design; structural plans; hydraulics, stream realignment, and riparian restoration; stormwater/drainage design; wetland mitigation planning; utility impact and relocation; traffic and safety analysis; illumination, signals, tolling, and ITS design; NEPA reevaluation support; environmental permitting support (JARPA, HPA, Shoreline, CAO, etc.); hazardous materials investigations; communications support; program/project management, staff and resource augmentation, design development, constructability review; DB procurement documentation.

The SR 167 Completion Project finishes a missing link in the highway network between the Port of Tacoma and the Kent and Puyallup river valleys and includes five interchanges along the new six miles of highway.

Fish Barrier Removal: WSP is working to remove existing fish barriers along the SR 167 corridor and mitigating impacts to wetlands and fish habitats under the GEC. The work also includes preliminary design for a 150-acre Hylebos Riparian Restoration Program. This includes over three miles of created, realigned, and improved streams; habitat creation and enhancement; and design of six fish-passable structures, including provisions of wildlife crossings. This preliminary design was completed with input from a Technical Advisory Group that includes representatives from EarthCorps, Puyallup Tribe of Indians, Muckleshoot Indian Tribe, local agencies, WADOE, Washington Department of Fish and Wildlife (WDFW), U.S. Army Corps of Engineers (USACE), National Oceanographic and Atmospheric Administration (NOAA), and WSDOT Regional and HQ Hydraulics. WSP also provided preliminary structural engineering.

Accelerated Delivery/Schedule Strategies: The project team helped prepare the DB contract documents to expedite the delivery schedule. The procurement schedule takes into account in-water work windows.

Maintenance of Traffic (MOT) Strategies: WSP developed MOT concepts, including temporarily realigning I-5 to allow for construction of new bridges for the realigned stream crossing, partial temporary realignment of SR 99 to allow for replacement of an existing stream crossing with a new bridge for the new crossing location, and partial temporary realignment of city streets (Juniper, 20th and 12th) to support construction of new stream crossings. Temporary roadway realignments were developed to allow for off-line construction (in the dry) of new fish passable structures and stream channel construction.
Subconsultant Project Examples

1 Alliance: WSDOT On-Call Hydraulic Services Fee: $39,392 (2019–2020) As a subconsultant on the WSDOT On-Call Hydraulic Services contract, 1 Alliance developed a base map to support the analysis of existing conditions and the development of design concepts for the preparation of Preliminary Hydraulic Design (PHD) reports. 1 Alliance performed horizontal and vertical control, topographic and planimetric mapping, utility surveying, InRoads/MicroStation deliverable generation, and right-of-way and boundary resolutions.

AquaTerra CRC: City of Tumwater, WA Percival Creek Fish Passage Barrier Removal Fee: $6,888 (2022) AquaTerra conducted a cultural resource assessment for the culvert conveying Percival Creek under Sapp Road, which was creating a fish passage barrier. AquaTerra provided cultural resource management guidance for the DB team during initial design, final design and construction on cultural resource laws and regulations. The team identified sensitive areas and reviewed contractor plans to avoid, minimize, or mitigate impacts to cultural resources.

Blue Trident: USACE, Barge Launch Construction Howard Hansen Dam Fee: $770,535 (2019–2020) Barge launch project consisted of regrading and strengthening soft spots in existing roads, laying additional gravel for a heavy haul truck turn around. Work scheduled around high/low water seasons. As prime contractor, provided spectrum of services for construction management, including schedule development and maintenance.

Concord Engineering: WSDOT SR 18: Deep Creek to Issaquah-Hobart Rd. Widening Fee: $230,000 (2020–2022) Led the traffic operational analysis to support the roadway design and to assess traffic operations for two corridor widening alternatives. Work included traffic analysis for WSDOT facilities and use of traffic forecasting model to predict future traffic demands.

Confluence Environmental Company: WSDOT SR 9/SR 204 Intersection Improvements Fee: $71,283 (Phase 1: 2016–2019) This project addressed congestion issues at the SR 9/SR 204 intersection. Confluence contributed to early scoping via the PEL and Practical Solutions processes, prepared the environmental classification summary documentation (discipline reports included wetland/stream and mitigation), conducted baseline assessments of wetlands and streams to inform alternatives, evaluated permitting needs, and obtained permits and delivered environmental portions of contracting documents.

Dossier: Sound Transit, West Seattle and Ballard Link Extensions Fee: $1.5M (2017–2022) As Document Controls Manager, Technical Editor, and Communications Specialist tracked and monitored all submittals, technical reports, document control quality audits, client deliverables, and compiled the monthly project progress reports for invoicing. Dossier also developed and implemented the project Document Control Plan, Writing Style Guide, and the Technical Impact Reports template.

HW Lochner: WSDOT Fishing Wars Memorial Bridge (Puyallup River Bridge) Fee: $956,000 (2016–2019) The project included preliminary design to replace an aging bridge over the Puyallup River connecting Tacoma to Fife and is one of the last segments of Pacific Highway. HW Lochner served as owner’s representative for the DB project, assisting with structural design, DB procurement, design review and collaboration administration.

Osborn Consulting: WSDOT Olympic Region Design Consultant Engineering Services – 24 Fish Passages Fee: $1,017,000 (2019–present) Osborn is developing drainage design of stormwater treatment and flow control Best Management Practices (BMPs) to meet the Highway Runoff Manual, Endangered Species Act, and fish passage stormwater retrofit analysis treatment requirements for each site. They are working with WSDOT and HQ Hydraulics staff and preparing supplemental and final in-stream design based on WSDOT-provided PHDs.

PRR: WSDOT Chico Creek Fish Barrier Removal Fee: $50,000 (2020–present) This project will replace fish barriers on Chico Creek with fish passable structures beneath WSDOT highways. PRR is providing construction communications and engagement strategy development, public outreach materials (fact sheets, project maps, mailers) and maintaining stakeholder lists.

Stell Environmental: WSDOT Olympic Region Design Consultant Engineering Services – 24 Fish Passages Fee: $386,662 (2019–present) Stell is providing environmental documentation support for the removal of fish barriers and design/implementation of fish passages. Work includes conducting Section 106 cultural resources support in collaboration with WSDOT and conducting wetland and stream assessments.

TranTech Engineering: WSDOT SR 202/Patterson Creek Fish Passage Fee: $88,000 (2020–2021) This project involved replacement of three culverts that carry Patterson Creek and tributaries under SR 202 between Redmond and Fall City. TranTech led the design of three concrete box culverts, headwalls, and wingwalls.

WEST Consultants: WSDOT Olympic Region Fish Passage – 16 Preliminary Hydraulic Designs (PHDs) Fee: $320,000 (2021–present) The project will provide PHD reports for 16 crossings throughout the Olympic Region. WEST was tasked with developing PHD reports for four crossings near Gorst, two on SR 3 and two on SR 16. The reports will provide preliminary design requirements and identify site constraints. WEST is developing in-stream design for a fish passable structure, meeting current WSDOT and WDFW standards.
Qualifications of Proposed Project Manager

Gordon Roycroft, PE, PMP, Assoc. DBIA

31 Years of Experience

Gordon will leverage his Olympic Region and project management experience to drive urgent delivery of this contract. Gordon’s 31-year career has focused on successful delivery of large transportation projects from development and planning through design and construction. Gordon spent 15 years in various positions with WSDOT Olympic Region including Deputy Director of the Tacoma/Pierce County HOV Program developing and implementing WSDOT procedures. His tenure also included time in the Port Orchard PE office enhancing his familiarity with the area. Gordon has been leading fish barrier correction work for over 25 years and has also been engaged in DB projects on both the owner and consultant side since 1998.

Staffed: Gordon has overseen project development for nearly $2 billion in Olympic Region projects. He brings demonstrated ability to manage large multidisciplinary teams on complex, fast-paced projects like the WSDOT SR 18 Widening, Issaquah-Hobart Rd to Deep Creek and the WSDOT Tacoma/Pierce County HOV Program. This experience will inform Gordon’s leadership of the WSP team, leveraging our capacity, fish barrier removal expertise and roadway expertise to deliver these critical projects. This will also result in additional long-term consultant capacity building to meet WSDOT’s overall needs for this program.

Gordon and our team are committed and available to execute timely actions and solutions that are responsive to WSDOT’s needs.

Swift: Gordon understands the need for urgent delivery of this project. He brings strong understanding of WSDOT policy for design development, documentation and program management, including funding management, procurement and contracting, performance measurements and reporting and communications. Gordon is particularly adept at remaining flexible and solution-focused when navigating the demands and change on priority projects. His depth of WSDOT project experience will guide our team to delivering work efficiently.

Strategic: Gordon’s perspective as a past WSDOT manager informs his commitment and proactive approach to meeting the agency’s objectives. Especially important given the urgent nature and evolving practice for fish barrier removal, Gordon will initiate quick solutions and identify process improvements to streamline delivery. He is experienced in rapid project development and understands the detailed coordination and communication required between technical disciplines, WSDOT resource co-managers and stakeholders. Gordon’s approach to this project will advance design disciplines simultaneously to create opportunity for interdisciplinary design development and quicker delivery.
A. Gordon’s Relevant Project Management Experience

WSDOT SR 18 Widening, Issaquah-Hobart Road to Deep Creek Snoqualmie, WA • 2019—present
Gordon is the project manager of this $630M, 5.2-mile corridor widening, including alternatives analysis, NEPA documentation and conceptual design for an anticipated DB delivery. The project successfully applied practical design, identified a preferred alternative and developed a cost estimate for funding consideration in the 2021 legislative session. Key project elements included the evaluation of 17 and correction of 11 fish barriers with bridges and buried structures. The team mitigated challenging geotechnical conditions, high groundwater conditions, and unsuitable materials. Design was completed with consideration of permitting approvals from local and federal agencies and was influenced by early consideration of construction staging and MOT.

Sound Transit Federal Way Link Extension Angle Lake to Federal Way, WA • 2016—2018
Gordon served as WSDOT project development liaison for this regionally significant 8.2-mile, $3.5 billion extension of light rail service completed by DB delivery. Gordon’s initial work coordinated Sound Transit’s acquisition of WSDOT ROW and surplus ROW through the Uniform Relocation Act and with FHWA oversight. Gordon successfully prepared the documentation and coordinated this complex task. His role then expanded significantly to support the team further. Under a tight schedule, Gordon coordinated civil plans and technical requirements for the DB RFP development and provided quality reviews.

WSDOT Tacoma/Pierce County HOV Program Tacoma, WA • 2006-2014
As deputy program director, Gordon provided supervision of design, environmental and business managers and project engineers for this $1.6 billion program. He served as project development engineer for HOV projects and multiple project offices. Gordon managed the GEC contacts and provided oversight in the development and execution of the HOV project controls program addressing scheduling, cost management and performance reporting. He worked with Olympic Region management to align the program with the larger regional project development program. Gordon’s deputy program director role included the $261M I-5, Portland Ave. to Port of Tacoma Rd.—Northbound HOV and the $168M I-5, M St. to Portland Ave.—HOV.

GORDON’S RELEVANT RESPONSIBILITIES AND ACHIEVEMENTS

✔ Managed large, multidisciplinary team delivering roadway, development and approval of channelization plans, construction staging and MOT strategies and stormwater improvements
✔ Developed alternative designs and evaluation and implemented practical design approaches
✔ Supervised evaluation of 17 and correction of 11 fish barriers with bridges and buried structures
✔ Implemented value engineering process, ground truthed and priced costs resulting in more than $160M in construction costs savings
✔ Provided detailed development and execution of staffing plan and QA/QC process confirming quality certification for every deliverable
✔ Managed and tracked project budget including earned value management
✔ Worked with the public involvement team to develop innovative approaches for virtual outreach
✔ Oversaw strategy for regulatory agency approvals and processes
✔ Developed design alternatives and cost estimates for more than eight different cost-saving packages

✔ Led coordination with WSDOT, Sound Transit managers and the consultant team for fast-paced and complex multidisciplinary project delivered by DB
✔ Developed strategy for regulatory organization approvals and processes
✔ Obtained WSDOT design approval, supported ROW, developed RFP project requirements, oversaw traffic management plan development and performed quality reviews
✔ Prepared the design approval package to address project elements of common interest to WSDOT, FHWA and Sound Transit
✔ Managed the preparation, review and approval of ROW acquisition plan, a fundamental instrument in the development of the WSDOT Airspace Lease and Temporary Construction Airspace Lease, and fee acquisition of WSDOT and private properties, as well as the transfer of Sound Transit properties to WSDOT for the construction of the SR 509 Extension
✔ Executed complex coordination with WSDOT Headquarters Access Office, FHWA, WSDOT Headquarters Regional Transit Coordination Office and the SR 509 Completion Project Office
✔ Coordinated with WSDOT SR 509 team, including negotiations on joint tenancy, sequencing of activities, construction staging and sequencing and temporary occupancy of the ROW for construction
B. Gordon’s Familiarity with Relevant State and Federal Regulations

Gordon has a comprehensive understanding of state and federal regulations and specifically the importance and application of these processes from WSDOT’s perspective. Throughout his career, he has applied and met the procedures and regulations illustrated in Exhibit 5 countless times on major projects in the Olympic Region. Gordon was a part of the original team of WSDOT managers that initiated discussions that evolved to WSDOT’s practical design guidance. In addition, he has led multiple projects through the development phase and packaging process and the development of DB procurement documents.

Exhibit 5: Gordon’s Strong Understanding of Relevant State and Federal Regulations

- WSDOT Design-Build Manual
- WSDOT Design Manual
- WSDOT Standard Plans
- WSDOT Plans Preparation Manual
- WSDOT Standard Specifications
- WSDOT Construction Manual
- WSDOT Right-of-Way Manual
- WSDOT Materials Manual
- WSDOT Traffic Manual
- WSDOT Roadside Manual
- WSDOT Environmental Manual
- Joint Aquatic Resource Permit Application (JARPA)
- Hydraulic Project Approval (HPA) Permit Process
- WSDOT Local Agencies Guidelines
- WDFW Water Crossing Design Guidelines
- WSDOT Design Documentation Package Checklist (DDP)
- AASHTO Geometric Design of Highways/Streets
- FHWA Manual of Uniform Traffic Control Devices
- AASHTO Highway Safety Manual
- NEPA Process
- 2020 Fish Passage and Stream Restoration Design certification, WSDOT, 2022

C. Gordon’s Detailed Project Management Experience

WSDOT SR 18 Widening, Issaquah-Hobart Road to Deep Creek

Schedule Management: Through a publicly transparent process, Gordon updated a 2005 shelved design to current standards and developed design alternatives, evaluated and selected a preferred alternative within a six and a half month period following WSDOT’s practical design process. Gordon then priced the preliminary preferred alternative and submitted a cost estimate to support funding consideration during the 2021 legislative session. Design alternatives were development in parallel to session to provide timely cost reduction proposals. The project is included in the legislature-approved Move Ahead Washington package with continued and substantial local support generated by the transparent process.

Scope Management: Gordon developed a comprehensive work breakdown structure (WBS) and highly detailed schedule that establishes the performance baseline and performance is routinely checked against the baseline. WSDOT has added additional scope and Gordon has negotiated agreement supplements to advance the work in a timely fashion.

Budget Management: WSDOT program management and the Legislature was concerned with cost of the preliminary preferred alternative. In partnership with WSDOT, Gordon convened a scope refinement workshop that applied value engineering and generated eight different funding proposals to meet target funding values and ultimately landed on a set of project improvements that reduced project costs by over $160M.

Change Management: Days after the team submitted the conceptual construction costs for the preliminary preferred alternative, Gordon was asked by WSDOT to begin looking for ways to reduce total project costs. He put project development on pause to go through a detailed savings exercise. Gordon led the team to adjust to the revised delivery plan and managed project resources during the pause. He then reengaged the team and resumed design development immediately following specific direction from WSDOT. One of the changes WSDOT has requested is for WSP to lead a Cost Estimate Validation Process (CEVP) effort. We are coordinating with the project office and the HQ Cost Risk Estimating Management office to conduct the workshop in late summer 2022. Gordon will build off his previous work with Alan Keizur, including SR 18, to facilitate risk management and CEVP on this project.
WSDOT I-5 Portland Avenue to Port of Tacoma Road Northbound HOV

Schedule Management: Gordon led the development of a complete P6 schedule, including monthly measures of performance, as well as monthly and quarterly reports to leadership. Additionally, his team prepared four-week look-ahead schedules for use at weekly design team meetings, which allowed the team to monitor upcoming tasks, easily identify lagging items, and develop recovery plans. Gordon also programmed two early-work contracts to limit risk of schedule delays, an off-site wetland mitigation and essential fish habitat site, and a package of high-risk, long-duration construction elements. These were the most visible and largest examples of how WSDOT used early contracts to mitigate risk. Gordon’s efforts allowed WSDOT to meet its reporting milestones, reduced WSDOT’s risk, raised stakeholder confidence, and enabled WSDOT to meet the project construction start date.

Scope Management: A critical project element was to develop a new stormwater outfall to the Puyallup River, but the proposed design solutions substantially increased the scope. Gordon kept the team focused on identifying a reasonable, constructible solution. The final solution kept the project exempt from quantity control, avoiding release to the City of Tacoma’s storm sewer system, which would have triggered more substantial scope increases in the form of upgrading the City’s stormwater outfall infrastructure. Implementing this solution required specialized expertise not available within WSDOT. Gordon procured the specialized resources needed, observing WSDOT contracting protocols.

Budget Management: After advertisement for construction, unavoidable negotiations for property rights and required permits placed this project on an extended delay. During this time, Gordon immediately reallocated staff to other projects to preserve budget. Upon restarting the project, substantial revisions to the original PS&E documents were required to match negotiated terms with the Puyallup Tribe. Gordon worked with the project team and program management to revise the budget, schedule, and staffing to meet the new delivery time frame. These efforts aligned funding to the correct schedule at no increase to the preliminary engineering budget.

Change Management: The project was initiated by GEC staff located in the consultant’s office and transitioned to WSDOT staff for design and PS&E completion. Gordon was integral to the transition plan’s development and execution, as well as managing the new project engineer responsible for delivery. He communicated directly among all team members to assure a smooth transition and seamless delivery of services. He also secured the necessary specialized technical resources from on-call consultants to meet the project’s ad-ready milestone.

WSDOT I-5 M Street to Pacific Avenue HOV

Schedule Management: Statewide funding priorities led the Legislature to deploy funds to other projects and insert a two-biennium delay in the project’s milestones. Gordon reassigned staff to other HOV Program priorities, revised the project spending to the new LEAP schedule, and led the development of a new project schedule and spending plan. He then oversaw the establishment of new project leadership and a new team to complete the design and PS&E, allowing WSDOT to meet the project’s development milestones.

Budget Management: The original design of the 5/445E bridge had a pier and span configuration that required $1M in constructability measures and an unknown value associated with unmitigated risk. Gordon led a review process that resulted in an alternative pier and span arrangement for approximately $180,000, reducing costs, avoiding retained risk, and allowing for more competitive bids.

Scope Management: This project involved an integrated roadway and drainage design that required a complex plan for keeping temporary and permanent drainage separate, through large topographic variations, while accommodating roadway design changes during design reviews. To keep this task focused, Gordon embedded himself in the drainage plan review while assembling a team, including staff from Region Design and Construction, to resolve constructability concerns. This tactic kept the drainage design on schedule without scope creep.

Change Management: The project’s drainage plan review occurred when the WSDOT HOV office was closing, and members of the drainage design team were slated to be dispersed during the review. To keep the project on schedule, Gordon assembled a special team of design and construction office staff to quickly resolve review comments. He worked with region leadership to develop and implement strategic staff transition plans that aligned with the project’s milestones and provided staff continuity, which fostered consistency in the construction documents. He clearly communicated the transition plan with the team to keep them focused on task completion.

D. Gordon’s Professional Licenses/Accreditations

- Professional Engineer: Washington, 1998 (34842)
- Project Management Professional: Project Management Institute, 2008 (512748)
- Associate DBIA: Design Build Institute of America, 2019 (1136993)
- 2020 Fish Passage and Stream Restoration Design certification, WSDOT, 2022
Key Team Member Qualifications

Jessica Aguilar, PE, PMP

Project Role: Deputy Project Manager, Roadway Lead
Registration/Licenses: Professional Engineer, WA

19 Years of Experience

Jessica has worked closely with WSDOT Olympic Region to expedite delivery of complex multidisciplinary projects. She understands WSDOT's design and delivery requirements and will serve a key role supporting project management systems to expedite project delivery. Jessica has served as deputy project manager and lead engineer for roadway improvement projects with relevant elements including: fish passage, MOT/construction staging, and DB documentation.

Lead Drainage Engineer: Developed the Type A hydraulic report for this complex Olympic Region project. Provided preliminary design services, including channelization plans, stormwater and drainage, and hydraulic reports. Developed DB contract documents and currently providing construction support.

City of Fife Port of Tacoma Road Interchange Fife, WA (2009–2019)
Project Engineer: Prepared plans and hydraulic reports for the interchange at Port of Tacoma Road and I-5. Prepared a limited access hearing package, including plans, reports, scripts and legal exhibits. Coordinated with WSDOT Olympic Region to tie into the southbound and northbound I-5 HOV projects.

WSDOT SR 18 Widening: Issaquah-Hobart Road to Deep Creek King County, WA (2020–present)
Deputy Project Manager: Managing delivery of conceptual design plans, hydraulic reports and channelization plans for this project that includes 11 fish barrier removals. Led the alternatives analysis screening considering impacts to the environment specific to wetlands, stream impacts, and critical areas. A preferred alternative was determined within four months by concentrating solutions on specific challenging areas. Worked with team to develop MOT/construction staging that used PHD information to develop logical construction stages to build crossings. Coordinating with resource co-managers, WSDOT NWR, and several WSDOT HQ offices.

WSDOT I-5 Portland Avenue to Port of Tacoma Road SB HOV Tacoma, WA (2014–present)

Stuart Bennion, PE, SE, ENV SP

Project Role: Structures Lead
Registration/Licenses: Professional Engineer, WA; Structural Engineer, WA, Envision Sustainability Professional, WA

21 Years of Experience

Stuart is experienced designing fish-passable structures from alternatives analysis through design, specification writing and contract administration. Stuart has guided project evaluations in scoping, value engineering, and type, size, and location studies. He is currently aiding WSDOT address interdisciplinary issues of scour and stream migration and will apply developed solutions to our delivery.

WSDOT SR 18 Widening: Issaquah-Hobart Road to Deep Creek King County, WA (2020–present)
Lead Structural Engineer: Leading structural design for the alternatives analysis and preliminary construction cost estimate of this roadway widening project, which includes 66 walls, one culvert, 15 fish-passable bridges and two roadway bridges. Nine of the bridges/culverts included wildlife crossings. Role includes constructability review for MOT, staging, fish passage, animal crossings, construction access, temporary structures, and developing DB contract documents. He is providing technical coordination with WSDOT bridge office, hydrulics team, geotechnical branch and environmental team.

WSDOT I-5 Portland Avenue to Port of Tacoma Road SB HOV Fife, WA (2013–2018)
Structural Engineer/Deputy Project Manager: Led structural engineering for 30% design plan and development of DB contract documents. Bridge design included development of 230-foot modified spliced prestressed concrete girder and staging sequence to accommodate I-5 MOT and construction over the Puyallup River, SR 167, local roads, and active rail track. Developed staging and sequencing for project including temporary bridges and walls, fill, and utility coordination. Developed Chapter 2 of the DB RFP and coordinated for consistency with the roadway, geotechnical, and miscellaneous sections.

Snohomish County Index-Galena Road Flood Repair Index, WA (2018–present)
Project Engineer: Led alternatives analysis in environmentally sensitive area to remove a culvert in a salmon-bearing stream and designed a single-span bridge that addressed scour mitigation with deep shafts and bank armoring. Developed a complex construction staging sequence that was later used by the contractor.
Deepa Mungasavalli, PE, CESCL

Project Role: Stormwater Design Lead

Registration/Licenses: Professional Engineer, WA; WSDOT HRM Training Certificate, 2019; CESCL ID# ECO-3-81620

Years of Experience: 13

Deepa brings 13 years of experience designing projects with WSDOT and local agencies. Deepa has supported more than five WSDOT fish barrier removal projects and brings an in-depth understanding of how stormwater integrates with overall project components including WSDOT drainage practices. She has extensive experience delivering Design-Bid-Build and Design-Build projects and refining approaches with other disciplines and jurisdictions to ensure code compliance.

Understanding of WSDOT/ Public Agency Regulations and Procedures

- **WSDOT Manuals:** Hydraulics; Temporary Erosion and Sediment Control
- **WSDOT Standards:** Standard Plans and Specifications
- **Other:** Type A Hydraulic Reports; Simplified Hydraulic Reports; Stormwater retrofit assessment for ESA and WSDOT HRM requirements

WSDOT NWR GEC Hydraulic Management Support

King and Snohomish Counties, WA (2021–2022)

Senior Quality Control Reviewer: Provided independent review and approval of hydraulic reports, oversaw design of complex and unique stormwater systems that met regulatory and permit compliance, and served as lead author or senior quality control reviewer for contract documents. Reviewed scoping level opportunity-based stormwater retrofit assessment for fish passage barrier projects to comply with ESA Programmatic Consultation and WSDOT Highway Runoff Manual requirements.

WSDOT I-5/SR 510 Interchange Reconstruction

Lacey, WA (2017–2020)

Drainage and TESC Lead: Led complex flow spread width and conveyance analysis within the intersection due to the lane cross-over configurations with 0% slope. A flow spread deviation to the WSDOT Hydraulic Manual and Threshold Discharge Area (TDA) swap deviation to the WSDOT HRM was approved in coordination with WSDOT and the DAT team.

WSDOT SR 305 Winslow Ferry to Hostmark Street Safety Improvements – Murden Creek Fish Barrier Removal

Bainbridge Island, WA (2018–present)

Senior Quality Control (QC) Reviewer: Reviewed drainage design, Type A Hydraulic Report, and associated calculations and analysis, and designed temporary drainage for management of stormwater during phased construction stages and detours and developed the TESC plans and TESC narrative.

Keelan Jensen, PE

Project Role: Stream Design Lead

Registration/Licenses: Professional Engineer, WA; WSDOT Fish Passage Certification FPT20-03166

Years of Experience: 7

Keelan has delivered 81 fish passage design/culvert replacement projects throughout western Washington, including four PHDs on SR 3 and SR 16 in WSDOT Olympic Region. He has worked on a range of projects in hydraulic and hydrologic areas, including the Tahuya River Basin in the Gorst area where he performed hydrologic and geomorphic analysis. He specializes in multidimensional hydraulic modeling and fish passage design. He performed hydrologic and geomorphic analyses in the Tahuya River Basin in the Gorst area.

Understanding of WSDOT/ Public Agency Regulations and Procedures

- **WSDOT Manuals:** Hydraulics
- **WSDOT Standards:** Standard Plans and Specifications; WSDOT Fish Passage and Stream Restoration Design PHD and FHD
- **WDFW:** Water Crossing Design Guidelines; Hydraulic Project Approval (HPA); Hydraulic Project Approval (HPA)
- **Other:** Joint Aquatic Resource Permit Application (JARPA)

WSDOT Olympic Region Fish Passage – 16 PHDs

Kitsap County, WA (2021–present)

Stream Design Engineer: Developing preliminary hydraulic design and PHD reports for four crossings in the Gorst vicinity, two crossings under SR 3 and two crossings under SR 16. All crossings are being designed to meet current WSDOT and WDFW standards and in coordination with WDFW and the Suquamish tribes to ensure the structures will meet fish passage criteria.

WSDOT Leland Creek and Tributaries Fish Barrier Correction, US 101

Jefferson County, WA (2018–present)

Stream Design Engineer: Developed PHD and FHDs, including providing permitting and PS&E support to the WSDOT project office, for one of the three crossings included in the project. All crossings are being designed to meet current WSDOT and WDFW standards and in coordination with WDFW and the local tribes to ensure compliance with fish passage criteria.

WSDOT Advanced PHDs – Olympic Region, SR 109, US 12 and US 101

Jefferson County, WA (2020)

Stream Design Engineer: Developed PHDs for three of the nine crossings included in the project. All crossings were designed to meet current WSDOT and WDFW standards and in coordination with WDFW and the local tribes to ensure compliance with fish passage criteria.
Jeff Cook, PE

Project Role: Constructability/MOT Lead

Registration/Licenses: Professional Engineer, WA

23 Years of Experience

Former WSDOT Olympic Region Project Engineer, Jeff brings experience with design, engineering, and construction for fish passage crossings, roadway rehabilitation, bridges, corridor improvements, and environmental mitigation projects. Jeff’s 20 years of experience in construction management enables his strategic approach to constructability reviews. His approach considers maintenance, traffic impacts, durations, material sources or reuse in how the project can be built. He keeps WSDOT’s needs firmly in the contract, but allows the contractor flexibility to expedite delivery of projects.

City of Sammamish Issaquah-Fall City Road Widening
Sammamish, WA (2019)

Senior Engineer/Project Manager: Construction management services to expand a two-lane roadway to a four-lane roadway with two travel lanes, center raised median, bicycle lanes, roundabouts, sag curve correction, and fish passage culvert replacement. Provided QC/QA and constructability review and oversaw DOE, WDFW, Army Corps, and Tribal elements and negotiated changes with the contractor to keep the project moving forward.

City of DuPont-Steilacoom Road Improvements
DuPont, WA (2021)

Project Manager: Design services to widen and improve approximately 1.2 miles of road to support future development of the WSDOT I-5 Corridor and I-5 Exit 110. Project included coordination with WSDOT’s I-5 JBLM design-build project team. Jeff looked at the construction sequencing and traffic impacts of the WSDOT I-5 work and revised a more efficient MOT.

WSDOT SR 522 Paradise Lake Road Interchange
Snohomish County, WA (2018)

Services included initial feasibility and scoping for interchange improvements for heavy congested intersection. Provided initial design concepts and feasibility. Project included consensus building between WSDOT, Snohomish County, local businesses, and residents to advance preliminary design and DB procurement.

Diane Sheesley, PE

Project Role: Utilities Lead

Registration/Licenses: Professional Engineer, WA; Fish Passage and Stream Restoration Design Certificate #FPT20-05058

21 Years of Experience

Diane has applied WSDOT design standards to many local projects including several in WSDOT Olympic Region. She and has led design and construction of projects that include extensive utility coordination, roadway design, stormwater, culverts, and bridges, including 10 fish barrier removals.

Kitsap County Taylor Road Bridge Painting
Kitsap County, WA (2020–present)

Project Manager: Managing the repainting of this bridge composed of steel flatcar girders, including coordinating with Cascade Natural Gas and City of Bremerton Water. Diane has worked with the utilities to provide protection specifications for the utilities as well as notification requirements when construction begins to ensure that existing utilities will not be impacted by the project. Also coordinating with WSDOT Local Programs. Programs for permitting and scheduling.

City of Tukwila West Valley Highway (I-405 to Strander Blvd) Improvements
Tukwila, WA (2020–present)

Project Manager: Leading coordination with Seattle Public Utilities, Sound Transit, Lumen, Union Pacific Railroad, Puget Sound Energy, City of Tukwila, King County Metro, and WSDOT for this project to widen the roadway and bridge a 60-inch Seattle Public Utilities water main. Coordinating with WSDOT NWR Traffic Office to obtain review and approval of the SR 181 channelization design.

City of Lake Stevens 36th Street NE and Catherine Creek Bridge Type, Size and Location (TS&L)
Lake Stevens, WA (2020–2022)

Project Manager: Led development of TS&L examining civil and structural options to replace a 17-foot long, deteriorated fish passable structure over Catherine Creek. Alternatives evaluated included a box culvert, pipe arch, and a single-span, 85-foot concrete girders bridge that spans the floodplain. Assisting with coordination with the Tulalip Tribe, USACE, USFWS, WDFW, and other permitting agencies. Diane coordinated with the Tulalip Tribe, USACE, WDFW, DOE, DAHP, and City of Lake Stevens planning department.
Aaron Butters, PE

Project Role: DB Documentation
Registration/Licenses: Professional Engineer, WA
Years of Experience: 40

Aaron is a former WSDOT HQ alternate delivery manager experienced in resolving unusual or complex issues in transportation projects. While with WSDOT and since as a consultant, Aaron has prepared numerous RFOs and RFPs for DB contracts and assisted with the evaluation of SOQs and RFPs during the procurement process including Tacoma’s DB procurement and document preparation for the Fishing Wars Memorial Bridge. He brings a wealth of experience to clients in the areas of project management, federal aid and funding advisory services, and liaison with the state. Aaron has led 13 fish barrier correction projects.

City of DuPont-Steilacoom Road Improvements
DuPont, WA (2021)
Principal-in-Charge: Responsible for overseeing roadway and drainage structure design for design services to widen and improve approximately 1.2 miles of road to support future development of the WSDOT I-5 Corridor and I-5 Exit 110 with an additional lane, new sidewalk, curb, and gutter. Project included coordination with WSDOT’s I-5 JBLM DB project team.

City of Tacoma, Fishing Wars Memorial River Bridge
Tacoma, WA (2019)
Program Manager: Design services for the replacement of the west approach of the Fishing Wars Memorial (Puyallup River) Bridge spanning the BNSF and Union Pacific mainlines through Tacoma. Led development of the RFO and RFP for DB procurement, design oversight and provided owner support during project implementation.

City of Sammamish Issaquah-Fall City Road Widening
Sammamish, WA (2019)
Technical Advisor: Provided strategy and approach for federal aid compliance and position the project to receive federal grant funding for planning and design services to expand a two-lane roadway to a four-lane roadway with two travel lanes, center raised median, bicycle lanes, roundabouts, sag curve correction, and fish passage/culvert replacement.

Karissa Kawamoto, AICP

Project Role: Environmental/Permitting/Pre-NEPA Lead
Registration/Licenses: AICP
Years of Experience: 28

Karissa is adept at preparing the National and State Environmental Policy Act (NEPA/SEPA) documentation, and is skilled at working with regulatory agencies to meet permitting requirements. Karissa has considerable DB technical requirement development and permit acquisition experience for Sound Transit’s light rail projects. She is focused on proactive outreach to and coordination with resource co-managers and agencies to expedite permits and minimize environmental impact.

WSDOT Minter Creek Culverts, Fish Barrier Removal
Olympic Region, WA (2018–2019)
Permitting Lead: Provided Level 1 and 2 documentation for WSDOT review and approval and prepared the JARPA and associated graphics for the three existing substandard culverts to be upgraded with a new bridge and two fish-passable culverts. She also coordinated with WSDOT staff and design team on any decisions that would require updates to the permit documents.

City of Bellevue Spring Boulevard Corridor
Bellevue, WA (2015–2018)
Environmental/Permitting Lead: Worked with WSDOT and the FHWA to determine that the low level of impacts anticipated by the project warranted a Documented Categorical Exclusion, resulting in cost and schedule savings. Developed documentation covering wetlands, noise, visual quality, hazardous materials, land use conversion, Section 106, Section 4(f), ESA and environmental justice analysis. Worked with the team to ensure wetland impacts were to the buffer only, eliminating the need for federal permit approvals.

City of Marysville I-5/SR 529 Interchange Improvement
Marysville, WA (2015–2017)
Environmental/Permitting Lead: Worked with a large stakeholder group that included WSDOT, FHWA, Port of Everett, transit agencies, and tribal interests, Karissa helped prepare the interchange justification report (IUR) and provided input towards preliminary concepts. She coordinated the field work effort for wetlands, streams, cultural resources, hazardous materials, air/noise analysis, and visual quality, as well as improved habitat for fish.
Diana Barreto brings significant experience leading communication and stakeholder engagement on WSDOT fish passage projects, including a fish barrier removal along SR 3 in Kitsap County. She has developed trusted relationships with WSDOT Olympic Region stakeholders, and community. Diana is particularly skilled at communicating technical information and building shared understanding amongst different groups.

Project Role: Community Engagement and Interagency Coordination Lead

Outreach Lead:

- Produces and implements engagement plans; stakeholder workshops; open houses and business forums; carries out door-to-door campaigns; presents at community meetings, and helps manage the project online and digital platforms.

Communications

Lake Stevens, WA (May 2017–present)

Outreach Lead: Leads construction communications on this complex design-build project alongside WSDOT Olympic Region communicators to create informative blogs, engaging graphics and videos, and conduct both regional and hyper-targeted outreach.

Understanding of WSDOT/ Public Agency Regulations and Procedures

WSDOT Manuals: Communications

WSDOT Standards: Style Guide

Other: WSDOT Practical Solutions process; NEPA and SEPA process

WSDOT SR 3 Chico Creek Fish Barrier Removal

Kitsap County, WA (2020–present)

Community Engagement Lead for DB Contractor:

- Led the development of public outreach materials like fact sheets, FAQs, stakeholder outreach lists, project maps, and mailers. Led the coordination and planning for a bilingual online open house to inform the community of the project and any temporary effects from construction.

WSDOT, SR 9/SR 204 Intersection Improvement

Tacoma, WA (2018–present)

Outreach Lead:

- Leads construction communications on this complex design-build project alongside WSDOT Olympic Region communicators to create informative blogs, engaging graphics and videos, and conduct both regional and hyper-targeted outreach.

Supporting Team Members

There are several members of our team who bring specific Olympic Region, fish barrier removal, or local area expertise that will help us deliver the Project swiftly and strategically.

<table>
<thead>
<tr>
<th>Name/Scope</th>
<th>Experience</th>
</tr>
</thead>
</table>
| **James Ellis, PE**
Stream Design | James brings eight years of experience designing fish barrier removals throughout Washington and the Olympic Region. He is a lead engineer on the fish barrier correction project at Gorst Creek watershed and has worked on eight fish barrier removal projects with similar scope items, such as PHD and FHD, geomorphology, H/H modeling, and the design of streambank stabilization measures. He has extensive experience facilitating coordination between geotechnical, structural, environmental, and construction disciplines and works closely with the City of Bremerton and Suquamish Tribe. James is a project engineer for 3 PHDs for Pierce County involving environmental assessments, modeling, alternatives analysis, tribal consultation, and design development. He has completed the Rosgen Applied Fluvial Geomorphology 1 and WSDOT Fish Passage and Stream Restoration Design Training (#FPT20-03455). |
| **Anne Broache, AICP**
Permitting | Anne has 15 years experience leading environmental documentation and permitting. She served as environmental project manager for the I-405, Brickyard Inline Transit Station Project, overseeing NEPA documentation and permitting in partnership with Sound Transit and participating in city coordination and tribal consultation for project’s fish barrier correction. She served as a senior reviewer for WSDOT’s Northwest Region Fish Passage Program, responsible for QC and oversight of environmental justice and Section 4(f) determinations associated with Categorical Exclusions for several fish barrier correction projects in the I-90 corridor in Bellevue and Issaquah, Washington. |
| **Jugesh Kapur, PE, CE, SE**
Standard Plans/ Culverts | Jugesh offers 30 years of experience in bridge design, construction, and management, including 22 years at WSDOT, where he served as the state bridge engineer (eight years), state bridge design engineer, design unit manager and senior structural engineer. In these positions, he provided administrative direction, guidance and management to the structural engineering for the entire state of Washington, and designed bridge projects of various sizes and complexity using alternate methods of delivery and the use of accelerated bridge construction techniques. |
| **Matt Barber, PE**
SR 3 Team Structures | Matt is a structural design engineer and project manager experienced in fixed bridges, transit structures, tunnels, foundations, and security design. His 17 years of engineering experience include structural analysis and design, plan preparation, bridge condition inspection, and construction support services. He is working with Jugesh and will lead the design phase to develop the details on the standard plans for precast split box, precast three-sided, and precast wing wall structures for WSDOT. Matthew serves as WSP’s representative to the ACEC/WSDOT Structures Geotech Committee. |
| **Jon Vanier, PE**
Stormwater Drainage | Jon is a senior stormwater engineer specializing in the design of stormwater drainage systems for transportation projects. He has worked on large WSDOT projects, with experience in both design-build and design-bid-build delivery methods. He brings experience and expertise on projects with complex water quality issues including WSDOT SR 18 Corridor Widening and WSDOT SR 520 GEC. |
WSP’s commitment to quality projects delivered on time and within budget is at the heart of our project management system. Our success is as much about the project management tools as it is the team. Our tools provide information to identify opportunities or issues, include processes to help the team implement solutions, and rely on skilled project leadership and communication to advance a project swiftly.

A.1 WSP’s Quality Assurance/Quality Control (QA/QC) Processes

Our experience has shown that excellent quality management stems from three core principles: having the right staff in the right positions, providing project-specific quality training to all staff as they on-board the project, and establishing and implementing clear lines of communication between the owner and consultant team regarding quality reviews.

Quality is a core WSP value, as demonstrated by our ISO 9001:2015 certification. Our QA/QC program incorporates continuous review of products as they are developed, as well as a series of formal reviews conducted as part of preparation of major deliverables. Reviews will ensure that deliverables meet all requirements of the scope of work and guidelines and will include independent checks by senior staff members with specific and relevant expertise in the appropriate subject areas.

Quality Management Plan: Project Manager Gordon Roycroft and Quality Manager Tara Olsen, PE, will prepare a project-specific quality management plan (QMP) and ensure the team follows the quality procedures outlined in the document. The QMP will be tailored to include processes for all types of deliverables produced for the project, from the basis of design to conceptual plans and through RFQ/RFP development. The QMP will define project criteria, standards and requirements and identify the senior independent reviewers and schedules the formal QC reviews. We will engage reviewers familiar with WSDOT plan and RFP review. The QMP will be an essential element of a comprehensive Project Management Plan to be created for this Project.

QC Reviews and QA Certification: QC reviews will follow the five-step process shown below with specific checking processes developed for each type of deliverable, whether a text document, a spreadsheet, a schedule, or a plan sheet. A PDF will be created at the end of each of the five steps to systematically document completion and compliance with QMP established procedures. The creates an auditable paper trail for QA review and certification. A QA certification will be produced for each deliverable, which will be signed by the appropriate discipline manager, the quality manager and the project manager.

Established checking processes have multiple benefits. They provide more uniform quality review as the process guides the reviewer and prompts for the review of specific elements. The deliverable originators are benefited with a “grading matrix” for deliverable content and format. Altogether, we see better products entering quality review, which streamlines the review-response loop.

Quality Reviews: Peer and senior reviews will ensure that deliverables meet all requirements of the scope of work and guidelines and will include independent checks by senior staff members with specific and relevant expertise in the appropriate subject areas. Through the quality process, we share lessons learned with staff to allow for a continual increase of knowledge and improvements to deliverables. WSP will include WSDOT on the tracking and sharing of lessons learned for this project. The review process includes:

- **Review Schedule:** Quality reviews will be incorporated into the project schedule to provide ample time to complete the process. The design team will go pencils-down to focus on review and response during this period.
- **Interdisciplinary Considerations:** Reviews will have an interdisciplinary aspect to capture potential conflicts between technical specialties and to identify gaps or ambiguities. This will be especially critical when it comes to the development and quality reviews of the RFP documents and appendices. Aaron Butters, our DB documentation lead, will direct these efforts and focus on interdisciplinary validation and production of comprehensive and clear technical requirements.
- **Progress Reviews:** These are more informal, work-in-progress reviews conducted at the completion of major tasks. The progress review will focus on identifying interdisciplinary conflicts and validating design consistency. An example of major task completion that would prompt a progress review is the advancement of a structure type recommendation.
A.2 WSP’s Budget and Scope Tracking System(s)

WSP’s regular tracking and communication for project scope, schedule and budget begins with proactive management. Gordon will hold weekly team coordination meetings to confirm work for the week ahead and efficient use of our resources (further described in Section 4. A4). What do you need from others to advance your team’s work? This is particularly important question with the multi-team structure that we will use to expedite delivery.

Scope and budget conform to the fundamental framework of the Work Breakdown Structure (WBS), detailed in Criterion 5. With that common organizational structure, we will establish performance baselines and measure scope progress while tracking costs to identify and report trends/variances to WSDOT. WSP uses a management information system (Oracle) that provides project managers with weekly actuals for staff hours, labor costs, and direct expenses compared to the task budgets. Subconsultant invoices are required to be sent to WSP in a timely fashion so they can be included in the monthly invoice.

WSP’s system also generates weekly labor reports detailing hours by person by individual task and are automatically sent to the project manager. These are useful as Gordon will understand the burn rates and staff charging to the project, as well as quickly identify erroneous charges that need to be transferred. Oracle provides numerous reporting options for project managers and Gordon will work with our project controls team to develop a custom tool to further automate cost reporting and populate specific data to effectively manage the budget. WSP has created a similar tool for Pierce Transit’s SR 7/Pacific Avenue Bus Rapid Transit project.

For scope tracking, the project team will develop a Deliverables Matrix to track the status of all deliverables and to track scope additions agreed to between contract amendments. The attention to detail on scope and budget management, along with effective communication both between Gordon and task leads, and between Gordon and the Olympic Region project office, yields successful project delivery.

Lastly, WSP leadership is aware of the budget status of all projects (via reports and review processes). These processes reinforce that project managers prioritize budget and scope management.

Gordon will oversee preparation a GIS-based project landing page to provide WSDOT and the consultant team single point entry and access to the project information. The landing page will contain project lookaheads, current meetings and agendas, performance dashboard information, and serve as a launching point for project management and design tools. Landing page information will provide access to the project-specific earned value model to visually represent and confirm scope, budget, and schedule performance. The earned value model will be updated monthly, and the data analyzed to identify schedule and cost variances from the project performance baseline. Earned value information will be included in monthly progress reports and included in invoice submittals.

Discipline leads are required to know the contracted scope of work and to monitor and report emergent needs and requested modifications. Gordon will solicit input regularly to populate a change management log. The change management log will be a tool for WSDOT and WSP to be on the same page with respect to project execution and revisions to baseline performance tools. It will be reviewed regularly with the project office and Gordon will initiate changes as mutually agreed to.

An essential element of monitoring budget and scope is communication Gordon will work with the communications team to produce project performance updates (we recommend a monthly recurrence with quarterly summaries) for project office use in communicating project status.

Swift: Commitment to Timely Comment Resolution

Gordon, Jessica and the discipline managers commit to the timely turnaround of deliverable comments. Responses will be completed within 10 working days and a comment resolution meeting will be scheduled to address any unresolved or unclear comments.
to WSDOT leadership. We are also prepared to assist the project office and Olympic Region in milestone reporting to support program management requirements. Similarly, should there be a need to support Gray Notebook reporting, the WSP team stands ready.

Gordon has extensive experience monitoring budget and scope. He is a certified Project Management Professional (PMP), former PMI (Olympia Chapter) board member and PMP exam preparation instructor (time and cost components in particular). As the deputy director of the Tacoma/Pierce County HOV Program, he had oversight of the program’s business unit, which included monitoring scope and schedule, cost controls, contracting, and performance reporting.

A.3 WSP’s Scheduling Program/Process

WSP will use WSDOT’s Primavera 6 scheduling system, particularly to serve the DB delivery method for the project. At the project start, we will develop a baseline schedule using the WSDOT-approved, project-specific WBS framework. The schedule will include internal quality reviews, WSDOT reviews, and resource agency/stakeholder reviews. The schedule will be updated regularly with the frequency to be determined consistent with the project office needs and direction.

The project schedule is a necessary element in other project control and monitoring tools. It relies both on inputs from other tools, specifically the WBS and the project deliverables, as well as being an input to the earned value model and staffing plans. It is the integration of these tools that contribute to effective project controls, performance measurement and reporting. Gordon and Deputy Project Manager Jessica Aguilar have been using this set of tools to efficiently manage and deliver the WSDOT SR 18 Widening project. They created an aggressive schedule to complete the project’s Alternatives Evaluation phase. The schedule was a critical tool they used for sequencing activities, monitoring progress, and driving deliverable production to meet milestones and deliver on commitments. Their additional scheduling experience is provided below.

A.4 WSP’s Process for Interacting With Internal Project Team

Gordon’s communication style is to be very inclusive. He solicits input from subject matter experts and works to blend those discipline perspectives into cohesive messages and strategies. His management style is to keep the team focused on the delivery goals and to calmly adapt to changes as they arise.

Team Coordination: Gordon, Jessica and discipline managers will convene weekly for consultant team meetings. The purpose of the meetings is to evaluate progress, discuss obstacles and constraints to effective design development, provide a high-level forum for interdisciplinary coordination and to prioritize project activities in a look-ahead fashion. Gordon will use the weekly consultant team meeting to brief the team on WSDOT-initiated changes and direction and to provide a forum for consistent project messaging. Gordon asks his team leads to answer two essential questions, “What does the team need to know about what your discipline group is doing?” and “What do you need from other discipline groups to continue your progress?”

Resource allocation and balancing is a frequent discussion topic and action item from this meeting. The weekly team meeting is often a spur for more focused and detailed meetings to resolve emergent issues. On the SR 18 Widening project, a topic of conversation in a recent team meeting prompted Gordon and Jessica to initiate a follow-up meeting with structures, geotechnical, stream team and roadway leads to consider vertical clearance challenges. When it
is necessary to schedule meetings with WSDOT staff, these internal meetings are used to develop a full understanding of the issue, the potential impacts to each technical discipline, and to craft an agenda for the future meeting. This type of preparation sets the stage for the efficient use of precious meeting time and speeds decision-making.

Subconsultant management: Managing our team partners begins with establishing a clear scope, schedule and budget with defined deliverables and assumptions, and documenting this information in a subconsultant agreement that is consistent with the prime contract. Subconsultant budgets and progress are tracked at the task and subtask level in our financial system and in the project master schedule. QC of subconsultant work is closely managed. All subconsultants will be required to submit a Quality Control Plan that conforms to the overall Program Quality Management Plan or adopt the Program Quality Management Plan. We require that subconsultant deliverables be properly reviewed and approved internally prior to being submitted to us. All subconsultant deliverables will be reviewed and approved by WSP before they are sent to WSDOT.

WSP has included several small, OMWBE-certified firms on the team in an effort to build industry capacity to deliver fish barrier removal projects and develop and enhance the capabilities of those firms. We recognize the need to coach and encourage while simultaneously monitoring and managing performance.

Communication Tools: Gordon and Jessica have effectively used WSDOT’s ProjectWise system on the SR 18 Widening to store project files and to transmit submittals and receive review comments. The use of ProjectWise as a central file storage location is particularly beneficial in sharing files across WSDOT offices as well as among the participating firms. As such, it enhances project communication, organizes submittals for transmittal and document retrieval, and expedites reviews.

In collaboration with the use of ProjectWise, WSP uses the Bluebeam Session platform to conduct deliverable reviews. Using Bluebeam Session allows access to non-licensed users and provides the opportunity for simultaneous review by multiple viewers and the collection of comments.

Project-specific templates and border files will be created at the beginning of the project and used consistently throughout, based on the WSDOT EEDS manual and style guide. This will ensure a uniform look to project deliverables, without regard to the firm producing the deliverable.

A.5 WSP’s Ability to Provide Interaction with WSDOT and Stakeholders

Frequent communication with the WSDOT project manager and key staff is critical to the success of this project. We will keep WSDOT’s project manager up to date at all times on technical work progress through meetings and clear reporting. Gordon implemented a successful meeting structure on other projects that include weekly check-in meetings with the project office (Assistant PE with PE optional) and monthly project management team meetings (Assistant PE, PE, and Project Development Engineer). To keep the broader project team and subject matter experts engaged and informed, Gordon proposes monthly interdisciplinary meetings. All attendees will receive interdisciplinary context and familiarity with project challenges faced, which allows for a better-informed and more focused review. The desire to engage the broader set of attendees is to incrementally inform the group so, upon review, there is heightened project understanding and a more effective review. As needed, informal over-the-shoulder meetings are proposed to address discipline- and/or location-specific issues. Interdisciplinary and over-the-shoulder meetings have proven effective on the SR 18 Widening to engage and communicate with WSDOT support and specialty groups.

Recognizing everyone’s time constraints, particularly for WSDOT subject matter experts, Jessica will meet with task leads in advance to flesh out key issues and create meeting agendas. Whenever possible, agendas and meeting materials are distributed in advance so participants are prepared to focus on issue resolution and moving forward. Over-the-shoulder meetings are planned in coordination with the WSDOT project office to confirm attendees to ensure issue resolution has the right information inputs and decision-makers are present. This promotes meeting efficiency, spurs decision-making, and avoids multiple meetings on the same topic.

Gordon will work with Alan Keizur (of Golder, a WSP member firm), our risk management lead, to identify and manage project risks using WSDOT’s standard array of tools. Risk review and assessment will occur at regular intervals; risk status will be updated; emergent risks added; and, as appropriate, risks will be retired. Among the project-specific risks anticipated to need managing:

- The multiple above- and below-ground utilities in the SR 3/Sam Christopherson Road intersection. Early identification of existing utilities and coordination with the utility companies will set the stage for conflict identification and utility relocation as the project advances to construction.
- The potential exists for dramatic degradation (headcutting) on the SR 16, Unnamed Tributary to Ross Creek when a downstream fish barrier, outside of WSDOT ROW, is corrected. This risk
will influence the design and require coordination between structures, geotechnical, stream hydraulics, and construction staging to reach a sustainable and constructible solution.

We have created a communications strategy that considers both internal and external communications to identify and resolve issues early. Gordon will work with Diana Barreto (communications lead) and Scott Keillor (internal communications lead), to develop a comprehensive communications plan to meet both external and internal communication needs. Diana is working on the SR 3/Chico Creek culvert replacement with the same agencies and many of the same community-based organizations affected by this project. Diana has also been involved in the I-5/SB HOV project and has done substantial work with OR Communications (Doug Adamson and Cara Mitchell) in conducting public engagement and public information in support of these two DB projects.

Focus on Clear, Internal Coordination for Efficiency

Gordon and Scott, in coordination with the project office and NWR Communications, developed and executed a strong community engagement plan for the SR 18 Widening project. The plan incorporated the design manual practical design guidance to engage the community “in order to strengthen partnerships, increase credibility, drive priorities, and inform decision-making.” The NWR project engineer recently commented that he firmly believes the project would not have the level of community support and be included in the Move Ahead Washington funding package were it not for this outreach effort.
This project has several distinguishing features that will be part of our nimble and creative approach to delivery. It is a bundle of five distinct fish barriers to be corrected. Each location has its own set of challenges and risks to be managed and opportunities to be seized, lending themselves to individual development. Simultaneously, all five locations must be advanced collectively to produce a cohesive DB procurement.

WSP has developed our delivery approach based on careful examination of each site and the unique challenges shown in the issues map in Exhibit 6. Two critical opportunities that stand out include: 1) strategic construction staging and 2) identifying opportunities to remove additional nearby fish barriers at minimal cost.

Strategic construction staging: As an example of a tailored strategic solutions, it is conceivable that a single trip from Port Orchard to Belfair could pass through multiple work zones, and potentially all five. A comprehensive and well-conceived construction staging concept is needed to create a tailored transportation management plan for the DB RFP. Our team specifically includes Jeff Cook to lead this effort. Jeff’s experience in Olympic Region, WSDOT HQ and the consulting industry developing construction staging and traffic management strategies makes him uniquely qualified to fill this role. He is able to understand and create a transportation management strategy that considers the experience of the roadway user, balanced with needs for space and efficiency for construction. Jeff’s familiarity with WSDOT and MUTCD standards, as well as understanding of constructability constraints will support creation of a plan easily transferable to the successful DB contractor.

Specific traffic management strategies we will consider employing are extended full closures for low-impact times. A well-developed City of Port Orchard and Kitsap County road network allows consideration of a full closure for the Olney Creek crossing on SR 166 (Mile Hill Drive). Shorter-duration overnight closures may also be feasible at the Gorst Creek crossing on SR 3. Phased construction of the culvert crossing to maintain two-way travel, will be required at the Unnamed Tributary to Ross Creek on SR 16 given its isolated location north of the Tremont Street interchange. A combination of partial closures and staged construction will be considered at the Unnamed Tributary to Sinclair Inlet.

Removal of additional nearby fish barriers at minimal cost: Another strategy we would propose for consideration would be including a level of development for adding alternate fish barrier locations. The design development would be focused on the elements that are always critical path (ROW, utility coordination, preparation for design-builder NEPA documentation and environmental permitting), while reducing level of effort on design development only to that which is necessary. These fish passage barrier locations could ultimately be advanced as additive bid schedules, if funding is available, or at a minimum, advanced in a way that they could be substitutes for other crossings that run across delays that are unable to mitigated in the desired time frame. One example of a benefit to this approach is that should it be determined to relocate the Unnamed Tributary to Sinclair Inlet, the need to develop and receive approval for a new stream outfall in the intertidal zone and potential floodplain revisions is anticipated to be time-consuming. Advancing other barrier locations could mitigate this potentially long lead time process.

A. WSP’s Work Plan

A.1 WSP’s Work Plan Development for This Project

Work plan development is not a uniformly prescribed process at WSP. Instead, work plans are individually tailored to account for unique projects, client practices, and project manager preferences. Given Gordon’s tenure and training with WSDOT, he will conform closely to established WSDOT practices as detailed in the Program Management Guide.

The essential functional processes of the work plan, along with the primary considerations for each process, are displayed in the center column of Exhibit 7 on page 24. The project work plan will be built around three major project phases, primarily described as Design Development, Procurement, and Design Services in Construction. It is worthy to note the core processes...
Exhibit 6: WSP’s delivery approach will address the unique challenges at each fish barrier removal site.

WDFW ID 990168 – Gorst Creek
- Volume/speed of traffic to feed construction staging and MOT considerations
- Access for geotechnical investigation and construction (depth of fill, forested embankment slopes)
- Steep slopes in existing condition, stable slopes in final configuration
- Roadway cross-section to address widening now or future construction
- Inclusion of wildlife crossing in structure opening width (two wildlife crashes within 1/2-mile in 5 years)
- Upstream barrier correction indicates high sediment transfer; active aggradation and channel migration; evidenced by large flooding event and no upstream vegetation
- PHD considers 24–25 ft structure width, larger structure would encourage stream migration, meander bars recommended to manage stream migration
- Suquamish Tribe input includes interest in small downstream tributary, to preserve in final stream solution

WDFW ID 991585 – Unnamed tributary to Gorst Creek
- Challenging coordination of stream alignment and roadway intersection geometry, including shallow culvert depth and considerable culvert length
- Intersection control evaluation to determine potential benefit of a roundabout in consideration of total travel demand and volume of turning traffic
- Adjacent upstream fish barrier on private property under commercial operations, further constrained by fire station property further upstream
- Above- and below-ground utilities will be affected by any stream/roadway solution
- Existing and previous site activities create potential for highly variable shallow subsurface soil conditions
- Limited vertical clearance above thalweg, little or no opportunity to regrade upstream, will need to explore roadway profile revisions or other mitigation options

WDFW ID 991670 – Unnamed tributary to Sinclair Inlet
- Culvert in transition area at convergence of state routes result in substantial culvert length under SR 16, continuing through commercial operation downstream
- Limited vertical clearance above thalweg, little or no opportunity to regrade upstream, will need to explore roadway profile revisions or other mitigation options
- Existing sign structure and overhead utilities to address in construction staging approach and MOT strategy
- Downstream reach part of a combined stormwater utility and stream outfall; explore potential to separate
- Kitsap County coordination required to address floodplain considerations and stormwater utility
- Stream outlet in intertidal zone, sustainability considerations to address sea level rise
- Existing and previous site activities create potential for highly variable subsurface soil conditions including loose and/or soft subsurface soils

WDFW ID 990270 – Unnamed tributary to Ross Creek
- Volume/speed of traffic to feed construction staging and MOT considerations; limited roadway width may drive temporary structures and/or multi-stage construction
- Explore accelerated bridge construction strategies to construction duration and traffic impacts
- Access for geotechnical investigation and construction (depth of fill, forested embankment slopes)
- Steep slopes in existing condition, stable slopes in final configuration
- Potential for significant degradation; downstream barrier correction could realize 6–8 ft downstream at this location
- Inclusion of wildlife crossing in structure opening width (ten wildlife crashes within 1/2-mile in 5 years)

WDFW ID 15.0201 90 – Olney Creek
- Coordination with City of Port Orchard and Kitsap County on detour agreements and management of utilities during construction
- Volume/speed of traffic to feed construction staging and MOT considerations; limited roadway width may drive temporary structures and/or multi-stage construction
- Access for geotechnical investigation and construction (depth of fill, forested embankment slopes)
- Steep slopes in existing condition, stable slopes in final configuration
- Underground utilities longitudinal to the roadway
- Overhead utilities (transmission and distribution on south side of roadway, communications on north side of roadway)
- Similar degradation and downcut potential at WDFW ID 991670, but not as extreme
- More highly developed local roadway network allows consideration for detours and road closures, will influence structure type decision and total project cost
- Coordination with City of Port Orchard and Kitsap County on detour agreements and management of utilities during construction
of planning, executing, and monitoring and controlling are anticipated to be iterative and concurrent as project knowledge evolves and changes are incorporated.

A.2 Team Members Involved With the Decision-making Process for the Development of the Work Plan

Gordon will work with his project team (Jessica Aguilar and discipline managers) during the first 30 days to craft a project-specific work plan. The project office (Bill Elliott and Jim Sammet) will be engaged in work plan development for input, review, and comment. As appropriate, and in coordination with the project office, Olympic Region leadership and support/specialty group managers will be involved in the same way. The right-most column of Exhibit 7 indicates the people involved in work plan decision-making. Finally, the work plan will be distributed for widespread endorsement.

Exhibit 7: Work plan approach and responsibilities

<table>
<thead>
<tr>
<th>Process</th>
<th>Elements of WSP’s Work Plan Approach</th>
<th>People Involved</th>
</tr>
</thead>
</table>
| Initiating | ■ Develop a project description that captures the needs and constraints so that the team clearly understands project limitations and priorities.
■ Identify delivery milestones and project decision points to avoid project delays and establish path to project approvals.
■ Identify roles on the project and align team members to project objectives and team mission. | WSDOT: Project Engineer, Assistant Project Engineer, Project Development Engineer
WSP: Project Manager, Deputy Project Manager, Discipline Managers |
| Planning | ■ Develop a well-defined Project Management Plan that establishes the project performance baseline with respect to scope, schedule, and budget.
■ Identify the risks and opportunities early to communicate, inform and shape design, and develop risk response plans.
■ Develop a comprehensive communication plan for to address internal and external audiences.
■ Establish and endorse a change management process to invoke during project execution to avoid delay and expedite resolution as changes emerge.
■ Identify project unknowns and create plans/processes to drive consideration and ensure decision-making in a timely manner.
■ Prepare a project-specific QMP with checking processes targeted to address all deliverables. | WSDOT: Project Engineer, Assistant Project Engineer, Project Development Engineer
WSP: Project Manager, Deputy Project Manager, Discipline Managers |
| Executing | ■ Expedite design development, achieve interdisciplinary coordination, and facilitate design integration through the use of design workshops.
■ Drive durable decision-making through engaged participation, focused discussion and broad endorsement.
■ Incorporate consideration of constructability, maintenance of traffic, and DB procurement to inform and shape design and limit rework.
■ Limit prescriptive approaches and solutions to preserve maximum flexibility and innovation by the design-builder.
■ Create a culture of quality for the project team by making it a focal point of meetings to rigorously implement quality management processes on all deliverables. | WSDOT: Project Engineer, Assistant Project Engineer, Support/Specialty Group Subject Matter Experts
WSP: Project Manager, Deputy Project Manager, Discipline Managers |
| Monitoring and Controlling | ■ Track progress on an earned value basis for each task, identifying cost and schedule variances, and taking corrective action as necessary.
■ Review the project issues log and risk register with WSDOT to anticipate pending delivery challenges and invoke timely risk response and change management processes.
■ Use WSP project control systems to confirm project progress and identify variances from the established project performance baseline.
■ Improve project performance through regular review and broadly incorporating successful strategies.
■ Communicate progress to WSDOT leadership regularly to achieve broad knowledge of project progress and assure sustained project support. | WSDOT: Project Engineer, Assistant Project Engineer, Project Development Engineer and OR leadership
WSP: Project Manager, Deputy Project Manager, Project Controls, Discipline Managers |
| Closing | ■ Achieve seamless transitions between major project phases: Design Development – Procurement – Design Support in Construction.
■ Review deliverables log and the project file to confirm project documentation is captured and retrievable for future WSDOT project and organizational needs. | WSDOT: Design and Construction Project Engineers and other WSDOT managers as appropriate
WSP: Project Manager, Deputy Project Manager; Project Controls |
Another important element in project development is the emergence of unforeseen issues requiring timely decisions. Gordon is adept at anticipating and defining emergent issues, identifying the critical individuals to engage to resolve the issue, facilitating discussion, driving decision-making, and executing action plans. He did just this when called on to develop a design approval package for Sound Transit’s Federal Way Link Extension as the project approached the completion of preliminary design. The project uniquely occupied portions of the I-5 ROW and was sandwiched between the SR 509 Extension project and abutting properties outside the public ROW. Gordon engaged staff from the WSDOT Regional Transit Coordination Office, HQ Design, SR 509 Completion project, FHWA and Sound Transit to complete design approval and access revisions for the unique circumstances in an effective and timely fashion. A flowchart for addressing emergent issues and swift decision-making is shown in Exhibit 8.

Exhibit 8 Quick decision-making will be key to keeping the project on schedule. WSP’s process to expedite decision-making is illustrated below.

Risk Avoidance/Mitigation Decision OR Scope, Schedule, Budget Impact Decision

Does this impact a stakeholder commitment?

Bring to WSDOT Project Manager and Public Involvement Team

Add to change log and discuss with WSDOT Project Manager

Elevate?

Elevate to WSDOT leadership and subject matter experts

Do we recommend incorporating?

Is it approved?

Document and communicate “why” to public

Document and communicate to public

Document impact of change and proceed

Document decision or elaborate if undecided

Implement change management

Document and finalize decision/change

Document and finalize decision/change

CRITERION 1 CRITERION 2 CRITERION 3 CRITERION 4 CRITERION 5

A.3 Proposed Work Plan Elements

WSDOT has determined this bundle of projects will be delivered using the DB methodology and we understand the urgency to move the fish passage program forward as quickly as possible to meet the Federal injunction schedule requirements. Exhibit 9 on page 26 provides an overview of our proposed work plan schedule.

Fish passage delivery uniquely requires interdisciplinary coordination: particularly stream design, structures, and geotechnical engineering to design the best solution for restoring fish habitat while creating a sustainable stream and durable infrastructure.

Layered on top of stream considerations is the need to construct a roadway compliant with current design standards and regulatory requirements, accounts for current uses, and forward-compatible with future needs. In addition to roadway design, the design team must account for traffic operations and design, stormwater design, and environmental compliance. Finally, both streamside and roadside elements must be constructable while maintaining work zone mobility.

WSP proposes to use two design teams to provide sufficient resources allowing us to concurrently advance design on all five sites. To alleviate the risk of independent design teams producing starkly different outcomes, there will be single discipline managers providing oversight to both teams to promote consistency in design, facilitate interdisciplinary coordination, provide direction and accountability, and to drive production.

Rapid project development requires an extraordinary level of coordination between technical disciplines, a concerted and sustained effort at design integration, and frequent and effective communication. Design is traditionally an iterative process that consumes time. WSP’s approach proposes to advance design disciplines simultaneously, not to eliminate the iterative process but to shorten the iterative cycle.

Our work plan organizes the work into three primary phases: Design Development, Procurement, and Design Services in Construction. WSDOT has laid out the content of activities to be completed during design development in the Deliverables Expectation Matrix and the Design-Build Manual, Chapter 2. Rather than reproduce that information here, we’ll give you the framework for a project-specific work plan and then focus on examples of project issues to examine and resolve during the various design development processes.

Phase 1 – Design Development

Project Initiation and Kickoff: To provide a fast start to design development WSP proposes consideration of an early authorization to initiate support to obtain rights-of-entry to conduct field survey and site visits in support of preparing the geotechnical investigation plan. This
Exhibit 9: WSP understands the urgency to move the fish passage program forward. Our proposed schedule delivers the RFQ release at 15 months, RFP release at 18 months and proposal submittal at 24 months.

<table>
<thead>
<tr>
<th>Critical Milestones:</th>
<th>Kickoff</th>
<th>Conceptual Design Approval</th>
<th>RFQ Release</th>
<th>RFP Release</th>
<th>Proposal Submittal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiating:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executing:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and Controlling:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 1: Design Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey & Geotech</td>
</tr>
<tr>
<td>Permits</td>
</tr>
<tr>
<td>Fieldwork, Investigation Plan, Basemap</td>
</tr>
<tr>
<td>Stream & Hydraulics</td>
</tr>
<tr>
<td>Verification of PHDs</td>
</tr>
<tr>
<td>RFQ and RFP Deliverables</td>
</tr>
<tr>
<td>Start ICE</td>
</tr>
<tr>
<td>Design Documentation/BOD/Assess Needs</td>
</tr>
<tr>
<td>Roadway/Utilities</td>
</tr>
<tr>
<td>Utility Identification, Engagement</td>
</tr>
<tr>
<td>RFQ and RFP Deliverables</td>
</tr>
<tr>
<td>Determine Constraints, Key Requirements</td>
</tr>
<tr>
<td>Draft Plans</td>
</tr>
<tr>
<td>Staging/Traffic/MOT</td>
</tr>
<tr>
<td>Determine Constraints, Key Requirements</td>
</tr>
<tr>
<td>RFQ and RFP Deliverables</td>
</tr>
<tr>
<td>Draft Plans</td>
</tr>
<tr>
<td>Environmental, ROW Acquisitions & Permitting</td>
</tr>
<tr>
<td>Agency Coordination, Draft Impacts</td>
</tr>
<tr>
<td>Finalize Permit Requirements, ROW Acquisitions, Approvals</td>
</tr>
<tr>
<td>Draft Determination</td>
</tr>
<tr>
<td>Structures</td>
</tr>
<tr>
<td>Type Selection, Conceptual Plans</td>
</tr>
<tr>
<td>Draft Conceptual Plans, Construction Sequence</td>
</tr>
<tr>
<td>Engagement</td>
</tr>
<tr>
<td>Begin Outreach and Engagement</td>
</tr>
<tr>
<td>Continue Communications, Develop Construction Phase Engagement and Public Information Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2: Procurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft RFQ, ITP, RFP and Appendices</td>
</tr>
<tr>
<td>Review Draft Documents</td>
</tr>
<tr>
<td>Finalize RFQ and ITP</td>
</tr>
<tr>
<td>Finalize RFP and Appendices</td>
</tr>
<tr>
<td>D-B Proposal Support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 3: Design Services in Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Support/Construction Support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRITERION 1</th>
<th>CRITERION 2</th>
<th>CRITERION 3</th>
<th>CRITERION 4</th>
<th>CRITERION 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRITERION 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITERION 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITERION 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITERION 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITERION 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
data collection activity applies to all five barrier locations and will provide an earlier start to conceptual design.

Data Collection: Coordination with utility companies and collection of utility data is initiated at this point in design development. This is important at all sites, but especially critical at the SR 3, Unnamed Tributary to Gorst Creek location. The intersection of SR 3 and Sam Christopherson Road has numerous above- and below-ground utilities. Collecting utility as-builds, establishing utility property rights, confirming field survey, and preparing an accurate utility basemap while roadway design and structure type selection is advancing allows the design team to move rapidly into conflict analysis, relocation requirements, and identification of property acquisition needs (whether by WSDOT or the utility) early in design development.

Conceptual Design: While field work (survey and geotech) is being collected, the basis of design can begin development. The confirmation of baseline and contextual needs must await stakeholder input while project data, context, and design control sections can move forward. The early development of baseline and contextual needs are especially important at the SR 3, Gorst Creek crossing. The highway east and west of the stream crossing has a three-lane section but is constrained to two lanes as it passes over the existing culvert and embankment, reducing capacity and causing backups associated with the lane reduction. A need for roadway widening is anticipated, whether as part of this project or as a future improvement. Coming to a determination on this issue is fundamental in establishing the project footprint and will affect the work of activities of multiple disciplines, including roadway, structures, geotechnical, and environmental.

Gordon and Jessica will lead the design team through the practical design process. They recently executed this same approach on the SR 18 Widening project on an aggressive schedule. Gordon’s knowledge of the practical design philosophy and process is enhanced by his early participation in a statewide group as the Development Division began to define practical design. It is further enhanced by his participation on the WSDOT/ACEC project development committee, both as a WSDOT and consultant member, as practical design was implemented and tools, such as the Deliverables Expectation Matrix, were revised to better align with practical design approaches.

Preliminary Design: As design is advanced, parallel work on construction staging and MOT strategies are progressing. This is essential to validate a constructable design and to expedite local agency agreements for detour routes. The SR 166 Olney Creek location is the one crossing with a local road network that allows consideration of a total closure for construction. The effects on community-based organizations, environmental justice communities, local businesses and emergency responders must all be evaluated but the potential is high for a reduced construction duration and costs by selecting a buried structure rather than a bridge. WSDOT and the design-builder will have greater certainty on construction options with detour agreements in place for the RFP.

Interdisciplinary coordination and design integration are focal points at this stage of design development. Specific attention is given to validate that no design elements conflict. Special attention will be given to the three more urban locations, the two sites in Gorst and the SR 166 site, where subsurface utilities and closed stormwater conveyance systems are present. Experience conducting this type of evaluation has proved beneficial in the past, such as when Gordon once discovered that an initial traffic signal foundation was precisely centered on an existing 30-inch diameter stormwater trunk line to be preserved. The signal foundation was moved as design progressed, and discovery during construction was averted.

Engagement: Diana will employ her successful community engagement framework on this project to include completing a demographic analysis to identify underrepresented groups. She will engage community-based organizations to reach those underrepresented groups and other hard to reach populations. Some of the community-based organizations Diana has involved in the SR 3/Chico Way project are:

- United Way of Kitsap County
- Kitsap Immigrant Assistance Center
- Kitsap County Filipino-American Association of Kitsap County
- Kitsap Economic Development Alliance
- Central Kitsap School District 401
- West Sound Cycling Club
- Kitsap Community Foundation
- Bremerton Family YMCA

Outreach to businesses, given their substantial presence in Gorst and on SR 166, will include early outreach by post cards with the opportunity to sign up for more information and a potential for door-to-door engagement. Business owner briefings are a planned forum for follow-up that give the ability to focus on issues outside the concern of the general public.

Production: This is the point at which quality reviews become a dominant focus. The early work to establish checking processes, project-specific CAD instructions, and border templates pays its dividend. The production and assembly of a comprehensive and cohesive set of conceptual construction plans is essential. With two design teams generating the conceptual design, particular attention is given to achieving consistent plan content and format. This establishes a better bidding environment and greater clarity in design-builder proposal development.
Phase 2 – Procurement

WSDOT has a well-conceived and documented process for RFP development in the Design-Build Manual and supporting tools and it is our intent to follow this process diligently. The sequence and duration of RFP development activities are shown in our schedule, Exhibit 9 on Page 26, which follows the well-conceived WSDOT RFP Development Flowchart.

The WSP team includes Aaron Butters as the DB documentation lead. Aaron’s experience in the WSDOT construction office and Urban Corridor’s team developing procurement approaches for DB projects and DB procurement documents positions him to be a significant asset to this project team.

While working in WSDOT Local Programs, Aaron assisted the City of Tacoma in delivering the Murray Morgan Bridge Rehabilitation Design-Build project, providing federal aid oversight and technical assistance. This history led the City of Tacoma to select Aaron as the project manager and procurement lead for the Fishing Wars Memorial Bridge Replacement Design-Build project. The development of procurement documents was completed on an aggressive schedule to meet the City’s federal aid funding obligation deadline.

Aaron will develop a detailed procurement document work plan, assigning technical leads to each section of the RFP and working through development and review of draft documents. As the RFP is developed, drafts will be circulated for review with a review meeting held with WSDOT project and subject matter experts and the RFP team. RFP comments will be resolved at these review meetings and the disposition decisions on each comment will be documented to provide direction to section authors. QC reviews will be conducted as the RFP proceeds to verify consistency between sections of the RFP, support documents and conceptual plans. Additional outcomes of the quality review process are to validate the absence of interdisciplinary conflicts, that there are no overlaps or gaps between technical disciplines, and to resolve any ambiguities in the technical requirements.

Phase 3 – Design Support in Construction

Design support in construction will be tailored to WSDOT’s needs and requests. The WSP team has extensive resources experienced in DB design review and oversight. We also have the ability to support DB construction, including schedule review and activities in support of construction changes. An independent planning period for this phase is anticipated and will be an activity included in the project schedule.

A.4 How WSP’s Work Plan Addresses Contingencies

Project contingencies are addressed in the following ways:

1. Early identification of project unknowns, risks and opportunities.
2. The development of risk response plans in event a risk is realized, and action is required.
3. Routine risk register review to status each risk item, add or retire risks, and to assess the need to actuate a risk response plan.

Gordon is adept at change management. He will work with his project control staff to process scope, schedule, and budget revisions while Jessica will focus on moving design development forward.

WSP, including our subsconsultant team members, can bring additional resources to respond to any staffing challenges that WSDOT, or partner agencies (if requested), experience during the course of project delivery. Our goal is to function as a team, organized around an agreed-upon set of primary objectives. We expect these objectives will be confirmed during the chartering phase and will reflect the need for rapid delivery in line with the injunction requirement. This foundation creates open communication that supports emergent project delivery challenges and action plans. Examples of potential challenges are resource constraints and could allow for additional expertise and resources to augment WSDOT staff in geotechnical investigation, permitting/environmental or community engagement.

B. WSP’s Approaches to Resolve Issue(s) Within the Project Team; Client(s) and Stakeholders

WSP understands that conflict is often inevitable on complex projects. Our team will implement an approach that identifies and mitigates potential conflicts before they develop and affect the project’s schedule, budget, quality or stakeholder support. If conflicts do occur, the WSP team is prepared to address and resolve those conflicts within the team, with clients, and with stakeholders.
Resolving Project Team Conflicts
WSP’s project approach focuses on creating a team culture that minimizes or quickly resolves conflicts that occur within the team.

- **Clear and frequent communication:** This starts with our project kickoff meeting to review and receive team buy-in of the project’s goals and objectives, baseline schedule and scope of work and continues throughout our regular team meetings. These meetings are an opportunity for discipline managers, Project Manager Gordon Roycroft, Deputy Project Manager Jessica Aguilar, and Environmental/Permitting/Pre-NEPA Lead Karissa Kawamoto to identify and resolve any potential issues and confirm team members’ understanding of upcoming work activities.

- **Defined roles and responsibilities:** As part of our Project Management Plan, we will clearly define roles and responsibilities for members of our team to minimize confusion and allow team members to quickly determine who should provide input on an issue.

- **A clear escalation plan that empowers team members to resolve issues at the lowest possible level:** If issues are not solved among the team members who identify them, discipline managers serve as the first line of decision-making. If any issues cannot be resolved at this level, they will be immediately escalated up the ladder to Project Manager Gordon Roycroft and Principal-in-Charge Linea Laird with a goal of quickly resolving issues so the team can continue to advance the design. If needed, Gordon and Linea may include the principal from subconsultant firms in the issue resolution. Our decision-making flowchart will be updated to reflect the work plan created by the team, and clarify when and where decisions will be elevated versus results simply communicated.

Resolving Conflicts with Clients
WSP’s approach to conflict resolution with clients relies on clear and frequent communication (as previously described) between the client and the consultant team. We regularly confirm expectations and ask follow-up questions to ensure everyone on our team understands how to deliver their assigned tasks. Gordon, Jessica, Karissa and our team’s key staff will use regular meetings with WSDOT project leadership to clarify scope or schedule questions and discuss any questions or issues that WSDOT may identify. We will document decisions and track action items to prevent additional or future similar conflicts. Key staff are committed to working side by side with WSDOT in the Olympic Region HQ office as needed to facilitate communication and quickly resolve potential conflicts.

Resolving Conflicts with Stakeholders
WSP understands that stakeholders often have diverging project interests. Our team will conduct stakeholder interviews early in the project to listen for and identify any potential conflicts well in advance of gathering the project advisory group to prevent these potential conflicts from escalating.

We also understand that successful stakeholder engagement is about what happens outside the advisory group meetings as much as inside them. In past projects, we held individual briefings prior to the advisory group meeting with stakeholders who may have conflicts. By meeting one-on-one with these stakeholders as the project advances, we provide them with an opportunity to ask specific questions focused on their interests, provide input and develop an understanding of how and why we advanced the design solution. While there may be disagreement on how the project proceeds, we build understanding by demonstrating how each recommendation reflects common goals across all groups and describing why WSDOT made key decisions.

WSP also builds trust by listening to stakeholder concerns, communicating transparently and documenting issue resolution. We often create visuals that indicate the feedback we received and the action we’ve taken with that feedback side by side to show our responsiveness. We also know that stakeholder leadership often changes, so we will develop succession plan protocol that documents stakeholder buy-in in case a representative needs to be replaced so that previously resolved conflicts are not revived as the project progresses.

C. Assumptions for Work Breakdown Structure
A project-specific Work Breakdown Structure (WBS), based closely on the WSDOT Master Deliverables List, will serve as the structural outline for assigning deliverables, building the project schedule, monitoring budget and tracking progress. Gordon will manage WBS development and work with discipline managers to craft an initial WBS, then work with Bill Elliott and Jim Sammet to collaboratively review and finalize the WBS.

Staffed: Our delivery approach is to provide staffing for two project teams, in order to divide the work for faster delivery. This also creates familiarity of more individuals on our team with the overall program of work. Through this, we are then able to stack the teams to support one another if one crossing needs extra resources for a period of time, without the need to on-board and train new people. See our organizational chart on page 3.
We anticipate the WSP team will produce virtually all project deliverables save for those listed below. WSDOT, through staff or otherwise contracted consultants, will provide:

- Rights-of-entry for field investigations.
- Approved PHD reports for each crossing.
- Standard reports and data produced from geotechnical site investigations.
- ROW tasks (appraisal through acquisition)
- Tribal consultation

The WBS will be tied to the RFQ-described schedule. Before finalizing the work plan and the associated WBS, we will flush out the risks or limitations that threaten our ability to deliver to the schedule. We will also reflect and understand driving priorities set by our WSDOT leaders, to assure we respond and make decisions in alignment with them. In recognition that schedule is the primary driver that cannot be compromised, we will hold true to that and mitigate or manage schedule impacts in every way possible.

D. Key Project Issues and Critical Milestones

Critical project milestones are shown on the project schedule (Exhibit 9) and include the project kick off, conceptual design approval, RFQ & RFP releases and DB Proposals submittal. Completing a conceptual design that will maximize construction schedule and minimize MOT is critical. Completing comprehensive and detailed RFQ and RFP will minimize the risks DB change orders during construction. Release of the RFQ and RFP while the permitting and ROW acquisitions are being finalized will allow a significant reduction in schedule. The WSP team will start coordination with permitting agencies, and the DB will be responsible for finalizing the permitting based on their proposed final design. The WSP team will continue to support WSDOT through the construction phase that will be driven by the DB’s schedule. Key issues are described on the Issues Map (Exhibit 6) and proposed approaches to several key issues are described in the work plan elements above.