Design Documentation: Design Analysis

Course Introduction

Assistant State Design Engineers
December 2021
Safety Briefing

In Person
• Who is first aid trained?
• Who will call 911?
• Who will get the defibrillator?
• Who will call the safety officer?
• Address of this complex?

Teleworking
• Do you have trip hazards?
• How do you exit your workplace?
• Can 911 see your house address?
• Where can you go in an earthquake?
• Do your smoke detectors work?
• Do your CO2 detectors work?
• Do you have a first aid kit?
Logistics

Bathrooms

Breaks

Teleworking

Cell Phones
Introductions

• Region
• Years of Service

Participate

• Get OUT what you put IN
• Ask Questions
Attendee Background

- Mentimeter: Go to menti.com and type the code 1509 4630
- Mentimeter QR Code:
Course Outline

This training will cover:

– Introduction to a Design Analysis
– Design Analysis Template
– How to complete a Design Analysis
– Design Analysis Approval
– Design Analysis Filing
Class Goals and Objectives

After taking this course, you should understand:

– Why we write Design Analysis
– How to write a Design Analysis
– Design Analysis Approval
– Design Analysis Filing

You will also be provided with contact information and examples
Design Analysis
Module 2

Introduction to Design Analyses
Design Manual

• Everything is from the Design Manual
What is a Design Analysis?

Design Manual 300.03(2)(a)

“A Design Analysis is a process and tool used to document important design decisions, summarizing information needed for an approving authority to understand and support the decision.”
Why do a Design Analysis?

- FHWA Stewardship and Oversight (S&O) Agreement
 - WSDOT must follow the S&O to receive federal funds
- Mitigate Liability Risk
 - Washington State is a Joint and Several Liability state
 - Washington State has no cap on the value of liability damages in a civil lawsuit
 - It is easier to defend a well documented decision than a good decision without documentation
- Demonstrate practical & logical decision making
 - It documents the RIGHT decision
Why do a Design Analysis?

• Standards may not be appropriate to all situations
 – Sometimes it is necessary to vary from a standard to do what works for your specific situation and your specific project
• Strictly following standards does not always equal good performance
• Others need to understand why you made your decision
Levels of Documentation

consider: To think carefully about, especially in order to make a decision. The decision to document a consideration is left to the discretion of the engineer.

Engineer of Record determines **HOW** or **IF** it is documented

document (verb): The act of including a short note to the DDP that explains a design decision.

Engineer of Record determines **HOW** it is documented

justify: Preparing a memo to the DDP identifying the reasons for the decision: a comparison of advantages and disadvantages of all options considered. A more rigorous effort than document.

A Design Decision is written. Use the Design Analysis Template. Design Decisions follow the same process as a Design Analysis, but are only approved by the Engineer of Record.
Consider all potential users of the facility in the design of an intersection. This involves addressing the needs of a diverse mix of user groups, including passenger cars, heavy vehicles of varying classifications, bicycles, and pedestrians. Often, meeting the needs of one user group results in a compromise in service to others. Intersection design balances these competing needs, resulting in appropriate levels of operation for all users.

In addition to reducing the number of conflicts, minimize the conflict area as much as possible while still providing for the design vehicle (see Chapter 1103). This is done to control the speed of turning vehicles and reduce the area of exposure for vehicles, bicycles, and pedestrians. For additional information on pedestrian needs, see Chapter 1510. For intersections with shared-use paths, see Chapter 1515. For bicycle considerations at intersections, see Chapter 1520.
Consider – Document

1310.03(2)(a)(4) Modifications to Left-Turn Designs

The left-turn lane designs discussed above and given in Exhibits 1310-10a through 10e may be modified when determined by design element dimensioning (see Chapter 1106.) Document the benefits and impacts of the modified design, including changes to vehicle-pedestrian conflicts; vehicle encroachment; deceleration length; capacity restrictions for turning vehicles or other degradation of intersection operations; and the effects on other traffic movements. Provide a modified design that is able to accommodate the design vehicle, and provide for the striping (see the Standard Plans and the MUTCD). Verify the design vehicle can make the turn using turn simulation software (such as AutoTURN®); include a plot of the design and verification.

Engineer of Record determines HOW it is documented
Consider – Justify

1040.07 Documentation

Justify and document any additional illumination in the Design Documentation Package (DDP).

The approval from maintenance to install median mounted luminaires can be an email or memo from the area maintenance superintendent and is kept in the design file.

Any areas in this section that says to “consider” a design element should have the logic of the consideration and decision documented in the design file for future reference.

Refer to Chapter 300 for design documentation requirements.

A Design Decision is written. Use the Design Analysis Template.
When do I need a Design Analysis?

• Required when specifically stated
• Required for design elements that do not meet a value or fall within a range of values
When do I need a Design Analysis?

Required when specifically stated:

Exhibit 1232-1 Geometric Cross Section - Interstate (4 lanes shown, can vary)

Notes:
See Chapter 1239 for Side Slopes

Outside Shoulder 10' (1)
Vehicle Lane 12'
Vehicle Lane 12'
Inside Shoulder (1)
Inside Shoulder (1)
Vehicle Lane 12'
Vehicle Lane 12'
Outside Shoulder 10' (2)

Median (3)
[median barrier shown]

See Chapter 1239 for Side Slopes

Use of the shoulder on a freeway for transit only use or as an HOV lane requires a Design Analysis.

[1] 4 ft minimum on facilities up to 4 lanes, and 10 ft minimum on 6-lane facilities.

In mountainous terrain, inside shoulder may be reduced to 4 ft on facilities up to 6 lanes.

[2] In mountainous terrain, outside shoulders may be reduced to 8 ft on facilities up to 6 lanes.

[3] Overall median width and design will vary. See Chapter 1239 and 1610.
When do I need a Design Analysis?

Required when a chosen dimension does not meet the value or fall within the range of values

- Meet: Lane wide 12’ on Interstate

If a dimension is above specified range, a DA may not be warranted if said dimension is obligated by another DM chapter(s).
When do I need a Design Analysis?

Required when a chosen dimension does not meet the value or fall within the range of values

- Range: 11-12’ lanes, 8-10’ shoulders
When do I need a Design Analysis?

• The direction may not use “hard” words like “require” or “shall” or “must”:
 – 1360.04(1)(a) Lane Balance and Entrances
 “At entrances, make the number of lanes beyond the merging of two traffic streams not less than the sum of all the lanes on the merging roadways less one (see Exhibit 1360-7a).”
 – 1610.03(5) Length of Need
 “Length of need refers to the total length of longitudinal barrier needed to shield a fixed feature.”
When do I need a Design Analysis?

• Sometimes the work “required” is associated with a process, not a roadway feature:
 – VE study *required* on projects over $25 Million
 – All projects are *required* to have a safety analysis for Design Approval
 – *Required* by law to perpetuate existing recorded monuments.

• Not following a “required” process must receive documented approval (e.g. email) from your Region Management and HQ, **but** does not require a design analysis
When do I need a Design Analysis?

- Sometime the constraint is found in the Exhibits

1515.02(2)(a) Shared-Use Path Widths

“Shared-use path shoulders are typically unpaved and 2 feet wide on either side. Exhibits 1515-3 through 1515-5 provide additional information and cross-sectional elements.”
<table>
<thead>
<tr>
<th>Element</th>
<th>DM Reference</th>
<th>DM Guidance</th>
<th>AASHTO Guidance</th>
<th>Proposed</th>
<th>Design Analysis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from Ramp to Cross Street</td>
<td>Exhibit 530-1a</td>
<td>300’ min</td>
<td>N/A</td>
<td>200’</td>
<td>Yes</td>
</tr>
<tr>
<td>Transportation Management Plan</td>
<td>1010.02</td>
<td>TMP required</td>
<td>N/A</td>
<td>No TMP</td>
<td>No</td>
</tr>
<tr>
<td>Freeway Merge Lighting</td>
<td>Exhibit 1040-1b</td>
<td>200’ min</td>
<td>N/A</td>
<td>140’</td>
<td>Yes</td>
</tr>
<tr>
<td>Low Speed Highway Lane Width</td>
<td>Exhibit 1231-5</td>
<td>10’-12’</td>
<td>11’-12’</td>
<td>10’</td>
<td>No</td>
</tr>
<tr>
<td>High Speed Highway Outside Shoulder Width</td>
<td>Exhibit 1239-1</td>
<td>4’-10’</td>
<td>4’-10’</td>
<td>14’</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Design Analysis Approval

DM Exhibit 300-2 Approval Authorities

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Basis of Design (BOD) Approval</th>
<th>Design Analysis Approval [1]</th>
<th>Design Approval and Project Development Approval</th>
</tr>
</thead>
</table>

- Approvals levels vary based on Project Type, Highway Classification, Local Jurisdiction, or the specific roadway element. Considerations include:

- **Project of Division Interest (PoDI)**
- **Interstate**
- FHWA / HQ Design
- **National Highway System (NHS)**
- **Non-NHS: Improvement (I1, I2, I3, I4, etc.)**
- **Non-NHS: Preservation (P1, P2, P3, etc.)**
- **Region**
- **Local Jurisdiction**
- **HQ Local Programs**
FHWA Approval – Project of Divisional Interest (PoDI)

• When do we have PoDIs?
 – A PoDI Stewardship & Oversight Agreement is applied to projects that have an elevated risk, contain elements of higher risk, or present a meaningful opportunity for FHWA involvement to enhance meeting program or project objectives.

• What does a PoDI do?
 – It is an agreement of “FHWA Retained Approval or Action” for “Identified Risk Elements”

• What does this mean to a Design Analysis?
 – PoDI may grant FHWA additional DA approval authority.
FHWA Approval - Interstate

- All *Interstate* projects impacting *mainline and ramps*
- Only design elements associated with the 10 *Controlling Criteria*:

1. Design Speed
2. Lane Width
3. Shoulder Width
4. Horizontal Curve Radius
5. Superelevation Radius
6. Stopping Sight Distance*
7. Maximum Grade
8. Cross Slope
9. Vertical Clearance
10. Design Loading Structural Capacity

* Horizontal and vertical alignments except for sag vertical curves

- Approved by the FHWA Area Engineer
- Must also be approved by HQ Design - ASDE
FHWA Approval - NEPA

A Design Analysis may instigate NEPA:

<table>
<thead>
<tr>
<th>Route Type</th>
<th>Speed Limit</th>
<th>10 Controlling Criteria</th>
<th>Approval</th>
<th>NEPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate</td>
<td>All</td>
<td>Yes</td>
<td>FHWA</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>WSDOT</td>
<td>No</td>
</tr>
<tr>
<td>NHS</td>
<td>≥ 50</td>
<td>Yes</td>
<td>WSDOT</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>WSDOT</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td><50</td>
<td>[1]</td>
<td>WSDOT</td>
<td>Yes</td>
</tr>
<tr>
<td>non-NHS</td>
<td>All</td>
<td>N/A</td>
<td>WSDOT</td>
<td>No</td>
</tr>
</tbody>
</table>

[1] Only for two of the controlling criteria: Design Load Structural Capacity or Design Speed.

Instigates NEPA even though there is no FHWA Signature.
Region Approved

• Design Analysis on **non-NHS preservation projects** are only approved by the Region or HQ Local Programs

• Design Analysis for **design elements** that cannot meet Design Manual criteria, but **can meet current AASHTO guidance adopted by FHWA** … are only approved by the Region
 – AASHTO guidance adopted by FHWA is [online](#)

• **Send a PDF of Region Design Analysis to your ASDE**
 – *We are required to report to FHWA on a yearly basis*
<table>
<thead>
<tr>
<th>Element</th>
<th>DM Reference</th>
<th>DM Guidance</th>
<th>AASHTO Guidance</th>
<th>Proposed</th>
<th>Design Analysis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from Ramp to Cross Street</td>
<td>Exhibit 530-1a</td>
<td>300’</td>
<td>N/A</td>
<td>200’</td>
<td>Yes</td>
</tr>
<tr>
<td>Transportation Management Plan</td>
<td>1010.02</td>
<td>TMP required</td>
<td>N/A</td>
<td>No TMP</td>
<td>No</td>
</tr>
<tr>
<td>Freeway Merge Lighting</td>
<td>Exhibit 1040-1b</td>
<td>200’</td>
<td>N/A</td>
<td>140’</td>
<td>Yes</td>
</tr>
<tr>
<td>Low Speed Highway Lane Width</td>
<td>Exhibit 1231-5</td>
<td>10’-12’</td>
<td>11’-12’</td>
<td>10’</td>
<td>No</td>
</tr>
<tr>
<td>High Speed Highway Outside Shoulder Width</td>
<td>Exhibit 1239-1</td>
<td>4’-10’</td>
<td>4’-10’</td>
<td>14’</td>
<td>Yes</td>
</tr>
<tr>
<td>Semi-Rigid Barrier Flare Rate (40 mph)</td>
<td>Exhibit 1610-4</td>
<td>9:1</td>
<td>8:1</td>
<td>8:1</td>
<td>Yes, Region Approved</td>
</tr>
</tbody>
</table>
City Streets as State Highways

RCW 47.24

Managed Access Control
Cities shall exercise full responsibility for and control over any such street beyond the curbs

Limited Access Control
WSDOT has full jurisdiction, responsibility, and control

See City Streets as Part of State Highways agreement
Local Programs Approval
Approval Process

Engineer of Region Headquarters

Record Approval

Project Engineer

Region Approval

Project Development Engineer

Headquarters Approval

Assistant State Design Engineer

Federal Approval

FHWA Area Engineer

If the Design Analysis is in a city’s Jurisdiction

HQ Local Programs
Design Analysis Approvers

WSDOT Projects

<table>
<thead>
<tr>
<th>Classification</th>
<th>Project Type</th>
<th>Approver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate & Projects of Division Interest</td>
<td>All</td>
<td>FHWA Area Engineer* & ASDE</td>
</tr>
<tr>
<td>National Highway System (NHS)</td>
<td>All</td>
<td>ASDE**</td>
</tr>
<tr>
<td>Non-NHS</td>
<td>Improvement</td>
<td>ASDE**</td>
</tr>
<tr>
<td>Non-NHS</td>
<td>Preservation</td>
<td>Region Project Development Engineer**</td>
</tr>
</tbody>
</table>

*FHWA approval is **only** required for elements related to controlling criteria (possible exception PoDI).
**Design Analysis for elements that are City responsibility must be approved by HQ Local Programs
Design Analysis Approvers

Local Agency & Developer Projects

<table>
<thead>
<tr>
<th>Classification</th>
<th>Project Type</th>
<th>Approver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstate</td>
<td>All</td>
<td>FHWA Area Engineer* & ASDE</td>
</tr>
<tr>
<td>Limited Access</td>
<td>All</td>
<td>ASDE</td>
</tr>
<tr>
<td>NHS & non-NHS</td>
<td>All</td>
<td>ASDE**</td>
</tr>
<tr>
<td>Managed Access</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>NHS & non-NHS</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>

*FHWA approval is **only** required for elements related to controlling criteria.

Design Analysis for elements that are City responsibility must be approved by HQ Local Programs
For the following projects, determine the approver. Assume a WSDOT Project.

<table>
<thead>
<tr>
<th>SR</th>
<th>Speed Limit</th>
<th>NHS</th>
<th>Access Type</th>
<th>Design Analysis</th>
<th>Project Type*</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>55</td>
<td>No</td>
<td>Managed</td>
<td>Shoulder Width</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>55</td>
<td>No</td>
<td>Managed</td>
<td>Lane Width</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>I-82</td>
<td>60</td>
<td>Yes</td>
<td>Limited</td>
<td>Guardrail Taper</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>60</td>
<td>Yes</td>
<td>Limited</td>
<td>Shoulder Width</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>Yes</td>
<td>Managed in City</td>
<td>Shoulder Width</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>70</td>
<td>Yes</td>
<td>Limited</td>
<td>Design Speed</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

* I= Improvement, P = Preservation

Instigates NEPA
Design Analysis Tips

• Just the Facts: Consider it a court document
• The earlier they are found inside the design process the better
• Engage your ASDE early
• Use your ASDE as a sounding board
• Read your Design Manual
• Do not begin with a preferred alternative
• Find the RIGHT answer rather than meet the design criteria
• Be quantitative when possible
• Good data makes the process quicker

EXAMPLES
Design analyses examples can be found in ProjectWise. Contact your ASDE for access.
Design Analysis Tips

WATCH YOUR LANGUAGE!

Inadequate Problem
Always Required Assume
Hazard Deadly Safe
Unsafe Substandard
Must Risk Ensure Dangerous Guarantee
Death Trap
Design Analysis Template
Module 3
<table>
<thead>
<tr>
<th>Cover Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signatures and Metadata</td>
</tr>
<tr>
<td>1 - Background</td>
</tr>
<tr>
<td>2 – Decision Description</td>
</tr>
<tr>
<td>3 – Options Evaluation and Decision</td>
</tr>
<tr>
<td>4 – Attachments</td>
</tr>
</tbody>
</table>

Template available on the [ASDE Website](#)

DELETE RED TEXT AFTER USE.
Choose Document Type: Design Analysis

Design Analysis #2: Second Design Analysis for the project

Begin and End MP of the actual Design Analysis location, not Project MP

Selected their Program

Project Title: I-405/NE 132nd Street Interchange Improvements Project
Design Analysis #2 – Vertical Clearance

I-405, MP 20.7 to MP 21.2
XL-5464 PIN 140567B
August 14, 2020

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION
405 Program
Bellevue, Washington
Under 23 U.S. Code § 409 and 23 U.S. Code § 148, safety data, reports, surveys, schedules, lists compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential crash sites, hazardous roadway conditions, or railway-highway crossings are not subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data.
Signatures

Engineer of Record
• Professional Engineer stamping the document
• Who directed the development
• Often the WSDOT Project Engineer
• Consultants may call these Project Managers

Region Approval
• Project Development Engineer

ASDE and FHWA Approval
• As required
• See Exhibit 300-2
Signatures - Example

Engineer of Record
- Professional Engineering Stamp
- Signed Digitally

Region Approval
- Engineering Manager
- Signed Digitally

ASDE and FHWA Approval
- See Exhibit 300-2
- Signed Digitally

SIGNATURES

ENGINEER OF RECORD
This document has been prepared under my direct supervision in accordance with RCW 18.43 and appropriate WSDOT manuals.

Digitally signed by Chun-Ho Chen
Date: 2020.08.17
11:17:36 -07'00'

Digitally signed by Celso G. Hermogenes
Date: 2020.08.14
12:12:01 -07'00'

Digitally signed by James L. Mahugh
Date: 2020.08.26
14:32:13 -07'00'

Name, Title, Company, & Address:
Celso G. Hermogenes
Sr. Transportation Engineer
I-405/SR 167 MegaProgram
Bellevue, WA

Digitally signed by LINDSEY L HANDEL
Date: 2020.09.01 12:39:57 -07'00'
Metadata

Used when filing the Design Analysis

Add rows for SR and MP as necessary

Check all boxes necessary

If none apply, add yours at the bottom

<table>
<thead>
<tr>
<th>PROJECT TITLE</th>
<th>DA NAME</th>
<th>DA #</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT TYPE</td>
<td>Choose an item.</td>
<td>REGION</td>
</tr>
<tr>
<td>Work Order #</td>
<td>PIN #</td>
<td>WIN #</td>
</tr>
<tr>
<td>SR</td>
<td>Begin MP</td>
<td>End MP</td>
</tr>
<tr>
<td>SR</td>
<td>Begin MP</td>
<td>End MP</td>
</tr>
<tr>
<td>SR</td>
<td>Begin MP</td>
<td>End MP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elements Considered in the Design Analysis (Check all that apply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Acceleration Length</td>
</tr>
<tr>
<td>□ Access</td>
</tr>
<tr>
<td>□ BAT Lane Element</td>
</tr>
<tr>
<td>□ Bridge Rail</td>
</tr>
<tr>
<td>□ Buffer Width</td>
</tr>
<tr>
<td>□ Clear Zone</td>
</tr>
<tr>
<td>□ Design Speed</td>
</tr>
<tr>
<td>□ Fill/Ditch Slope</td>
</tr>
<tr>
<td>□ Gore Slope</td>
</tr>
<tr>
<td>□ Horizontal Alignment</td>
</tr>
<tr>
<td>□ [Insert Other Element]</td>
</tr>
</tbody>
</table>
Metadata - Example

SR and MP of Design Analysis location

None of the above applied so “Vertical Clearance” was added.
SR and Ramp Identifier

Ramp MP

Get Ramp Identifier and MP From Interchange Web Viewer
Metadata – Interchange Viewer

WSDOT Interchange Web Viewer
Metadata – Interchange Viewer

<table>
<thead>
<tr>
<th>SR</th>
<th>405, P101786</th>
<th>Begin MP</th>
<th>0.10</th>
<th>End MP</th>
<th>0.20</th>
</tr>
</thead>
</table>

Map details:
- 405 P1 01786
- 405 Q5 01807
- 405 LX 01809
Template Sections

1 - Background
2 - Decision Description
3 - Options Evaluation and Decision
4 - Attachments

Builds Your Case
Background
Module 4
<table>
<thead>
<tr>
<th>Cover Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signatures and Metadata</td>
</tr>
<tr>
<td>1 - Background</td>
</tr>
<tr>
<td>2 – Decision Description</td>
</tr>
<tr>
<td>3 – Options Evaluation and Decision</td>
</tr>
<tr>
<td>4 – Attachments</td>
</tr>
</tbody>
</table>

Template available on the [ASDE Website](#) DELETE RED TEXT AFTER USE.
Background Subsections

- Project Description
- Background Information
- Related Documents
Project Description

Keep it Short and Concise
 • Large projects a paragraph or two
 • Small projects a sentence or two

Reference documents if necessary, but provide a summary
Good and concise … explains a nearly multi-million dollar project

The I-405, SR522 Vicinity to SR527 Express Toll Lanes Improvement Project includes I-405 improvements from just south of SR 522 to north of SR 527, a 5-mile length. This project will add an express toll lane (ETL) in each direction, extending the existing dual lane system to just north of SR 527. The resulting corridor will have two ETL lanes and two general purpose (GP) lanes in each direction plus auxiliary lanes in select locations. Interchange improvements at SR 522 and SR 527 will add Direct Access Ramps, connecting the ETL lanes to their respective state routes and adjacent transit facilities. This is an improvement and mobility project that supports the implementation of a Bus Rapid Transit (BRT) system along I-405. The project is funded and will be delivered as a Design Build Contract. Construction is anticipated to start in 2021. See Attachment A for Project Vicinity Map.
The "SR 167 / SR 410 to SR 18 - Congestion Management" project will add an HOV lane from MP 6.89 (Pierce Co.) and match into the existing HOV lane in the vicinity of MP 13.76 (King Co.) along with other associated major work. See Basis of Design for details.

WSDOT was awarded a Puget Sound Regional Council (PSRC) Grant with the intent to increase capacity on northbound SR 167 by rechannelizing the existing roadway. During the grant application process, it was determined an additional HOT/HOV lane would be added without major roadway widening, the PSRC grant was awarded based on this design.
Good and concise … small project, small description

The project will widen the outside shoulder of the S 200th St on-ramp to SB I-5 and modify channelization on the ramp to provide one metered lane and one peak hour metered shoulder.
Background Information

Provide history necessary to understand the decision
 • Make the history relevant

Describe the relevant context
 • What is the area like?
 • Set the stage
 • What context is going to shape your decision

Do not get into the decisions
How a planned improvement at this location did not get built.
Provide any background information important to understanding the decision(s):

The subject “SR 520, I-5 Interchange – Improvements” project is one of several phases of the larger “SR 520, I-5 to Medina Bridge Replacement and HOV” mobility improvement project. See Basis of Design for corridor projects that have been completed or are under construction.

The subject project is one of two remaining projects that will complete the westerly portion of the SR 520 corridor rebuild (commonly referred to as “Rest of the West”). The latter of these two projects will include the “SR 520, Portage Bay Bridge Replacement (PBB) project. The subject project and the PBB project include a significant amount of overlap such that many roadway elements of the subject project will be built in interim configurations to be forward compatible with the future PBB project while maintaining a connection to the existing Portage Bay Bridge (Br 520/3).

With regards to this Design Analysis, the EB SR 520 lanes and shoulders will be shifted to accommodate a new reversible HOV direct access ramp connection from the I-5 express lanes, including a new interim left-side HOV direct access ramp merge to EB SR 520. For documentation purposes, the portion of EB SR 520 between MP 0.00 to MP 0.24 is considered and documented as a “freeway to freeway” connector ramp as part of the NB I-5 to EB SR 520 and SB I-5 to EB SR 520 ramps. The portion of EB SR 520 located from MP 0.24 to MP 0.37 is addressed as part of this Design Analysis. MP 0.37 is where EB SR 520 proposed channelization modifications for the subject project will match existing channelization on the existing Portage Bay Bridge.

Construction of the subject project is planned to be completed by late 2022 to early 2023. The construction of PBB replacement is scheduled to begin between late 2022 and early 2023, resulting in sequential construction without significant gap between the two projects. The Portage Bay Bridge replacement project is fully funded.
Reflect public interaction that shaped the basis for the Design Analysis. Indicated this improvement may have right of way impacts.

Background Information Example

Reflected how they measured clear zone and the posted speed.

Provide any background information important to understanding the decision(s):

This Design Analysis considers how to apply clear zone guidance found in Design Manual Chapter 1600 in this project.

- There have been several written and verbal public requests not to remove vegetation on the north and south sides of SR 14 due to screening/noise considerations. The neighborhoods to the south have actively engaged WSDOT for many years over noise from SR 14. The noise study for this project found that not all neighborhoods qualified for a noise wall. The abutting neighborhoods have expressed concern about removal of vegetation along SR 14 necessary to establish the full clear zone. Most neighborhoods to the north qualified for a noise wall, but would still desire to leave as much vegetation as possible at the ends of the noise wall.

- Instead of widening the existing roadway section symmetrically about the existing centerline, which would add width on each side of the highway to meet standards for the additional lanes, the additional width is achieved through moving the barrier a minimal amount and widening on only one side of the highway. Besides cost savings, one of the key reasons why this method was chosen was the appeal of minimizing the changes due to widening eastbound. Although only a minimal amount of widening would be required eastbound to meet the standards for width, any amount of widening would require significant changes to the area between the existing pavement edge and the right of way line. The slope requirements would affect a large number of mature trees and would call for a major transformation of the area between eastbound SR 14 and the right of way line to the south. Eastbound widening would also require additional stormwater facilities. Since the project concept does not widen the pavement on the south side, the existing clear zone remains the same for some areas eastbound, where the striping is not changed.

- Some of the trees are at the edge of the clear zone line and/or are near the right of way line.

- The Safety Analysis describes that the number of crashes relating to hitting objects does not show an out-of-the-ordinary trend. These crashes include run-off-the-road collision history as well as median barrier collisions and being hit by debris. There are very few run-off-the-road crashes in the areas where objects are planned to remain in the clear zone. The specific collision history for these areas is described in more detail in Section 3.

- The existing high-mast luminaires in the clear zone are planned for replacement.

- The clear zone eastbound and westbound is measured from the fog line, except in the area designated as Peak Use Shoulder Lane. In the Peak Use Shoulder Lane, the clear zone is measured 11' north of the fog line, representing the edge of the peak use lane. Clear zone is based on a 60 mph speed.
Related Documents

List related project documents that shaped the decision:
 • Basis of Design
 • Environmental Impact Statement
 • Local Agency Plans or Studies

Guidelines, Manuals, and Reports are listed later

Use Chicago Style referencing
Decision Description
Module 5
Template

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Sheet</td>
</tr>
<tr>
<td>Signatures and Metadata</td>
</tr>
<tr>
<td>1 - Background</td>
</tr>
<tr>
<td>2 – Decision Description</td>
</tr>
<tr>
<td>3 – Options Evaluation and Decision</td>
</tr>
<tr>
<td>4 – Attachments</td>
</tr>
</tbody>
</table>

Template available on the [ASDE Website](http://asde.org)

DELETE RED TEXT AFTER USE.
Decision Description Subsections

Design Element Table

Details

Other Guidance
Design Element Table

<table>
<thead>
<tr>
<th>ID #</th>
<th>Design Element</th>
<th>Location</th>
<th>Guidance</th>
<th>Proposed</th>
<th>Shown on (Sheet #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>Lane Width</td>
<td>LE-Line Sta. 123+45 to 130+00</td>
<td>12 ft</td>
<td>11 ft</td>
<td>Appendix 1, pg. 5</td>
</tr>
<tr>
<td>W2</td>
<td>Lane Width</td>
<td>LE 130+00 to LE 150+00</td>
<td>12 ft</td>
<td>11.5 ft</td>
<td>Appendix 1, pg. 6</td>
</tr>
<tr>
<td>SD1</td>
<td>Stopping Sight Distance</td>
<td>LW 50 +00 to 75+00</td>
<td>570 ft</td>
<td>520 ft</td>
<td>Appendix 1, pg. 1</td>
</tr>
</tbody>
</table>

Insert the location of the Design Element. This should align with the Design Analysis Metadata.
Design Element Table - Example

<table>
<thead>
<tr>
<th>ID #</th>
<th>Design Element</th>
<th>Location</th>
<th>Guidance</th>
<th>Proposed</th>
<th>Shown on (Sheet #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Bus Curb Loading Zone Length</td>
<td>A-Line Sta. 13+31 to 14+13</td>
<td>130 ft</td>
<td>82 ft</td>
<td>Appendix 1, pg. 1</td>
</tr>
</tbody>
</table>

Guidance and Proposed simply noted
Design Element Table - Example

<table>
<thead>
<tr>
<th>ID #</th>
<th>Design Element</th>
<th>Location</th>
<th>Guidance</th>
<th>Proposed</th>
<th>Shown on (Sheet #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW1</td>
<td>Lane Width</td>
<td>MRz 516+23.60 to MRz 522+85.54</td>
<td>Range = 11 to 12 Ft</td>
<td>11 Ft</td>
<td>CH8 – 9 (Appendix A)</td>
</tr>
<tr>
<td>SW1</td>
<td>Shoulder Width – Inside (Lt)</td>
<td>MRz 516+23.60 to MRz 522+85.54</td>
<td>4 Ft</td>
<td>2 to 5.4 Ft</td>
<td>CH8 – 9 (Appendix A)</td>
</tr>
<tr>
<td>SW2</td>
<td>Shoulder Width – Outside (Rt)</td>
<td>MRz 516+23.60 to MRz 522+85.54</td>
<td>Range = 8 to 10 Ft</td>
<td>2.8 to 8.6 Ft</td>
<td>CH8 – 9 (Appendix A)</td>
</tr>
<tr>
<td>LC1</td>
<td>Lateral Clearance – Inside Shoulder</td>
<td>MRz 516+23.60 to MRz 522+85.54</td>
<td>4 Ft</td>
<td>2 to 5.4 Ft</td>
<td>CH8 – 9 (Appendix A)</td>
</tr>
<tr>
<td>LC2</td>
<td>Lateral Clearance – Outside Shoulder</td>
<td>MRz 516+23.60 to MRz 522+85.54</td>
<td>4 Ft</td>
<td>2.8 to 8.6 Ft</td>
<td>CH8 – 9 (Appendix A)</td>
</tr>
</tbody>
</table>

SW = Shoulder Width, LC = Lateral Clearance

Two locations for each element: SW1 and SW2, LC1 and LC2
This designer decided to call them by location A, B and C. This worked with the way the remainder of the Design Analysis was organized.

<table>
<thead>
<tr>
<th>ID #</th>
<th>Design Element</th>
<th>Location</th>
<th>Guidance</th>
<th>Proposed</th>
<th>Shown on (Sheet #)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Horizontal Curve Radius</td>
<td>L-Line Sta. 783+95 to 796+12</td>
<td>700 ft. radius min.</td>
<td>572.9 ft. radius</td>
<td>Appendix 1</td>
</tr>
<tr>
<td>B</td>
<td>Turning Roadway Width</td>
<td>L-Line Sta. 783+95 to 796+12</td>
<td>29 ft.</td>
<td>24 ft.</td>
<td>Appendix 2</td>
</tr>
<tr>
<td>C</td>
<td>Horizontal Stopping Sight Distance (HSSD)</td>
<td>L-Line Sta. 790+00 to 792+50 This area is west of the existing bridge</td>
<td>350 ft. min HSSD for existing alignments</td>
<td>At least the existing HSSD of 279 feet</td>
<td>Appendix 3</td>
</tr>
</tbody>
</table>
This designer used La1 and Ld2.

La = Length of Acceleration
Ld = Length of Deceleration

The number simply was for location one and two. Since there was only one location of each type, they could have been La1 and Ld1.
Details

• Talk about each ID# separately
• Use the ID system you developed
• Cite specific DM Chapters and Exhibits
• State existing dimensions and/or context
• You MAY state proposed dimensions, but leave the details for the Options section.
• Set the stage for the Options section

Do Not discuss options here
Lane and Shoulder Width (LW1 & SW1/SW2) – The design for the EB SR 520 freeway has been developed in accordance with WSDOT’s Practical Design policies per DM 1100 [July 2017] with alternative analysis developed in accordance with DM 1104 [July 2017]. Lane and shoulder width dimensions were developed and evaluated per DM 1232 [July 2017] and DM Exhibit 1232-2 [July 2017] for non-interstate freeway criteria. Per DM Exhibit 1232-2, the allowable lane width ranges from 11 to 12 feet; the inside shoulder width on facilities up to 4 lanes is 4 feet, and the allowable outside shoulder width ranges from 8 to 10 feet.
Details - Example

A. Horizontal Curve Radius: The existing spiral-curve-spiral has a degree of curvature of 10 degrees, which equates to a radius of 572 feet and utilizes a 10% superelevation table. The project proposes to utilize the existing alignment with no revisions to curve radius. The project design speed of 50 MPH requires at least a 700 foot radius utilizing a 10% super table (WSDOT DM Exhibit 1250-4a, July 2017) Using this table, the proposed design meets the criteria for a 45 MPH speed.

This is the example where the Designers chose ID# A, B, and C. This worked because it aligned with the Design Element Table.
Details - Example

Ld2) The Design Manual (September 2020) Section 1350.06 Exhibit 1350-2 requires an upstream length for a pullout lane at a railroad crossing to be 530 feet for a design speed of 60 mph. The 530 ft. lane length includes a 4:1 taper transition area (48 ft. length taper for 12 ft. wide lane). The proposed dimension of 475 feet (48 ft. of taper transition and 427 ft. of deceleration lane) is the maximum upstream length that can be achieved without tapering the roadway in an approach and without widening Bridge 17/207 south of the railroad crossing (See Pullout Lane Exhibit).

This is the example where the Designers chose La1 and Ld2. The details are given under the title Ld2 so you can align it with the Design Element Table.
Other Guidance

• List guidance other than Design Manual
 • AASHTO document
 • NCHRP report
 • TRB report
 • NACTO Guide
• List all guidance using Chicago Style
 • In-text: (AASHTO 2018, 5-23)
Options Evaluated and Decisions

Module 6
Template

<table>
<thead>
<tr>
<th>Cover Sheet</th>
<th>Signatures and Metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Background</td>
<td>2 – Decision Description</td>
</tr>
<tr>
<td>3 – Options Evaluation and Decision</td>
<td>4 – Attachments</td>
</tr>
</tbody>
</table>

Template available on the ASDE Website

DELETE RED TEXT AFTER USE.
Location or Area

Section 3: Options Evaluation and Decision

Location or Area:

- Delete if your document covers one location
- For multiple locations, talk about each section
Location or Area

Give each section a title LA1, LA2, etc. for future reference.

EXAMPLE
LA1, LA2, and LA3 used on I-405 NE 132nd Street Design Analysis. “LA1”, “LA2”, and “LA3” were used throughout the document to streamline the discussion about each location.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location LA1 - NE 132nd Street @ NE132 WB 25+80:</td>
<td>Location LA1 is on the east leg of the roundabout for the northbound on-ramp, NE 132nd Street, and NE 116th Avenue intersection. Page 2 of Attachment C should be referenced while reading the discussion regarding location LA1.</td>
</tr>
<tr>
<td>Location LA2 - Totem Lake Blvd @ TLB SB 50+20:</td>
<td>Location LA2 is on the south leg of the roundabout for the northbound on-ramp, NE 132nd Street, and NE 116th Avenue intersection. Page 2 of Attachment C should be referenced while reading the discussion regarding location LA2.</td>
</tr>
<tr>
<td>Location LA3 - NE 132nd Street @ NE132 WB 17+50:</td>
<td>Location LA3 is the north leg of the roundabout for the southbound off-ramp, NE 132nd Street, and 116th Way NE intersection. Page 1 of Attachment C should be referenced while reading the discussion regarding location LA3.</td>
</tr>
</tbody>
</table>
Location or Area

May need to use graphics/tables:

- Vicinity Map
- Informational Table
- Corresponding Graphic (e.g. Channelization Plans)
So … how do I do that?
Required Metrics

1. Safety Performance
2. Operations and Mobility Performance
Safety Performance Metric

Safety Analysis Guide

- Provides guidance for safety analysis by funding program
- Focuses on Highway Safety Manual (HSM) predictive modeling
- There are limitations to predictive modeling
 - If HSM predictive modeling cannot be used, crash history can be used
- Resources: Contact your ASDE

Safety Analysis Guide – April 2020
Safety Analysis Methodology – Non-Preservation Projects

Safety Analysis Guide: Section 6.9

- Step 1: Determine appropriate scope and scale of analysis
- Step 2: Pull the crash data (if beneficial)
- Step 3: Review all fatal and serious injury crashes and any crashes involving people who walk or bike.
- Step 4: Analyze data to determine if there are any patterns or concentrations of crashes.
- Step 5: Conduct a safety performance analysis of each reasonable alternative.
Operations and Mobility Performance Metric

Use computer models if possible
 – Sidra, VISSIM, Synchro, HCS

Try a Quantitative comparison
 – Delay
 – Travel Time
 – Level of Service
 – Queue Length
 – Volume/Capacity Ratio

Talk to Region Traffic
Additional Metrics

Answer this question:
Why can’t I build the full-build scenario?

Response to that question may be a metric or multiple metrics.
Additional Metric

• Cost is not a direct metric, but an indirect metric
 – Building to full dimension would require:
 • Additional Right of Way … Additional expense
 • Widen Existing Structures … Additional expense
• Consider Baseline and Contextual Needs
 – Often NOT a major player in the specific decision being documented on this template.
 – ONLY include project baseline or contextual needs if they are directly involved in the decision being discussed.
Additional Metrics

Avoid using temporary or schedule impacts to justify a permanent feature.
Additional Metrics

Think about your naming convention (i.e. Subject and Action):

- Impact to adjacent businesses
- Environmental impacts
- Right of way impacts
- Bicycle/pedestrian accommodation
- Stormwater Treatment
CLASS EXERCISE – Metrics

Your project is replacing an existing bridge. You are writing a Design Analysis to narrow the shoulders below the required dimension of 5 feet. You have a two lane highway with one lane in each direction. The location is a bridge that crosses over a creek with 2:1 slopes approaching the bridge.
You are considering three Options:

1. **OPTION 1: Full build.** 11’ Lanes, 5’ Shoulders on new alignment parallel and offset from the currently alignment. This Option allows for the existing bridge to remain intact while the new bridge is built.

2. **OPTION 2: Route Continuity.** 11’ Lanes, 2’ Shoulder on existing alignment. This Option requires a temporary shoe-fly bridge that is one-way alternating traffic for two construction seasons.

3. **OPTION 3: Practical Solution.** 10’ Lanes, 4’ Shoulders on existing alignment. This Option leaves the existing bridge in-place while constructing the new bridge and uses a one-way alternative traffic for two construction seasons. Option requires right-of-way acquisition.
You desire to build Option 3: Practical Solution

Compile a list of Metrics/Considerations for your Design Analysis.
POSSIBLE METRICS:

- Operational Impact
- Safety Impact
- Bicycle Impact
- Pedestrian Impact
- Environmental Impact
- Right of Way Impact
- Tribal Impacts
- Route Continuity
- Project
 Constructability/Phasing
- Profile Impact

Subject = Blue
Action = Green

These are simple examples and the metric is communicated in very few words. You may use sentences to better explain the metric. Still try to keep the sentences simple.
POSSIBLE METRICS:

- Operational Impact (Required)
- Safety Impact (Required)
 - Bicycle Impact
 - Pedestrian Impact
 - Environmental Impact
 - Right of Way Impact
 - Tribal Impacts
 - Route Continuity
 - Project Constructability/Phasing
 - Profile Impact

Be careful that metrics don’t overlap and cause double-counting.
Evaluation Methodology

How do I measure my metrics?

- Right of Way
- Existing Structures
- Pedestrian Impacts
- Environmental Impacts
Evaluation Methodology

How do I measure my metrics?

QUANTITATIVE vs QUALITATIVE
Quantitative Methods

Only one in 30 take the free ice cream. Interesting...

Qualitative Methods

What did you feel when you saw the free ice cream?

Excited. A little scared.

And why was that?
Qualitative Data

Overview:
- Deals with descriptions.
- Data can be observed but not measured.
- Colors, textures, smells, tastes, appearance, beauty, etc.

Example 1: Oil Painting

Qualitative data:
- blue/green color, gold frame
- smells old and musty
- texture shows brush strokes of oil paint
- peaceful scene of the country
- masterful brush strokes

Quantitative data:
- picture is 10" by 14"
- with frame 14" by 18"
- weighs 8.5 pounds
- surface area of painting is 140 sq. in.
- cost $300

Example 3: Freshman Class

Qualitative data:
- friendly demeanor
- civic minded
- environmentalists
- positive school spirit

Quantitative data:
- 672 students
- 394 girls, 278 boys
- 68% on honor roll
- 150 students accelerated in mathematics

Quantitative Data

Overview:
- Deals with numbers.
- Data which can be measured.
- Length, height, area, volume, weight, speed, time, temperature, humidity, sound levels, cost, members, ages, etc.

Example 2: Latte

Qualitative data:
- robust aroma
- frothy appearance
- strong taste
- burgundy cup

Quantitative data:
- 12 ounces of latte
- serving temperature 150°F.
- serving cup 7 inches in height
- cost $4.95
Quantitative

An analysis of a situation or event by means of numerical measurement.

- Operations numbers
 - Sidra, VISSIM, Synchro, HCS

- Safety numbers
 - HSM, ISATe, IHSDM

- Length of Horizontal Stopping Sight Distance (SSD) provided
 - Option #1 provides 495 ft of SSD, as required for 55 mph, for the entire curve with a 10 ft shoulder; and,
 - Option #2 provides 400 ft of SSD for 200 ft of the curve or 2.5 seconds of travel time (at 55 mph) with compromised SSD with a 6 ft shoulder.
Qualitative

An analysis that focuses on the relative impact of an option for a given metric as compared to the other options being assessed.

– Reduced Tribal Impacts
 • Option #1 will require less impact to tribal areas than Option #2 as it will not require rerouting the creek.

– Maintenance of Traffic Impacts
 • Option #1 should have less maintenance of traffic issues due to the fact that the culvert at STA 19+92 should not need to be replaced.
Qualitative Methodology

Answer these questions:
• What do you want from the Metric/Consideration?
• How does it effect project performance?

Use Qualitative Adjectives

- Additional
- Less
- None
- No Impact
- Greater
- Reduce

- Meets
- Faster
- Slower
- More
- Fewer
- Increase

- No Change
- High
- Low
- Similar
- Better
- Improve
Qualitative Methodology

You may use one of the Options as a baseline

Options Comparison Table

<table>
<thead>
<tr>
<th>Options</th>
<th>Associated Issues (identified in Section 2)</th>
<th>Metrics / Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Safety Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operational and Mobility Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Impact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rights of Way Impacts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance Impacts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constructability & Phasing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enforcement Impacts</td>
</tr>
<tr>
<td>-- OPTION 1 --</td>
<td>LW1 SW1</td>
<td>0.67 FSI/Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59 mph FFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Same</td>
</tr>
<tr>
<td>-- OPTION 2 --</td>
<td>LW1 SW1</td>
<td>0.70 FSI/Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 mph FFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>-- OPTION 3 --</td>
<td>LW1 SW1</td>
<td>0.73 FSI/Year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56 mph FFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse</td>
</tr>
</tbody>
</table>
CLASS EXERCISE – Measurement Adjectives

Take your list of Metrics/Considerations and add Qualitative Adjectives
POSSIBLE METRICS:

• Less Operational Impact
• Improve Safety Impact
• Reduce Bicycle Impact
• Less Pedestrian Impact
• No Environmental Impact
• Minimize Right of Way Impact
• Less Tribal Impacts
• Provide Route Continuity
• Ease of Project
 Constructability/Phasing
• Less Profile Impact

Noun = Blue
Verb = Green
Adjective = Red
Take four of your metrics. For each, come up with a measurement. State whether it is a **quantitative** or **qualitative** measure. If *quantitative*, state what is going to produce the number. If *qualitative*, state how you will compare them.
CLASS EXERCISE – Possible Answers

• No Environmental Impact: **QUALITATIVE**. We can only surmise the actual impact to the environment at this stage in the game. We have not completed our hydraulics reports or preliminary engineering to know for certain. This comparison would be **QUALITATIVE** because it will be our opinion as to what the impacts would be.

• Provide Route Continuity: **QUALITATIVE**. This will be a discussion on the route within the corridor and what that route may look like in the future. This comparison would be **QUALITATIVE** as it is our opinion on what the future of the roadway may be.

• Improve Safety Impact: **QUANTITIVE**. The shoulder and lane options will be analyzed using HSM equations.

• Reduce Bicycle Impact: **QUALITATIVE**. Providing 5’ shoulders and 42” high barrier will improve bike accommodation for bicyclist utilizing this corridor.
Options Comparison Table

Place the Metrics in the Options Comparison Table

<table>
<thead>
<tr>
<th>Options Comparison Table</th>
<th>Associated Issues (identified in Section 2)</th>
<th>Metrics / Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Safety Performance</td>
<td>Operational and Mobility Performance</td>
</tr>
<tr>
<td>Full Build</td>
<td>LW1 SW1</td>
<td>0.03 FSI/Year</td>
</tr>
<tr>
<td>Route Continuity</td>
<td>LW1 SW1</td>
<td>0.10 FSI/Year</td>
</tr>
<tr>
<td>Practical Solution</td>
<td>LW1 SW1</td>
<td>0.06 FSI/Year</td>
</tr>
</tbody>
</table>

- One row for each Option, columns are metrics
- One of the Options must be full build
- Insert **quantitative** results in the cells if applicable
- Insert **qualitative** adjectives in the cells if **qualitative** analysis is used
Options Comparison Table

Notice the “Associated Issues” carried throughout the document.

Section 2: Find SW1 in the Design Element Table

Section 3: Find SW1 in the Options Comparison Table

Appendix: Find SW1 in the Supporting Graphic
Options Comparison Table

<table>
<thead>
<tr>
<th>Options Comparison Table</th>
<th>Associated Issues (identified in Section 2)</th>
<th>Safety Performance</th>
<th>Operational and Mobility Performance</th>
<th>Preservation</th>
<th>Construction Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1: Match Existing Profile Grade</td>
<td>SD1 & SD2</td>
<td>Lower</td>
<td>Higher</td>
<td>Higher</td>
<td>Lowest construction cost</td>
</tr>
<tr>
<td>Option 2: Relocate Sag Off Proposed Structure with Increased Sight Distance</td>
<td>SD1 & SD2</td>
<td>Higher</td>
<td>Medium</td>
<td>Lower</td>
<td>Highest construction cost</td>
</tr>
<tr>
<td>Option 3: Relocate Sag Off Proposed Structure</td>
<td>SD1 & SD2</td>
<td>Medium</td>
<td>Higher</td>
<td>Medium</td>
<td>Marginally higher construction cost than Option 1</td>
</tr>
</tbody>
</table>

Example

Which is better, Lower or Higher?
Options Comparison Table

<table>
<thead>
<tr>
<th>Options Comparison Table</th>
<th>Associated Issues (identified in Section 2)</th>
<th>Metrics / Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Safety Performance - no cross over collisions</td>
<td>Operational and Mobility Performance (LOS)</td>
</tr>
<tr>
<td>OPTION 1 – No median barrier</td>
<td>SSD1&2</td>
<td>--</td>
</tr>
<tr>
<td>OPTION 2 – Build median barrier and lower the speed limit</td>
<td>SSD1&2</td>
<td>++</td>
</tr>
<tr>
<td>OPTION 3 – Build median barrier and maintain current speed limit</td>
<td>SSD1&2</td>
<td>++</td>
</tr>
</tbody>
</table>

Score (relative to other alternatives):

++ Optimal Performance
+ Benefit
0 Neutral
- Impact
-- Significant Impact
Options Comparison Table

Northbound I-5 Express Lanes

<table>
<thead>
<tr>
<th>Options</th>
<th>Associated Issues (Identified in Section 2)</th>
<th>Metrics / Considerations</th>
<th>Effect on Travel Times</th>
<th>Effect on FFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option A</td>
<td>(3 lanes + aux lane)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* [6’ to 10’, 12’, 12’, 12’, 12’, 12’, 6’ to 10’]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LW1, SW1 – 2, LC1 - 2</td>
<td></td>
<td>No increase in travel times</td>
<td>No reduction in FFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 (K) + 0.15 (A) = 0.20 (K + A) cpy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medium Impact: Reduces overall project duration by approximately 3 months as compared with Option B.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rebuilds I-5 express lanes left shoulder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-foot shoulders (typical)</td>
<td></td>
</tr>
<tr>
<td>Option B</td>
<td>(4 lanes + aux lane)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LW1, SW1 – 2, LC1 - 2</td>
<td></td>
<td>No increase in travel times</td>
<td>- 3.2 mph reduction in FFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.10 (K) + 0.20 (A) = 0.30 (K + A) cpy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High Impact: Increases overall project duration by approximately 3 months as compared with Option A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rebuilds I-5 express lanes left and right shoulders</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 to 4-foot shoulders (typical)</td>
<td></td>
</tr>
<tr>
<td>Option EX</td>
<td>(Existing – 4 lanes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* [6’ to 10’, 12’, 12’, 12’, 12’, 12’, 6’ to 10’]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LW1, SW1 – 2, LC1 - 2</td>
<td></td>
<td>No increase in travel times</td>
<td>No reduction in FFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.05 (K) + 0.15 (A) = 0.20 (K + A) cpy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No impact</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No consumption of construction materials or energy / Does not provide for new HOV DA connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-foot shoulders (typical)</td>
<td></td>
</tr>
</tbody>
</table>
Options Comparison Table

<table>
<thead>
<tr>
<th>Options Comparison Table</th>
<th>Design Elements</th>
<th>BN1 Traffic Operations</th>
<th>BN2 Access to ETI Lanes</th>
<th>BN3 Baseline Safety</th>
<th>CN1 Transit Reliability</th>
<th>CN3 Maintenance of Traffic</th>
<th>CN4* Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Outside: 10'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Inside: 10' or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Inside: 8' w/ 4' buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Width: 12'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer Width: 4'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTION 2</td>
<td>LW</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Approximately 27 Additional Full I-405 Closures for Bridge Work.</td>
<td>Approximately 0.24 Additional Acres Wetland Impacts</td>
</tr>
<tr>
<td>Target Section Approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Outside: 10'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Inside: 10' or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Inside: 8' w/ 4' buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lane Width: 11'</td>
<td>LW</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Approximately 27 Additional Full I-405 Closures for Bridge Work.</td>
<td>Approximately 0.24 Additional Acres Wetland Impacts</td>
</tr>
<tr>
<td>Buffer Width: 4'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTION 3</td>
<td>LW/SW/BW/LC</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Meets target</td>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>Practical Design Approach (Preferred)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Outside: 2'-10'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Inside: 2'-10' or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoulder Width Inside: 2'-8' w/ 4' buffer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Options Comparison Table

<table>
<thead>
<tr>
<th>Associated Issues (Identified in Section 2)</th>
<th>Safety Performance</th>
<th>Operational and Mobility Performance</th>
<th>Environmental Impact</th>
<th>Route Continuity</th>
<th>Reduce Bicycle/Pedestrian Impact</th>
<th>Ease of Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Build</td>
<td>LW1 SW1</td>
<td>0.03 FSI/Year</td>
<td>58 mph FFS</td>
<td>Poor</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Route Continuity</td>
<td>LW1 SW1</td>
<td>0.10 FSI/Year</td>
<td>58 mph FFS</td>
<td>Moderate</td>
<td>Excellent</td>
<td>Poor</td>
</tr>
<tr>
<td>Practical Solution</td>
<td>LW1 SW1</td>
<td>0.08 FSI/Year</td>
<td>58 mph FFS</td>
<td>Moderate</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Detailed Options Description

- Provide a short description of each option
- Don’t make them read a dissertation
- Don’t make the reader lookup everything in an attachment
Detailed Description of the options evaluated as follows:

Option 1: Match Existing Profile Grade (Attachment B & E)

This option matches the existing profile grade. The existing grade was analyzed for Stopping Sight Distance (SSD) and did not meet the Design Manual criteria of 534 feet, existing conditions produce a SSD of 363 feet. In addition, the sag location would fall within the limits of the proposed structure. This option accommodates a design speed of 40 MPH.

Option 2: Relocate Sag Off Proposed Structure with Increased Sight Distance (Attachment F & G)

This option moves the sag location outside of the proposed structure location and exceeds the design criteria for stopping sight distance. In order to meet design criteria, the profile needed to shift west due to the existing infrastructure constraints from driveway accesses and the existing Eastbound US 101 structure. This option would bring the profile up to full design criteria for the posted speed of 55 MPH.

Option 3: Relocate Sag Off Proposed Structure (Attachment B, C & D)

This option moves the sag location outside of the proposed structure location. The roadway profile is raised at the proposed structure location and a second sag vertical curve is introduced due to the existing infrastructure constraints from the driveway accesses and the existing Eastbound 101 structure. This option either maintains or increases the available stopping sight distance in the sag vertical curves from existing conditions and accommodates a design speed of 40 MPH.
Performance Tradeoffs

Detailed Description of the options evaluated as follows:

<table>
<thead>
<tr>
<th>Discuss the performance tradeoffs shown in the table, and compare the performance of the options:</th>
</tr>
</thead>
</table>

Performance Tradeoffs

• Main section of a Design Analysis
• Discuss the trade-offs without reaching a conclusion on which option is best … that comes later …
• Explain your qualitative adjectives
 – Why did you say it was More/Greater/Best?
 – Why did you say it was Less/Fewer/Worse?
• Provide enough background so a reasonable person may reach the same conclusion
Performance Tradeoffs

This is your day in court
Use this section to present your case
“Washington State laws and policies, along with City of Seattle ordinances, require that pedestrian utilization of transportation facilities be considered and explicitly encouraged by the design of roadway projects.”

Quote the exact City Ordinance

Quote the exact Law (RCW or WAC) and Policy number

Treat it like a research paper from school ...
include references
“City of Seattle urban design standards do not provide shoulder or shy distance to curbs because wider traveled ways have been shown to encourage higher speeds, regardless of the posted speed limit.”
A ball-bank analysis was performed for the locations ER2, ET2, ET3, and ET6 to ET10. The ball-bank readings showed that the shorter superelevation transitions did not result in a lateral acceleration outside of the range for driver comfort. The resulting values were between 1.4 and 6.6 degrees. Per A Policy on Geometric Design of Highways and Streets, 6th Edition, AASHTO (2011), Section 3.3.2, curves that avoid driver discomfort are indicated by ball-bank readings of 14 degrees for speeds of 20 mph or less, 12 degrees for speeds of 25 to 30 mph, and 10 degrees for speeds of 35 through 50 mph, and by extrapolation for this analysis, 8 degrees for 60 mph.
Safety Performance: The existing alignment has had four crashes in the past five years; three were wildlife-related and one was an object in the roadway. The alignment has no history of run off the road type crashes typically associated with horizontal alignment, and no fatal and serious injury crashes in the previous five years. The performance metric of not increasing the risk of fatal and serious injury crashes is met by both options.
Design Analysis: Bus pullout 130’ (required) to 82’

Metric: Impacts to Adjacent Properties

In all options, acquisition of additional right-of-way from private landowners is necessary. Options 2 and 3 are considered low impact, as there are no other impacts to adjacent properties, existing infrastructure, and/or critical areas.

Relocating the bus stop location west of Canyon Street (Option 1) would require significantly more right-of-way from a private landowner than Options 2 or 3. The land needed to accomplish Option 1 is currently a commercial property that utilized their land up to the right-of-way property line. For that reason, the impacts to adjacent properties for Option 1 is considered moderate.
Design Analysis: Superelevation transition
(270' existing, 570' required, 270' proposed)

Metric: Safety (HSM Equations not applicable)

Southbound Super Transitions
There were zero fatal or serious injury crashes within the study Area. Since the runoff length exception occurs due to the outside edge of traveled way, the following existing crash summary details in the next paragraph are for the outside shoulder and two outside most lanes.

Approximately 80% of the crashes for SB#1 through SB#3 were rear end crashes. Within this area, there were 2 fixed object and 5 angled/sideswipe crashes of which there were non-injury crashes. Approximately 85% of the fixed object and angled/sideswipe crashes occurred as result of inattention, following too close or not granting the right of way to vehicle.

Given these contributing factors for the crashes, it is likely the superelevation transition does not contribute to crashes. As a result, keeping the proposed equal to the existing should have similar positive safety performance.
CLASS EXERCISE – Performance Tradeoffs

Read the following statement. Is it good?
List one thing you would change or add to make it better?

Design Analysis: Gap Acceptance Length (300’ required, 136’ proposed)

Metric: Impacts to the Traveling Public

Option A will require widening along the south side of the EB roadway including widening of the existing Beaverton Bridge. Widening will also require removing and replacing the existing Chicago Street undercrossing with a longer spanned temporary detour bridge. Note the detour bridge will be replaced by a large community enhancement lid as part of a future project. The approximate duration of traffic control lane and shoulder closures associated with widening the existing bridge is estimated at 12 months. The approximate duration for removing and replacing the existing Chicago Street undercrossing with a temporary detour bridge is estimated at 18 months. The combined duration for Option A impacts and delays to the traveling public are estimated at 24 months.

Option B and Option C will require restriping the existing NB to EB connector ramp and portion of EB mainline for the slightly modified two-lane parallel on-connection. Restriping the existing ramp will likely occur during nighttime hours, either by closing the ramp or by using single lane detours. The impact to the traveling public will be the same for Option B and Option C. Option D will not require any impacts or delays to the traveling public but does not meet the subject project purpose and need for adding a new HOV direct access ramp connection.
Mitigating Measures

Discuss any mitigating measures added to address performance trade-offs:

- List items to help mitigate the location
 - Note ones that will be installed
- Consider low cost countermeasures such as:
 - Mitigation Strategies for Design Exemptions
 - TSMO
- Brainstorm with others outside of the project team
Mitigation Possibilities

How can I help?

- Additional Barrier?
- Rumble Strips?
- Striping?
- Signing?
- Variable Message Sign?
CLASS EXERCISE – Mitigation

Select a partner and brainstorm five mitigation measures for the following Design Analyses

Horizontal Stopping Sight Distance

Intersection Sight Distance

Vertical Clearance

Lane and Shoulder Width
Preferred Option

- This is the conclusion of a Design Analysis
- State your preferred Option and why?
- No new information presented in this section
- Should be short … all of the details are in the prior sections
Option 2, Practical Design Approach, is selected as the Preferred Option. Option 1 and Option 2 both meet the project’s Baseline needs. When the project’s Contextual Needs are considered, Option 2 out-performs Option 1 and best aligns with WSDOT’s Practical Design policies by meeting the project’s Baseline and Contextual needs at the lowest cost.

The preferred option is Option 1 that utilizes existing shoulder for ramp metering. The additional impacts of adding a new lane that is only required for a few hours each day is not a practical solution. Using the existing infrastructure to store vehicles entering the highway is the more economically viable solution that minimizes the impact to the environment and the surrounding area. For reasons detailed above, the preferred option is to use the shoulder for ramp meter storage instead of building a new lane.
Preferred Option - Example

Location #1: Sight Distance Looking North
Considering the three options discussed above, Option 3 is selected as the preferred option for the Sight Distance Setback on eastbound Grace Ave looking north. The option provides the AASHTO minimum sight distance setback for cars and busses.

Location #2: Sight Distance Looking South
Considering the three options discussed above, Option 3 is selected as the preferred option. Over the past five years, no crashes were associated with the limited sight distance looking south. This option increases the existing sight distance setback and exceeds the minimum distance allowed in the WSDOT Design Manual for situations where limited right of way constrains available options.

New information?
The preferred option is **Option 1**. Using the existing infrastructure to store vehicles entering the freeway is the most economically viable solution, minimizing the impact to the environment and the surrounding area. Option 1 is similar to the northbound SR 195 on-ramp to eastbound I-90 on the west side of Spokane where drivers form two lanes when metered. It is operating well and the driving public is able to understand and comprehend the striping and signing.

Option 2, while having similar cost and low impact, was not selected as it was determined this would be a new configuration for Spokane area drivers. Further, DM 1239.02(1)(a) states that “shoulder widths greater than 10 feet travel lane”. The on-ramp is not a two lane ramp during non-metered operations and it is not desirable for drivers to have the idea that it is.
THE END!
Attachments and Filing
Module 7
Template

- Cover Sheet
- Signatures and Metadata
- 1 - Background
- 2 – Decision Description
- 3 – Options Evaluation and Decision
- 4 – Attachments

Template available on the ASDE Website

DELETE RED TEXT AFTER USE.
Attachments

Possible attachments include:

- Vicinity Map
 - Not the Project Vicinity Map
 - Show the location of the Design Analysis
- Figures or Exhibits detailing the location
 - Cross Sections
- Safety Analysis Output
- Auto-Turn Exhibits

Don’t include other Design Documentation Package (DDP) items
- The Design Analysis is part of the DDP
- Other DDP items in the Design Analysis is duplicating effort
Safety Analysis

General Information

- **Project description:** SR 520, I-5 Interchange Improvements - NB 1-5 Mainline (Option B)
- **Analyst:** [Name Redacted]
- **Date:** 2/12/2020
- **Area type:** Urban
- **First year of analysis:** 2030
- **Last year of analysis:** 2030

Crash Data Description

- **Freeway segments:** Segment crash data available? No, First year of crash data: 2030
- **Ramp segments:** Segment crash data available? No, First year of crash data: 2030
- **Ramp terminals:** Segment crash data available? No, First year of crash data: 2030

Estimated Crash Statistics

Crashes for Entire Facility

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>K</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>PDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>13.6</td>
<td>0.0</td>
<td>0.1</td>
<td>0.7</td>
<td>2.9</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Crashes by Facility Component

- **Crashes for Freeway segments:** Total crashes: 5
- **Crashes for Ramp segments:** Total crashes: 0
- **Crashes for Crossroad ramp terminals:** Total crashes: 0

Crashes for Entire Facility by Year

- **Crashes for Entire Facility by Year:**
 - **2030:** Total crashes: 13.6
 - **2031:** Total crashes: [Data Not Available]
 - **2032:** Total crashes: [Data Not Available]

Presence of Barriers

<table>
<thead>
<tr>
<th>Barrier Scenario</th>
<th>Length of barrier (L_{bar})</th>
<th>Distance from edge of traveled way to barrier face (W_{bar,face})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.011</td>
<td>0.038</td>
</tr>
<tr>
<td>2</td>
<td>0.000</td>
<td>0.039</td>
</tr>
<tr>
<td>3</td>
<td>0.028</td>
<td>0.028</td>
</tr>
<tr>
<td>4</td>
<td>0.100</td>
<td>0.100</td>
</tr>
</tbody>
</table>

- **Saftey Analysis**

Diagram

- [Diagram showing location and details of segments with lengths and placement]
Auto-Turn Exhibit
Where Are They Filed

- Project Engineer is responsible for filing of the original in ECM
- Original filed in the Design Approval or Project Development Approval
- Copy sent to HQ Design for filing
- Copy of Region Approved Design Analysis sent to HQ Design
- Enterprise Content Management (ECM)
- Records Retention
Review Process

1. **PE draft DA**
 - ASDE initial review
 - Address Comments
 - ASDE-FHWA reviews
 - Address Comments

2. **Signatures**
 - ASDE file DA in ProjectWise
 - PE file DA in ECM

- **1-2 Weeks**
- **1-2 Weeks**
- **1-2 Days***

* Two weeks to a Month

* Using Electronic Approval
Filing Design Analysis

• Design Analysis (DA) documents are filed by SR and milepost.
• They will be stored in ProjectWise. ProjectWise has the ability to collect metadata. The filename convention, file location, and ProjectWise metadata are described below.

• Filename Convention
 – DA file will be named as follows:
 – AAA_BBBBB_EEEE_DESCRIPTION.pdf
 – AAA = SR in three digit format, Example: US 2 = 002, SR 20 = 020
 – BBBBB = Beginning milepost in five digit format, Example: MP 36.55 = 03655
 – EEEE = Ending milepost in five digit format, Example: MP 36.63 = 03663
 – DESCRIPTION = A short description of the item
 – Example for DA: Lane Width, Shoulder Width
 – 002_03655_03663_Lane and Shoulder Width.pdf
ProjectWise Example

090_01166_01552_Barrier.pdf
Data input in ECM Production

Coordinate with Region ECM power user to help you search and file documents. The power user will use https://wsdotecm/capture to file documents as shown below
ECM Portal output

Use the following link https://wsdotecm/portal to search for a document in ECM.
Agency Unique Retention Schedule:

Department of Transportation Records Retention Schedule

Version 1.9 (October 2020)

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DESCRIPTION OF RECORDS</th>
<th>RETENTION AND DISPOSITION ACTION</th>
<th>DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-09-25454</td>
<td>Contract Award Record Sheets</td>
<td>Retain for 7 years after completion of contract then Destroy.</td>
<td>NON-ARCHIVAL NON-ESSENTIAL OBM</td>
</tr>
<tr>
<td>Rev. 0</td>
<td>Provides record of all construction contracts awarded in the State of Washington.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-09-25558</td>
<td>Design Documentation Package</td>
<td>Retain for 75 years after design approval date then Transfer to Washington State Archives for permanent retention.</td>
<td>ARCHIVAL (Permanent Retention) NON-ESSENTIAL OBM</td>
</tr>
<tr>
<td>Rev. A</td>
<td>Includes Design Documentation pertaining to highway construction projects. Documents in this packet vary depending on the type of project and any FHWA requirements as detailed in the applicable chapters of the Agency Design Manual. Includes, but is not limited to: Design stages and design documentation; Plan specifications; Hydraulic reports; Estimates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-09-25558</td>
<td>Highway Construction Project Files</td>
<td>Retain for 3 years after completion of project then Destroy.</td>
<td>NON-ARCHIVAL NON-ESSENTIAL OBM</td>
</tr>
<tr>
<td>Rev. 1</td>
<td>Records relating to Design Project File, including but not limited to, preliminary engineering, environmental and design studies conducted during the development of the project.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-03-41856</td>
<td>Interstate Cost Estimate</td>
<td>Retain for 8 years after end of calendar year then Destroy.</td>
<td>NON-ARCHIVAL NON-ESSENTIAL OBM</td>
</tr>
<tr>
<td>Rev. 1</td>
<td>Provides data for production of an Interstate Cost Estimate.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>