IUST 5, 2002 TO APRIL 6, 2003

Standard Plans For Road, Bridge, and Municipal Construction

M 21-01 English

5, 2002 TO APRIL 6, 2003

Persons with disabilities may request this information be prepared and supplied in alternate formats by calling the WSDOT ADA Accommodation Hotline collect (206) 389-2839. Persons with hearing impairments may access WA State Telecommunications Relay Service at TT 1-800-833-6388, Tele-Braille 1-800-833-6385, or Voice 1-800-833-6384, and ask to be connected to (360) 705-7097.

Washington State Department of Transportation Engineering Publications
Transportation Building
P.O. Box 47408
Olympia, WA 98504-7408
(360) 705-7430 (voice)
(360) 705-6861 (fax)
engrpubs@wsdot.wa.gov (E-mail)

5, 2002 TO APRIL 6, 2003

Foreword

This Standard Plans Manual contains engineering drawings that are used for road, bridge, and municipal construction. These drawings have been prepared under the direct supervision of a professional engineer, licensed in the state of Washington, who is knowledgeable in the specialized field of civil engineering depicted in that drawing. This manual standardizes fabrication, installation and construction methods for specific items of work and complements the contract documents and the English version of the Standard Specifications for Road, Bridge, and Municipal Construction.

Updating the manual is a continuous process and revisions are issued periodically. Questions, comments, and recommendations for changes are welcome. The *Comment Request Form* on the reverse side of this page is provided to encourage comments and assure their prompt delivery. Use copies of the form to send any attachments, such as marked copies of specific standard plans. Your comments should be sent to **Design Standards**, Transportation Building, Olympia, WA 98504-7329.

Bentley MicroStation DGN CAD files, Adobe PDF files and some AutoCAD DWG CAD files can be downloaded from the Design Standards website at:

http://www.wsdot.wa.gov/eesc/design/designstandards

Contact the **Design Standards Office** at **(360) 705-7540** if you have questions about the technical content of this manual.

Additional copies of this manual can be ordered from the **Engineering Publications Office (360) 705-7430.**

Harold Peterfeso State Design Engineer

Comments

From:	Date: Phone:
То:	Design Standards Washington State Department of Transportation Transportation Building PO Box 47329 Olympia, WA 98504-7329
Subject:	Standard Plans Manual Comment
Comme	nt (marked copies attached):

Preserve this original for future use • Submit copies only

Page 2

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Standard Plans for Road, Bridge, and Municipal Construction - English

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

			Conte	ents
Р	lan No.	Plan Title Publica	tion Approv	al Date
			• • •	
Section A	Concr	rete Pavement		
Section A	A-1	Cement Concrete Pavement Joints	5/13/02	
	A-2	Bridge Approach Slab		2 Sheets
	A-3	Transition from Concrete Overlay	5/30/02	2 Sheets
	A-4	Inlet Placement at Bridge End	3/7/97	2 0/10010
		ŭ		
Section B	Draina	age Structures and Hydraulics		
	B-1	Catch Basin Type 1	7/31/01	
	B-1a	Catch Basin Type 1L	7/31/01	
	B-1b	Catch Basin Type 1P, Parking Lot C.B.	3/7/97	
	B-1e	Catch Basin Type 2	1/28/02	
	B-1z	Miscellaneous Details for Manholes and Catch Basins	5/30/97	
	B-2	Solid Metal Cover for Catch Basin	6/17/02	
	B-2a	Reversible Frame for Catch Basin or Concrete Inlet	6/17/02	
	B-2b	Vaned Grate for Catch Basin and Concrete Inlet	6/17/02	
	B-2c	Bi-Directional Vaned Grate for Catch Basin and Inlet	6/17/02	
	B-2d	Herringbone Grate for Catch Basin and Inlet	6/17/02	
	B-3	Catch Basin Type 2 with Flow Restrictor-Oil Separator	1/28/02	
	B-3a	Catch Basin Type 2 with Baffle Type Flow	5/9/97	
		Restrictor-Oil Separator		
	B-4b	Grate Inlet Type 1	5/9/97	
	B-4c	Grate Inlet Type 2	5/9/97	2 Sheets
	B-4f	Drop Inlet Type 1	5/9/97	
	B-4g	Drop Inlet Type 2	7/18/97	
	B-4h	Drop Inlet Grates	5/9/97	
	B-7	Flared End Sections	5/9/97	
	B-7a	Beveled End Sections for Culverts 30" Diameter or Less	6/17/02	
	B-8	Structural Plate Underpass Design 1	5/9/97	
	B-8a	Structural Plate Underpass Design 2	7/25/97	
	B-9	Headwalls for Culvert Pipes	5/9/97	
	B-9a	Type 1 Safety Bars for Stepped Culvert Pipe or Pipe Arch	5/9/97	
	B-9b	Type 2 Safety Bars for Culvert Pipe or Pipe Arch	5/9/97	
		(On Cross Road)		
	B-9c	Tapered End Section with Type 3 Safety Bars	7/18/97	
	B-9d	Tapered End Section with Type 4 Safety Bars (On Cross Road)	7/18/97	
	B-11	Pipe Zone Bedding and Backfill	7/31/01	
	B-13	Coupling Bands for Corrugated Metal Pipe	12/4/98	
	B-18	Drop Connection for Sanitary Sewers	5/9/97	
	B-18a	Vertical Connection	5/9/97	
	B-18b	8 Inch Clean Out	7/18/97	
	B-19	Hydrant Setting Types A and B	5/30/97	
	B-20d	Residential Sidewalk Drain	7/18/97	
	B-21	2 Inch Blowoff Assembly	7/18/97	
	B-21a	Combination Air Release/Air Vacuum Valve Assembly	8/10/98	
	B-22	Concrete Blocking for Convex Vertical Bends	5/9/97	
	B-22a	Concrete Thrust Block	8/1/97	
	B-23a	Manhole Type 1	5/9/97	
	B-23b	Manhole Type 2	5/9/97	

	Plan No.		Publication Appro	val Date
			- Danielli i i i i i i i i i i i i i i i i i	
	B-23c	Manhole Type 3	5/9/97	
	B-23d	Manhole Type 4	5/9/97	
	B-25	Manhole Ring and Cover	5/9/97	
	B-26	Concrete Inlet	7/18/97	
	B-27	Precast Concrete Drywell	8/1/97	
	B-28	Connection Details for Dissimilar Culvert Pipe	10/6/99	
	B-29	Side Sewer	4/24/98	
	B-30	Standing Side Sewer Connection	8/10/98	
Section C	Traffic	: Barrier		
	C-1	Beam Guardrail (W Beam)	7/31/98	2 Sheets
	C-1a	Beam Guardrail (Thrie Beam)	7/31/98	
	C-1b	Beam Guardrail Posts and Blocks	3/17/00	2 Sheets
	C-1c	Beam Guardrail	5/30/97	
	C-1d	Thrie Beam Guardrail Reducer Section	3/14/97	
	C-2	Guardrail Placement (Cases 1, 2, and 3)	1/6/00	
	C-2a	Guardrail Placement (Cases 4, 5, and 6)	7/17/98	
	C-2b	Guardrail Placement (Cases 7 and 8)	6/12/98	
	C-2c	Guardrail Placement, Median Bull Nose (Case 9)	1/8/99	
	C-2d	Guardrail Placement (Cases 10a, 10b, and 10c)	5/22/98	
	C-2e	Guardrail Placement (Cases 11a, 11b, and 11c)	3/7/97	2 Sheets
	C-2f	Guardrail Placement, Weak Post Intersection Desi		2 0.70010
	<u> </u>	(8' - 6" Max. Radius) (Cases 12AC, 12AD, 12BC, and 12	•	
	C-2g	Guardrail Placement, Weak Post Intersection Desi		
	0 -9	(35' Max. Radius) (Cases 13AC, 13AD, 13BC, and 13BD	•	
	C-2h	Guardrail Placement (Case 14)	3/28/97	
	C-2i	Guardrail Placement (Case 15)	3/28/97	
	C-2j	Guardrail Placement (Cases 16, 17, and 18)	6/12/98	
	C-2k	Guardrail Placement 12'-6" Span (Cases 19a and		
	C-2n	Guardrail Placement 18'-9" Span (Case 20)	7/27/01	
	C-20	Guardrail Placement 25' Span (Case 21)	7/13/01	
	C-2p	Guardrail Placement, Strong Post Intersection	3/28/97	
	о - р	Design (Cases 22AC, 22AD, 22BC, and 22BD)	5, 25, 51	
	C-3	Guardrail Transition Sections	8/10/98	
	C-3a	Guardrail Transition Sections	3/14/97	
	C-3b	Guardrail Transition Sections	3/14/97	2 Sheets
	C-3c	Guardrail Transition Sections	3/28/97	
	C-4	Beam Guardrail Buried Terminal Type 1	7/13/01	
	C-4a	Beam Guardrail Buried Terminal Type 2	7/13/01	
	C-4b	Beam Guardrail Flared Terminal	6/23/00	
	C-4e	Beam Guardrail Non-Flared Terminal	3/17/00	
	C-5	Guardrail Connection to Bridge Rail or Concrete B	arrier 3/14/97	
	C-6	Beam Guardrail Anchor Type 1	5/30/97	2 Sheets
	C-6a	Beam Guardrail Anchor Type 2	3/14/97	
	C-6c	Beam Guardrail Anchor Type 4	1/6/00	
	C-6d	Beam Guardrail Anchor Type 5	5/30/97	
	C-6f	Beam Guardrail Anchor Type 7	7/25/97	
	C-7	Beam Guardrail End Sections	8/10/98	
	C-7a	Thrie Beam End Sections	8/1/97	
	-			

		COIIL	CIILO
Plan No.	Plan Title Public	cation Appro	oval Date
C-8	Concrete Barrier Type 2	8/10/98	2 Sheets
C-8a	Concrete Barrier Type 4 and Transition Section	7/25/97	
C-8b	Concrete Barrier Light Standard Section	7/17/98	2 Sheets
C-8c	Concrete Barrier Type 5	5/30/97	
C-8d	Alternative Temporary Concrete Barrier	7/25/97	
C-8e	Precast Concrete Barrier Anchors	6/24/02	
C-9a	Redirectional Land Form	3/14/97	
C-10	Box Culvert Guardrail Steel Post	7/31/98	2 Sheets
C-11	Cable Barrier	5/30/97	
C-11a	Cable Barrier Placement	2/19/99	
C-11b	Cable Barrier Terminal	9/28/01	2 Sheets
C-12	Impact Attenuator Inertial Barrier Configurations	7/27/01	
C-13	Single Slope Barrier Pre-Cast Type	4/16/99	2 Sheets
C-13a	Single Slope Barrier Pre-Cast Type Transition Section	4/16/99	
C-13b	Single Slope Barrier Pre-Cast Type Single Sided Sectio	n 4/16/99	
C-14a	Single Slope Concrete Barrier (Dual Face)	7/26/02	
C-14b	Concrete Barrier Transition Type 2 to Single Slope	7/26/02	
C-14c	Single Slope Concrete Barrier Terminal	7/26/02	
C-14d	Single Slope Concrete Barrier Transition Section	7/26/02	
C-14e	Single Slope Concrete Barrier (Vertical Back)	7/26/02	
C-14f	Single Slope Concrete Barrier Placement	7/26/02	
C-14g	Single Slope Concrete Barrier Placement	7/26/02	
	ning Walls, Noise Walls, and Slope Protection		0.04
D-1a	Reinforced Concrete Retaining Wall Type 1 and 1 SW	1/23/02	2 Sheets
D-1b	Reinforced Concrete Retaining Wall Type 2 and 2 SW	10/6/99	2 Sheets
D-1c	Reinforced Concrete Retaining Wall Type 3 and 3 SW	10/6/99	2 Sheets
D-1d	Reinforced Concrete Retaining Wall Type 4 and 4 SW	10/6/99	2 Sheets
D-1e	Reinforced Concrete Retaining Wall Type 5 and 5 SW	1/23/02	2 Sheets
D-1f	Reinforced Concrete Retaining Wall Type 6 and 6 SW	10/6/99	2 Sheets
D-2a	Noise Barrier - Type 1	3/14/97	0.04
D-2b	Noise Barrier - Type 2	3/14/97	2 Sheets
D-2c	Noise Barrier - Type 3	3/14/97	2 Sheets
D-2d	Noise Barrier - Type 4	3/14/97	2 Sheets
D-2e	Noise Barrier - Type 5	3/14/97	
D-2f	Noise Barrier - Type 6	3/14/97	
D-2g	Noise Barrier - Type 7	3/14/97	
D-2h	Noise Barrier - Type 8	3/14/97	0.01
D-2i	Noise Barrier - Type 9	3/14/97	2 Sheets
D-2j	Noise Barrier - Type 10	3/14/97	2 Sheets
D-2k	Noise Barrier - Type 11	3/14/97	3 Sheets
D-2I	Noise Barrier - Type 12	3/14/97	2 Sheets
D-2m	Noise Barrier - Type 13	3/14/97	2 Sheets
D-2n	Noise Barrier - Type 14	3/14/97	2 Sheets
D-20	Noise Barrier - Type 15	3/14/97	0.01
D-2p	Noise Barrier - Type 16	3/14/97	2 Sheets
D-2q	Noise Barrier - Type 17	3/14/97	2 Sheets
D-2r	Noise Barrier - Type 18	3/14/97	2 Sheets
D-2s	Noise Barrier - Type 19	3/14/97	2 Sheets

Standard Plans for Road, Bridge, and Municipal Construction - English August 5, 2002

Page 5

Con	iterits			
	Plan No.	Plan Title	Publication Appro	oval Date
	D-2t	Noise Barrier - Type 20	3/14/97	2 Sheets
	D-2u	Access Door - Type 1	3/7/97	2 0//0010
	D-2v	Access Door - Type 2	3/7/97	
	D-2w	Access Door - Type 3	3/7/97	
	D-2x	Access Door - Type 4	3/7/97	
	D-2y	Access Door - Type 5	9/12/97	
	D-3	Permanent Geosynthetic Wall Types 1-6	1/23/02	4 Sheets
	D-4	Backfill and Drainage for Retaining Walls	12/11/98	
	D-6	Gabions	6/19/98	
	D-7	Wire Mesh Slope Protection	10/6/99	
	D-7a	Wire Mesh Slope Protection Anchors	10/6/99	
	D-9	Concrete Slope Protection	12/11/98	2 Sheets
Section E	Bridge	es and Trestles		
Section L	E-1	Date Numerals	7/25/97	
			5/29/98	2 Sheets
	E-2	Pile or Frame Detour Bridge with Asphalt Overlay		2 SHEERS
	E-5	Manhole Ring and Cover for Bridges	5/29/98	
Section F	Curbs	, Approaches, Gutters, and Sidewalks		
	F-1	Cement Concrete Curbs and Gutters	7/18/97	
	F-2	Precast Traffic Curb	8/27/99	
	F-2a	Block Traffic Curb	5/30/97	
	F-2b	Extruded Curb	3/14/97	2 Sheets
	F-3	Cement Concrete Sidewalk and Approach Details	2/9/00	2 Sheets
Section G	Signs	and Sign Supports		
	G-1	Ground Mounted Sign Placement	9/12/01	
	G-2	Sign Bridge	6/4/02	3 Sheets
	G-2a	Sign Bridge Foundations	6/4/02	0 0//0010
	G-3	Cantilever Sign Structures	6/4/02	
	G-3a	Cantilever Sign Structure Foundations	6/4/02	2 Sheets
	G-4a	Roadside Sign Structures on Timber Posts	1/23/02	
	G-4b	Roadside Signs on Laminated Wood Box Posts	8/12/94	
	G-7	Milepost	7/18/97	
	G-8 a	Roadside Sign Structures for Multiple Steel Post S		3 Sheets
	G-8b	Small Steel Sign Support	6/4/02	3 Sheets
	G-9a	Overhead Sign Mounting Details	6/25/02	4 Sheets
	G-9b	Sign Mounting Details	4/2/99	3 Sheets
Section H	Dolino	eators and Miscellaneous Construction		
Jechon H	H-1	Guide Posts	1/10/02	
	H-1a	Guide Post Placement Grade Intersection	4/14/00	
	H-1b	Guide Post Placement for Interchanges	5/5/00	
	H-1c	Guide Post Placement for Horizontal Curves	1/10/02	
	H-1d	Miscellaneous Guide Post Placement	1/10/02	
	H-1e	Guide Post Placement for Bridges	4/14/00	0.04
	H-2	Type 3 Barricade	5/29/02	2 Sheets
	H-3	Raised Pavement Marking Details	4/14/00	

	Plan No.	Plan Title	Publication Approval Date	
	H-3a	Pavement Marking Details	6/23/00 2 Sheets	•
	H-4	Continuous Shoulder Rumble Strips	2/18/00 3 Sheets	
	H-5	Pavement Marking Details	2/18/00	
	H-5a	Pavement Marking Details	2/18/00	
	H-5b	Pavement Marking Details	2/18/00	
	H-5c	Pavement Markings	6/24/02 3 Sheets	3
	H-5d	Raised Pavement Marker Substitution Patterns	4/14/00 2 Sheets	3
	H-6	Survey Monument	1/6/00	
	H-7	Monument Case and Cover	8/10/98	
	H-8	Slope Treatment	9/18/98	
	H-9	Embankment at Bridge Ends	4/18/97	
	H-10	Cement Concrete Stairway Construction Details	5/29/98	
	H-12	Mailbox Installation	5/9/02 3 Sheets	3
	H-13	Type 1 Bollard	7/25/97	
	H-13a	Type 2 Bollard	7/25/97	
	H-14	Survey Stakes	4/23/99 2 Sheets	;
Section I	Roads	side and Site Development		
	I-1	Rest Area Septic Tank	7/18/97	
	I-2	Crest Gage	4/23/99	
	I-3	Automated Ground Water Monitoring Well	8/20/99	
Section J	J Illumii	nation and Signals		
	J-1b	Steel Light Standard Base Details	10/8/99 3 Sheets	3
	J-1c	Slip Base Adaptor for 4-Bolt Light Standard Base	4/24/98	
	J-1e	Light Standards Wiring Details	8/1/97	
	J-1f	Timber Light Standards	6/23/00	
	J-3	Type A, B, and C Service Lighting Details	8/1/97 2 Sheets	
	J-3b	Service Cabinet Type B Modified (0 - 200 Amp Ty 120/240 Single Phase)		;
	J-3c	Service Cabinet Type D (0 - 200 Amp Type 120/2 Single Phase)		
	J-3d	Service Cabinet Type E (0 - 200 Amp Type 240/4 Single Phase)		
	J-5	Pedestrian Pushbutton Details	8/1/97	
	J-6c	Cabinet Foundation Details	4/24/98	
	J-6f	Signal Head Mounting Details Pole and Post Top Mountings	4/24/98	
	J-6g	Signal Head Mounting Details Mast Arm and Spar Wire Mountings	n 8/1/97	
	J-6h	Miscellaneous Signal Details	4/24/98	
	J-7a	Signal Standard Type Designations and Type PPI PS, I, RM, and FB Details		3
	J-7c	Strain Pole Standards Type IV and V	6/19/98	
	J-7d	Span Wire Installation	4/24/98	
	J-8a	Induction Loop Details	8/1/97 2 Sheets	3
	J-9a	Typical Grounding Details	4/24/98	•
	J-10	Electrical Conduit Placement	7/18/97	
	J-11a	Standard Junction Box	9/12/01	

Standard Plans for Road, Bridge, and Municipal Construction - English August 5, 2002

Page 7

	Plan No.	Plan Title P	ublication Appro	oval Date
Section K	Traffic	: Control Plans (For Local Agency Use On	ly)	
	K-1	Traffic Control Plan (one lane detour)	3/7/97	
	K-2	Traffic Control Plan (two lanes, one closed)	3/7/97	
	K-3	Traffic Control Plan (road closed, detour)	3/7/97	
	K-5	Traffic Control Plan (four lanes, one closed)	3/7/97	
	K-7	Traffic Control Plan (four lane divided, one closed)	3/7/97	
	K-8	Traffic Control Plan (multilane, two closed)	3/7/97	
	K-10	Traffic Control Plan (Intersection, right turn only land	e) 3/7/97	
	K-11	Traffic Control Plan (Intersection, left turn lane acce	ss) 3/7/97	
	K-13	Traffic Control Plan (portable barrier around work as	rea) 3/7/97	
	K-16	Traffic Control Plan (two lanes, paving operation)	3/7/97	
	K-17	Traffic Control Plan (four lane, shoulder work)	3/7/97	
	K-18	Traffic Control Plan (urban street, shoulder work)	3/7/97	
Section L	Fence	and Glare Screen		
	L-1	Wire Fence	7/18/97	2 Sheets
	L-2	Chain Link Fence	7/18/97	2 Sheets
	L-3	Chain Link Gates	7/18/97	
	L-5	Glare Screen Type 1	7/31/98	
	L-5a	Glare Screen Type 2	7/31/98	
	L-6	Access Control Gate	7/25/97	

PLAN VIEW

TIE BAR, #5 BAR × 32" ON 36" CENTERS

LONGITUDINAL CONTRACTION JOINT SECTION VIEW

PCCP TO ACP LONGITUDINAL JOINT SECTION VIEW

TRANSVERSE CONSTRUCTION JOINT SECTION VIEW

SECTION VIEW

CEMENT CONCRETE PAVEMENT JOINTS STANDARD PLAN A-1

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

DI/2002 DELETED PLAIN JOINT LAYOUT PLAN;
DELETED CURB/BARRIER JOINT SECTION;
REVISED CONSTRUCTION JOINT GROOVE DEPTHS

DATE

REVISION

APPROVED FOR PUBLICATION

Harold J. Peterfeso

05-13-02

STATE DESIGN ENGINEER DATE

Washington State Department of Transportation

SKEW ANGLE

AP4 \(\psi #5 \ \@ 1'-6" \)

AP3 #5 @ 10"

BACK OF PAVEMENT SEAT

€ ROADWAY

AP6 ₹#5 TOP

2 AP5 \₩#5

TOP воттом

LONGITUDINAL CRACK CONTROL JOINT.

FROM TOP OF SLAB.

- 1. ALL EDGES OF APPROACH SLAB SHALL HAVE 1/2" RADIUS.
- 2. LONGITUDINAL JOINTS SHALL BE PLACED ON LANE LINES AND SHALL BE CONSTRUCTED AND SEALED IN ACCORDANCE WITH STD. SPEC. SECTION 5-05.3(8). JOINTS MAY BE EITHER A SAW CUT CRACK CONTROL JOINT OR A CONSTRUCTION JOINT. SAWCUT JOINTS SHALL TERMINATE 1'-O" BEFORE REACHING EDGE OF SLAB AND MUST BE SAW CUT AS SOON AS POSSIBLE AFTER PLACEMENT OF CONCRETE.
- (A) APPROACH SLABS LESS THAN 40' WIDE NO JOINT IS REQUIRED.
- (B) APPROACH SLABS WIDER THAN 40' ONE OR MORE JOINTS ARE REQUIRED TO DIVIDE THE SLAB INTO APPROXIMATELY 24' WIDE SECTIONS.

TYPICAL PCC ROADWAY

DOWEL BAR DETAIL

INSERT DOWELS PARALLEL TO CENTER LINE ALONG TRANSVERSE CONSTRUCTION JOINT.

TYPICAL LONGITUDINAL CRACK CONTROL JOINT DETAIL

1 1/2" Ø X 1'-6" DOWEL Ø 1'-0" o.c.

25'-O" APPROACH SLAB ROADWAY BRIDGE AP4 ♥ #5 TOP - 16 SPACES @ ABOUT 1'-6" = 24'-2" 2" CLR. (TYP) #5 BOT. - 29 SPACES @ 10" = 24'-2" AP2 \#6 @ 5" SEE SHEET 2 FOR ANCHOR DETAILS AP5 \₩#5 AP1 #8 @ 5" ALTERNATE API BARS END TO END. CRUSHED SURFACING BASE COURSE SEE DOWEL BAR DETAIL CANT HOOKS TO PROVIDE 4" CLEAR O.2' MIN COMPACTED DEPTH

AP4 \\ #5 @ 1'-6"

AP3 #5 @ 10"

PLAN

APPROACH SLAB

1'-0"

LONGITUDINAL SECTION

BAR LIST FOR STANDARD	10. X 25. AF	P. SLAE	QUAN	IIIY MODULE	APPROXIMATE QUANTITIES (PER SY) FOR SLAB (BASED ON	N QUANTITY MODULE
LOCATION	MARK #	SIZE	NO.	LENGTH	SLAB EPOXY COATED REINFORCING BARS (TOP MAT)	38.52 LBS/SY
LONGITUDINAL BOTTOM	AP1	8	24	25'-7"	SLAB REINFORCING BARS (BOTTOM MAT)	72.38 LBS/SY
LONGITUDINAL TOP	AP2	V 6	24	24'-8"	CONCRETE (CU. YDS.)	0.361 CY/SY
TRANSVERSE BOTTOM	AP3	5	30	9'-8"	APPROACH ANCHORS AND PCC ROADWAY DOWELS	AS REQUIRED
TRANSVERSE TOP	AP4	₹5	17	9'-8"	10 - AP6 ♥#5 (IF REQUIRED)	105 LBS.
TRANSVERSE END BAR	AP5	₹5	2	9'-8"		
AP1 (N THIS SHEET	SE.				

TYPICAL LONGITUDINAL CONSTRUCTION JOINT EDGE FIRST POUR ONLY WITH 1/8" RADIUS.

BRIDGE APPROACH SLAB STANDARD PLAN A-2

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

05-09-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE AT THE WASHINGTON STATE DEP

SEMI-INTEGRAL TYPE ABUTMENT

APPROACH ANCHOR - METHOD A SEMI-INTEGRAL TYPE ONLY

COMPRESSION SEAL DETAIL

APPROACH ANCHOR - METHOD B

SEMI-INTEGRAL TYPE ONLY

ANCHOR HEAD DETAIL

L TYPE ABUTMENT

L TYPE ABUTMENT ANCHOR DETAIL

BRIDGE APPROACH SLAB

STANDARD PLAN A-2

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

05-09-02 STATE DESIGN ENGINEER ington State Department of Transportation

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

ASPHALT CONCRETE PAVEMENT (Diaphragm cast on structure) NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

CORRECTED TAPER LENGTH FROM 40" TO 40'. DATE REVISION

TRANSITION FROM CONCRETE OVERLAY STANDARD PLAN A-3

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 05-30-02

ASPHALT CONCRETE PAVEMENT (L-Type Abutment)

CASE 4 ASPHALT CONCRETE PAVEMENT

ASPHALT CONCRETE PAVEMENT (ACP was on bridge and/or roadway grade slopes up from bridge)

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Plane a taper into the existing pavement and shoulders (if paved). Depth shall taper from 0" at the beginning of pavement, to 1" at end of taper. Does not apply when exisitng pavement has been planed.
- 2. Before placing overlay, remove top 2" of existing joint filler, or 3" if existing joint is fiberboard, and block out the joint. After overlay, install new premolded joint filler. Top of joint filler shall be between $\frac{3}{6}$ " and $\frac{3}{6}$ " below overlay. When a compression seal is in place, see Bridge Plans.
- 3. Before placing overlay, block out the joint. After overlay, install premolded joint filler or rubberized asphalt filler. Top of joint filler shall be between $\frac{3}{6}$ and $\frac{3}{8}$ below overlay.
- 4. Full depth sawed grooves between $\frac{1}{8}$ and $\frac{1}{4}$ wide shall be placed directly over the existing sawed grooves in the cement concrete pavement and cement concrete shoulders.
- 5. Cement concrete shoulders shall be overlaid with cement concrete. Asphalt concrete shoulders shall be overlaid with asphalt concrete.

TRANSITION FROM CONCRETE OVERLAY STANDARD PLAN A-3

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 05-30-02

STATE DESIGN ENGINEER Washington State Department of Transportation

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

CORRECTED TAPER LENGTH FROM 40" TO 40".

REVISION

DATE

4a, 5, or 5a, as specified in the contract. 2. Catch basin or grate inlet shall be located between quardrail posts.

1. Curb shall be Extruded Curb Type 1, 2, 4,

INLET PLACEMENT AT BRIDGE END

FRAME AND VANED GRATE

RECTANGULAR ADJUSTMENT SECTION

PRECAST BASE SECTION

NOTES

- As an acceptable alternate to rebar, wire mesh having a minimum area of 0.12 square inches per foot may be used. Wire mesh shall not be placed in knockouts.
- 2. The knockout diameter shall not be greater than 20". Knockouts shall have a wall thickness of 2" minimum to 2.5" maximum. Provide a 1.5" minimum gap between the knockout wall and the outside of the pipe. After the pipe is installed, fill the gap with joint mortar in accordance with Std. Spec. 9-04.3.
- 3. The maximum depth from the finished grade to the pipe invert shall be 5'.
- 4. Frame and grate may be installed with flange down or cast into adjustment section.
- 5. The precast base section may have a rounded floor and the walls may be sloped at a rate of 1:24 or steeper.
- 6. Opening shall be measured at the top of the precast base section.

PIPE ALLOWANCES							
PIPE MATERIAL	MAXIMUM INSIDE DIAMETER						
REINFORCED OR PLAIN CONCRETE	12"						
ALL METAL PIPE	15"						
CPSSP * (Std. Spec. 9-05.20)	12"						
SOLID WALL PVC (Std. Spec. 9-05.12(1))	15"						
PROFILE WALL PVC (Std. Spec. 9-05.12(2))	15"						

^{*} CORRUGATED POLYETHYLENE STORM SEWER PIPE

CATCH BASIN TYPE 1 STANDARD PLAN B-1

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

ADDED PIPE ALLOWANCES TABLE

_____ Cliffor

APPROVED FOR PUBLICATION

Clifford E. Mansfield

Washington State Department of Transportation

07-31-01

ECTIVE DATE AUGUST REVISION 200

FRAME AND VANED GRATE

2002 TO APRIL 6, 2003

REDUCING SECTION

* CORRUGATED POLYETHYLENE STORM SEWER PIPE

NOTES

- 1. As an acceptable alternate to rebar, wire mesh having a minimum area of 0.12 square inches per foot may be used. Wire mesh shall not be placed in knockouts.
- 2. The knockout diameter shall not be greater than 26". Knockouts shall have a wall thickness of 2" minimum to 2.5" maximum. Provide a 1.5" minimum gap between the knockout wall and the outside of the pipe. After the pipe is installed, fill the gap with joint mortar in accordance with Std. Spec. 9-04.3.
- 3. The maximum depth from the finished grade to the pipe invert shall be 5'.
- 4. Frame and grate may be installed with flange down or cast into adjustment section.
- 5. The precast base section may have a rounded floor and the walls may be sloped at a rate of 1:24 or steeper.
- Opening shall be measured at the top of the precast base section.

PRECAST BASE SECTION

CATCH BASIN TYPE 1L STANDARD PLAN B-1a

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

APPROVED FOR PUBLICATION

Clifford E. Mansfield

STATE DESIGN ENGINEER

Washington State Department of Transport

07-31-01

7/01 ADDED PIPE ALLOWANCES TABLE

FRAME AND VANED GRATE

RECTANGULAR ADJUSTMENT SECTION

EFFECTIVE: NOTES GUST 5, 2002 TO APRIL 6, 2003

- As an acceptable alternate to rebar, wire mesh having a minimum area of 0.12 square inches per foot may be used. Wire mesh shall not be placed in knockouts.
- The knockout diameter shall not be greater than 16". Knockouts shall have a wall thickness of 2" minimum to 2½" maximum.
- The maximum depth from the finished grade to the pipe invert shall be 5'.
- Frame and grate may be installed with flange down or cast into adjustment section.
- 5. The precast base section may have a rounded floor and the walls may be sloped at a rate of 1:24 or steeper.
- Openings shall be measured at the top of the precast base section.

CATCH BASIN TYPE 1P PARKING LOT C. B.

B-1b 10

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003-07-97

NOTES

- 1. No steps are required when height is 4' or less.
- 2. The bottom of the precast catch basin may be sloped to facilitate cleaning.
- 3. Frame and grate may be installed with flange down or cast into adjustment section.
- 4. Knockouts shall have a wall thickness of 2" minimum to 2.5" maximum. Provide a 1.5" minimum gap between the knockout wall and the outside of the pipe. After the pipe is installed, fill the gap with joint mortar in accordance with Std. Spec. 9-04.3.

CATCH BASIN DIMENSIONS								
CATCH BASIN	WALL THICKNESS	BASE THICKNESS	MAXIMUM KNOCKOUT	MINIMUM DISTANCE BETWEEN	BASE REINFORCING STEEL in ² /ft IN EACH DIRECTION			
DIAMETER	11110141200	11110141200	SIZE KNOCKOUTS	INTEGRAL	SEPARATE			
48"	4"	6"	36"	8"	0.15	0.23		
54"	4.5"	8"	42"	8"	0.19	0.19		
60"	5"	8"	48"	8"	0.25	0.25		
72"	6"	8"	60"	12"	0.24	0.35		
96"	8"	12"	84"	12"	0.29	0.39		

PIPE ALLOWANCES								
CATCH	PIPE I	MATERIAL WI	TH MAXIMUM	INSIDE DIAM	ETER			
BASIN DIAMETER	CONCRETE	ALL METAL	CPSSP	SOLID WALL PVC ②	PROFILE WALL PVC 3			
48"	24"	30"	24"	27"	30"			
54"	30"	36"	30"	27"	36"			
60"	36"	42"	36"	36"	42"			
72"	42"	54"	42"	36"	48"			
96"	60"	72"	60"	36"	48"			

① CORRUGATED POLYETHYLENE STORM SEWER PIPE (Std. Spec. 9-05.20)

DATE

- ② (Std. Spec. 9-05.12(1))
- ③ (Std. Spec. 9-05.12(2))

CATCH BASIN TYPE 2 STANDARD PLAN B-1e

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 01-28-02

Washington State Department of Transportation

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

REVISION

ADDED PIPE ALLOWANCES TABLE

2 1/2" DIAM. HOLE

В

8 LEVELING PADS

2" x 1 1/8" x 1/8"

3. Refer to Standard Specification 9-05.15(2) for additional requirements.

SLOT DETAIL

4. For frame details, see Standard Plan B-2a.

SOLID METAL COVER FOR CATCH BASIN

STANDARD PLAN B-2

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-17-02

DELETED DETAIL "D"; ADDED SLOT DETAIL; REVISED NOTES.

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

4 3/4"

24"

PLAN

1 1/2"

SECTION (A)

39" R (SEE NOTE 2)

DATE REVISION

SEE SLOT DETAIL & NOTE 1

SECTION (C)

29 1/4"

APRIL 6, 2003

2002

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. This frame is designed to accommodate 20" × 24" grates or covers as shown on Standard Plans B-2, B-2b, B-2c and B-2d.
- 2. When bolt down grates or covers are specified in the Contract, provide two holes in the frame that are vertically aligned with the grate or cover slots. Tap each hole to accept a 5/8" × - 11 NC × 2" allen head cap screw. Location of bolt down holes varies among different manufacturers
- 3. Refer to Standard Specification 9-05.15(2) for additional requirements.

DATE

DETAIL "A"

REVERSIBLE FRAME FOR CATCH BASIN OR CONCRETE INLET STANDARD PLAN B-2a

SHEET 1 OF 1 SHEET

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED APPROVED FOR PUBLICATION Harold J. Peterfeso 06-17-02 STATE DESIGN ENGINEER DELETED GRATE; ADDED BOLT DOWN DETAIL; REVISED NOTES

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

REVISION

- 2. Refer to Standard Specification 9-05.15(2) for additional requirements.
- 3. For frame details, see Standard Plan B-2a.

VANED GRATE FOR CATCH BASIN AND CONCRETE INLET STANDARD PLAN B-2b

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-17-02

SECTION (A)

2002

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

DELETED VANE DETAIL; ADDED SLOT DETAIL; REVISED NOTES.

REVISION

DATE

BI-DIRECTIONAL VANED GRATE FOR CATCH BASIN AND INLET STANDARD PLAN B-2c

SHEET 1 OF 1 SHEET

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED APPROVED FOR PUBLICATION

Harold J. Peterfeso

06-17-02

2002 TO

1. When bolt down grates are specified in the Contract, provide two slots of bolt down slots varies among different manufacturers.

3. For frame details, see Standard Plan B-2a.

EXPIRES JULY I, 2003

DELETED VANE DETAIL; ADDED SLOT DETAIL; REVISED NOTES.

REVISION

DATE

2002

3. For frame details, see Standard Plan B-2a.

4. The thickness of the grate shall not exceed 1 5/8".

HERRINGBONE GRATE FOR CATCH BASIN AND INLET STANDARD PLAN B-2d

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

06-17-02

Harold J. Peterfeso

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

ELBOW DETAIL

LIFT HANDLE

NOTES

- 1. The pipe supports and the restrictor/separator shall be constructed of the same material and be anchored at a maximum spacing of 36". Attach the pipe supports to the manhole with 5/8" stainless steel expansion bolts or embed the supports into the manhole wall 2".
- 2. The vertical riser stem of the restrictor/separator shall be the same diameter as the horizontal outlet pipe with a minimum diameter of 8".
- 3. The flow restrictor/separator shall be fabricated from one of the following materials:
 - 0.060" Corrugated Aluminum Alloy Drain Pipe
 - 0.064" Corrugated Galvanized Steel Drain Pipe with Treatment 1
 - 0.064" Corrugated Aluminized Steel Drain Pipe
 - 0.060" Aluminum alloy flat sheet, in accordance with ASTM B 209M, 5052 H32 or EPS
 - High Density Polyethylene Storm Sewer Pipe
- 4. The frame and ladder or steps are to be offset so that: the shear gate is visible from the top; the climb-down space is clear of the riser and gate; the frame is clear of the curb.
- 5. The multi-orifice elbows may be located as shown, or all placed on one side of the riser to assure ladder clearance. The size of the elbows and their placement shall be specified in the Contract.
- 6. Restrictor plate with orifice as specified in the Contract. Omit plate if for oil pollution control only. The opening is to be cut round and smooth.
- 7. The shear gate shall be made of aluminum alloy in accordance with ASTM B 26M and ASTM B 275, designation ZG32A; or cast iron in accordance with ASTM A 48, Class 30B.
 - The lift handle shall be made of a similar metal to the gate (to prevent galvanic corrosion), it may be of solid rod or hollow tubing, with adjustable hook as required.
 - A neoprene rubber gasket is required between the riser mounting flange and the gate flange.
 - Install the gate so that the level-line mark is level when the gate is closed.
 - The mating surfaces of the lid and the body shall be machined for proper fit.
 - All shear gate bolts shall be stainless steel.
- 8. The shear gate maximum opening shall be controlled by limited hinge movement, a stop tab, or some other device.
- 9. Alternate shear gate designs are acceptable, if material specifications are met and flange bolt pattern matches.

PRI

CATCH BASIN TYPE 2 WITH FLOW RESTRICTOR **-OIL SEPARATOR** STANDARD PLAN B-3

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION Harold J. Peterfeso 01-28-02

5, 2002 TO APRIL 6, 2003

Steps or Ladder

- 1. See Contract for size and location of all pipes and orifices.
- 2. Baffle wall shall have #4 Bar at 12" spacing each way.
- . Precast baffle shall be keyed and grouted in place.
- 4. Bottom orifice plate shall be galvanized steel with a minimum thickness of 1/4". Attach orifice with 1/2" stainless steel bolts. Orifice plate is not required when only oil separation is desired.
- Upper flow orifice shall be aluminum, aluminized steel or galvanized steel. Galvanized steel shall have treatment 1.

SECTION B-B

CATCH BASIN TYPE 2
WITH BAFFLE TYPE FLOW
RESTRICTOR-OIL SEPARATOR

-3a

5-3a 10

EFFECTIVE: AUGUST 5, 2002ELEVALIDARIL 6, 2003

SECTION A-A

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 -09-97

See ELBOW DETAIL

5, 2002 TO APRIL 6, 2003

AUGUST

EFFECTIVE:

GRATE INLET TYPE 2

B-4c 05-09-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL Sheet 1 of 2 Sheets

GRATE SUPPORT

(Two required per grate)
EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECNPIESE: AUGUST 5, 2002 TO APRIL 6, 2003

- Angles shall be set so that each bearing bar on the grate shall have full seating on both ends. The finished top of concrete shall be even with the grate surface.
 - 2. Top of inlet shall be placed at ground level to present an unobstructed ditch or median section.
 - 3. Bevel or round exposed concrete edges $\frac{1}{2}$.
 - 4. Pipes may enter through the knockouts at any reasonable angle provided the outside of the pipe can be contained within the knockout provided.
 - The grade line of the lowest inlet pipe shall enter the structure at an elevation equal to or higher than the grade line of the outlet pipe.
 - 6. Precast inlet shall be marked with manufacturer's identification inside the structure in some readily accessible location.
 - Inside wall taper for form removal shall not result in any wall section thinner than 6" except in pipe knockout areas.
 - 8. Amount, type and grade of reinforcing steel is the responsibility of the manufacturer. The manufacturer is responsible for the structure until final acceptance in place with all required knockouts removed.

DIKE INSTALLATION FOR PREFERRED SLOPE

*See Contract For Backslope Details

DROP INLET TYPE 1

B-4f

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003 -09-97

-⊊ Ditch

10' - 0"

B≪

B₩

PLAN

ELEVATION

Steel angle

4" × 3" × 1/2" × 351/4"

4" × 3" × 3/8"

END VIEW

Steel plate (tack weld to angle)

51/2" × 11/2" × 1/4" Steel plate or $\frac{1}{2}$ " DIA × 4" stud

EFFECTIVE: AUG (Two required per grate) APRIL 6

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Angles shall be set so that each bearing bar on the grate shall have full seating on both ends. The finished top of concrete shall be even with the grate surface.
- 2. Top of inlet shall be placed at around level to present an unobstructed ditch or median section.
- 3. Bevel or round exposed concrete edges $\frac{1}{2}$.
- 4. Pipes may enter through the knockouts at any reasonable angle provided the outside of the pipe can be contained within the knockout provided.
- 5. The grade line of the lowest inlet pipe shall enter the structure at an elevation equal to or higher than the grade line of the outlet pipe.
- 6. Precast inlet shall be marked with the manufacturer's identification inside the structure in some readily accessible location.
- 7. Inside wall taper for form removal shall not result in any wall section thinner than 6" except in pipe knockout areas.
- 8. Amount, type and grade of reinforcing steel is the responsibility of the manufacturer. The manufacturer is responsible for the structure until final acceptance in place with all required knockouts removed.

DROP INLET TYPE 2

B-4g 1 of 1
EFFECTIVE: AUGUST 5. 2002 TO APRIL 6 2007-18-97

APRIL

2002

r,

AUGUST

THERMOPLASTIC PIPE

4:1 OR STEEPER

END SECTION LENGTH SHALL BE AT LEAST SIX TIMES THE DIAMETER OF THE PIPE (SEE STD. SPEC. 7-02.3(1))

CONCRETE PIPE

— 4" MAX.

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

05/2002 REVISED MAX. SLOPE AND MIN. LENGTH FOR METAL PIPE, REV. NOTES. ADDED MAX. PIPE SIZE RG

DATE REVISION BY

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-17-02
STATE DESIGN ENGINEER DATE

SHEET 1 OF 1 SHEET

BEVELED END SECTIONS
FOR CULVERTS
30" DIAMETER OR LESS
STANDARD PLAN B-7a

METAL PIPE

EFFECTIVE: ALIGUST 5, 2002 TO APRIL 6, 2003

		ECTIVE:	AUGUSI	<u> </u>			
	ALLOWABLE	HEIGHTS OF C	OVER IN FEET	,			
CDAN	DICE	METAL THICKNESS					
SPAN	RISE	12 GAGE	10 GAGE	8 GAGE			
12' - 2''	11'- 0''	3 - 14	3 - 20	3 - 26			
12' - 11"	11'- 3''	3 - 13	3 - 19	3 - 25			
13' - 2''	11'- 11''	4 - 13	4 - 19	4 - 24			
13' - 10''	12'- 3"	4 - 12	4 - 18	4 - 23			
14' - 1"	12'- 10''	4 - 12	4 - 18	4 - 23			
14' - 6''	13' - 6"	4 - 11	4 - 17	4 - 22			
14' - 10''	14'- 0"	4 - 11	4 - 17	4 - 21			
15' - 6''	14'- 4"	4 - 11	4 - 16	4 - 20			
15' - 9''	15' - 1"		4 - 16	4 - 20			
16' - 4''	15'- 5"	1	4 - 15	4 - 19			
16'- 5"	16'- 1"	1	4 - 15	4 - 19			
16' - 9''	16'- 3"	1	4 - 15	4 - 19			
17' - 3''	17'- 0"	1	4 - 14	4 - 18			
18' - 4''	16' - 11''		4 - 13	4 - 18			
19' - 2''	17'- 2"		-	4 - 17			
19' - 6''	17' - 7''	-	-	4 - 17			
20' - 4''	17'- 10''	-	-	4 - 16			

CORRUGATED METAL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Span and rise dimensions are measured to the inside crests of corrugations and may vary slightly depending on manufacturer.

STRUCTURAL PLATE UNDERPASS DESIGN 2

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. The variable dimension indicated for the height of step for step mitered pipes shall conform to manufacturers recommendations unless specified differently on the plans or in the special provisions.
- 2. Reinforcing steel shall have $1\frac{1}{2}$ " clear cover to all concrete surfaces.
- 3. Headwalls for concrete culvert pipe may omit anchor bolt attachment.
- 4. When steel pipe safety bars ar used, headwall thickness shall be increased to 8".

STRUCTURAL PLATE PIPE ARCHES AND UNDERPASSES

STEP MITERED PIPE

PIPES AND STRUCTURAL PLATE PIPES

HEADWALLS FOR CULVERT PIPES

ANCHOR BOLT DETAILS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-09-97

2. Spacing between safety bars, or between bars and the culvert crown shall be equal spaces of 30" maximum.

FRONT VIEW OF CROSS ROAD CULVERT

6

APRIL

- * D = Inside DIA of culvert
- ** Slope to match side slope, 6:1 preferred, not steeper than 4:1

SECTION B-B

TYPE 2 SAFETY BARS FOR CULVERT PIPE OR PIPE ARCH (ON CROSS ROAD)

on 6" centers MAX

EFFECTIVE: ANOTES ST 5, 2002 TO APRIL 6, 2003

- 1. All pipes or pipe arches attach as shown on connector details.
- 2. When required, toe plate extension shall be the same gage end section. Dimensions shall be 8" high and 6" less than overall width.
- 3. Cross drainage bar and safety bars shall be 3" Schedule 40 galvanized steel pipe. Bars shall be placed a maximum 30" apart.
- 4. Slotted holes for safety bar attachment shall be provided on end sections.
- 5. Number of safety bars required will vary depending upon the length of the end section.

	METAL END SECTIONS FOR CIRCULAR PIPES											
Pipe DIA	Mini Thick	Dimensions (Inches)				L Dimensions						
(Inches)	Inches	Gage	Δ	Н	W	Overall Width	Slope	Length (Inches)	Slope	Length (Inches)		
36	.109	12	12	9	42	66	4:1	104	6:1	156		
42	.109	12	16	12	48	80	4:1	128	6:1	192		
48	.109	12	16	12	54	86	4:1	152	6:1	228		
54	.109	12	16	12	60	92	4:1	176	6:1	264		
60	.109	12	16	12	66	98	4:1	200	6:1	300		
60	.109	12	16	12	66	98	4:1	200	6:1	300		

* Safety Bars are installed on end section when span is greater than 36"

					META	L EN	ID SE	CTIC	INS FOR	ARCHED PIPES			
	Equiv. DIA	Inches		Minimum Thickness		Dimensions (Inches)				L Dimensions			
((Inches)	Span	Rise	Inches	Gage	Δ	н	W	Overall Width		Length (Inches)	Slope	Length (Inchesi
	30	* 35	24	.079	14	12	9	*41	65	4:1	56	6:1	84
	36	42	29	.109	12	12	9	48	72	4:1	76	6:1	114
	42	49	33	.109	12	16	12	55	87	4:1	92	6:1	138
	48	57	38	.109	12	16	12	63	95	4:1	112	6:1	168
	54	64	43	.109	12	16	12	70	102	4:1	132	6:1	198
	60	71	47	.109	12	16	12	77	109	4:1	148	6:1	222 <
	72	83	57	.109	12	16	12	89	121	4:1	188	6:1	282

TAPERED END SECTION WITH TYPE 3 SAFETY BARS

CONNECTOR DETAILS

APRIL

Optional toe plate

extension 6" less than overall width

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 Reinforced edge full length of end section See Section A-A -Slope Safety bars (TYP) See Note 2 Edge of end section -SIDE VIEW sheet rolled snugly against steel rod Galvanized steel rod 1/6" DIA MIN (Approximately) or No. 4 galvanized reinforcing bar SECTION A-A

9

AUGUST

EFFECTIVE: ANGUST 5, 2002 TO APRIL 6, 2003

- 1. Connection is a $\frac{1}{2}$ DIA threaded rod over top of end section; side lugs and bolted to end section. On 15" through 24" pipe, an alternative may be a 1" wide strap 16 gage or 12 gage galvanized steel, fastened with $a \frac{1}{2}$ DIA, 6" long galvanized bolt and sauare head nut.
- 2. Number of safety bars required will vary depending upon the length of the end section.

METAL END SECTIONS FOR CIRCULAR PIPES												
Pipe DIA	mum ness	Dim∈	ensid	ons '	(Inches)		L Dime	ensions	6			
(Inches)	Inches	Gage	Δ	Н	W	Overall Width	Slope	Length (Inches)	Slope	Length (Inches)		
15	.064	16	8	6	21	37	4:1	20	6:1	30		
18	.064	16	8	6	24	40	4:1	32	6:1	48		
21	.064	16	8	6	27	43	4:1	44	6:1	66		
24	.064	16	8	6	30	46	4:1	56	6:1	84		
30	.109	12	12	9	36	60	4:1	80	6:1	120		
36	.109	12	12	9	42	66	4:1	104	6:1	156		
42	.109	12	16	12	48	80	4:1	128	6:1	192		
48	.109	12	16	12	54	86	4:1	152	6:1	228		
54	.109	12	16	12	60	92	4:1	176	6:1	264		
60	.109	12	16	12	66	98	4:1	200	6:1	300		

										•		
				METAL	. EN[) SE	CTIO	NS FOR A	RCHED	PIPES		2
Equiv.	Inches		Minimum Thickness		Dime	Dimensions (Inches)			L Dimensions			5 02
(Inches)	Span	Rise	Inches	Cage	А	Η	w	Overall Width	Slope	Length (Inches)	Slope	Length (Inches)
18	21	15	.064	16	8	6	27	43	4:1	20	6:1	30
21	24	18	.064	16	8	6	30	46	4:1	32	6:1	48
24	28	20	.064	16	8	6	34	50	4:1	40	6:1	60 V
30	35	24	.079	14	12	9	41	65	4:1	56	6:1	84
36	42	29	.109	12	12	9	48	72	4:1	76	6:1	114
42	49	33	.109	12	16	12	55	87	4:1	92	6:1	138
48	57	38	.109	12	16	12	63	95	4:1	112	6:1	168
54	64	43	.109	12	16	12	70	102	4:1	132	6:1	198 <
60	71	47	.109	12	16	12	77	109	4:1	148	6:1	222
72	83	57	.109	12	16	12	89	121	4:1	188	6:1	282

then bend outside 4" to match end section sides

SAFETY BAR END TREATMENT DETAIL

TAPERED END SECTION WITH TYPE 4 SAFETY BARS

(ON CROSS ROAD)

CONCRETE AND DUCTILE IRON PIPE

THERMOPLASTIC PIPE

METAL PIPE

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. See Standard Specifications Section 7-08.3(3) for Pipe Zone Backfill.
- 2. See Standard Specifications Section 9-03.12(3) for Gravel Backfill for Pipe Zone Bedding
- See Standard Specifications Section 2-09.4 for Measurement of Trench Width.
- 4. For sanitary sewer installation, concrete pipe shall be bedded to spring line.

PIPE ARCHES

CLEARANCE BETWEEN PIPES FOR MULTIPLE INSTALLATIONS										
PIPE	SIZE	MINIMUM DISTANCE BETWEEN BARRELS								
CIRCULAR PIPE (DIAMETER)	12" to 24" 30" to 96" 102" to 180"	12" DIAM. /2 48"								
PIPE ARCH METAL ONLY (SPAN)	18" to 36" 43" to 142" 148" to 200"	12" SPAN /3 48"								

FFECTIVE

07-31-01

PIPE ZONE BEDDING AND BACKFILL STANDARD PLAN B-11

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

DELETED "Bedding material for thermoplastic pipe"

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DAND ANGLE CONNECTOR DETAIL		
	& 6" Bolt (TYP)	
TYPE K BAND ANGLE CONNECTOR DETAIL	TYPE K DOUBLE BAR AND STRAP CONNECTOR DETAIL	NOTE: THIS PLAN IS NO THE ORIGINAL, SIGNED B AT THE WASHINGTON ST. UPON REQUEST.

	(All dimensions are in inches)										
1	ND PE	CORRUGATION PITCH DEPTH	PIPE DIA	MIN	GASKET TYPE						
	D	$2\frac{7}{3} \times \frac{1}{2}$ OR 3×1 REFORMED TO $2\frac{7}{3} \times \frac{1}{2}$ 3×1 REFORMED TO	12-84	12	SLEEVE						
STEEL		2 ² / ₃ × 1/ ₂	90-144	24	SLEEVE						
ST	F	$2\frac{2}{3} \times \frac{1}{2}$ OR 3×1 REFORMED TO		1/							
	J	$2\frac{2}{3} \times \frac{1}{2}$ $2\frac{2}{3} \times \frac{1}{2}$	12-84	23/4	O-RING BUTYL						
	K	2 ² / ₃ × ¹ / ₂	12-48 54-84	12 24							
		*3 × 1	54-144	24	SLEEVE						
ALUMINUM	D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12-72 36-60	12							
MI		2 ² / ₃ × 1/ ₂	66-108	24	SLEEVE						
ALL	F	2 ² / ₃ × 1/ ₂	12-48	101/2	O-RING						
	K	2 ² / ₃ × 1/ ₂	12-48 54-84	12 24							
		*3 × 1	54-96	24	SLEEVE						

COUPLING BAND DIMENSION TABLE

*PIPE ARCH ONLY

COUPLING BANDS FOR CORRUGATED METAL PIPE STANDARD PLAN B-13

APPROVED FOR PUBLICATION

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

DATE

DEPUTY STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

OLYMPIA, WASHINGTON

5, 2002 TO APRIL 6, 2003

DUCTILE IRON DROP CONNECTION

CONCRETE ENCASED DROP CONNECTION

DROP CONNECTION

FOR SANITARY SEWERS

ELEVATION

SECTION A-A

VERTICAL CONNECTION

B-18a 1 of 1

2002 TO APRIL 6, 2003

CAST IRON RING AND COVER

B-18b 1 of 1

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Valve

box

PLAN

-Water main

Two 3/4" DIA tie rods

- 1. Steel tie rods to be heavily coated with asphalt after installation.
- 2. Restrained joints may be substituted for tie rods.
- 3. Surface of ground within 36" of hydrant shall be smooth.

PLAN

ELEVATION

TYPE A

ELEVATION

TYPE B

HYDRANT SETTING TYPES A AND B

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

ELEVATION

RESIDENTIAL SIDEWALK DRAIN

B-20d 1 of 1

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

4. Locate blowoff outlet near property

2 INCH BLOWOFF **ASSEMBLY**

ELEVATION

- Size of combination air release/air vacuum valve shall be specified in the Contract. Piping and valves shall be the same size as the combination air release/air vacuum valve.
- 2. Locate at the high point of the main, tap top of main.

COMBINATION AIR RELEASE/ AIR VACUUM VALVE ASSEMBLY STANDARD PLAN B-21a

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

DELETED NOTES 3 & 4

APPROVED FOR PUBLICATION

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

- 8/10/98 DATE

BLOCKING FOR 11.25° OR 22.5° VERTICAL BENDS

BLOCKING FOR 45° VERTICAL BENDS

DIMENSION TABLE												
PIPE DIA	TEST PRESSURE PSI	BEND ANGLE	CONCRETE VOLUME F+3	CUBE SIZE F†	TIE ROD DIA	TIE ROD EMBEDMENT						
4′′	250	11.25° 22.5° 45°	6 12 22	1.8 2.3 2.8	5/8′′	17''						
6′′	250	11.25° 22.5° 45°	14 27 50	2.4 3.0 3.7	5/8′′	17''						
8′′	250	11.25° 22.5° 45°	25 48 89	2.9 3.6 4.5	5⁄8′′	17''						
10''	250	11.25° 22.5° 45°	38 75 139	3.4 4.2 5.2	5/8′′	17''						
12''	250	11.25° 22.5° 45°	55 108 200	3.8 4.8 5.8	5/8′′	17'' 24''						
14"	250	11.25° 22.5° 45°	75 147 272	4.2 5.3 6.5	7/8'' 5/8'' 3/4'' 1''	17" 20" 27"						
16′′	250	11.25° 22.5° 45°	98 192 355	4.6 5.8 7.1	5/8'' 1/8'' 1 1/8''	17'' 24'' 30''						

CONCRETE BLOCKING FOR CONVEX VERTICAL BENDS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

PLUGGED CROSS (Use column B)

PLUGGED CROSS (Use column A)

PLUGGED TEE (Use column B)

VALVE (Use column A)

BEND

EFFECTIVE AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Contractor to provide blocking adequate to withstand full test pressure.
- 2. Divide thrust by safe bearing load to determine required area (in square feef) of concrete to distribute load.
- 3. Areas to be adjusted for other pressure conditions.
- Provide two $1^{\prime\prime}$ minimum diameter rods on valves up through $10^{\prime\prime}$ diameter. Valves larger than $10^{\prime\prime}$ require special tie rod design.

		Thr	Thrust at Fittings in Pounds						
		Α	В	С	D	E			
Size	Test Pressure PSI	Tee and Dead Ends	90° Bend	45° Bend	22.5° Bend	11.25° Bend			
4′′	250	3,140	4,440	2,405	1,225	615			
6′′	250	7,070	9,995	5,410	2,760	1,385			
8′′	250	12,565	17,770	9,620	4,905	2,465			
10′′	250	19,635	27,770	15,030	7,660	3,850			
12''	250	28,275	39,985	21,640	11,030	5,545			
14′′	250	38,485	54,425	29,455	15,015	7,545			
16′′	250	50,265	71,085	38,470	19,615	9,855			

Soil Type	Safe Bearing Load PSF			
Muck, peat, etc.	0			
Soft clay	1,000			
Sand	2,000			
Sand and grave!	3,000			
Sand and gravel cemented with clay	4,000			
Hard shale	10,000			

CONCRETE THRUST BLOCK

EFFECTIVE: AUGUST 5, 20052 columns B REL 6,

DEAD END

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-01-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Knockouts shall have a wall thickness of 2" minimum to $2^{1/2}$ " maximum.

	MANHOLE DIMENSION TABLE										
DIA	WALL THICKNESS	BASE THICKNESS	MAXIMUM KNOCKOUT	MINIMUM DISTANCE BETWEEN	BASE REINFORCING STEEL SO IN/FT EACH DIRECTION						
			SIZE	KNOCKOUTS	INTEGRAL BASE	SEPARATE BASE					
48''	4"	6′′	36''	8′′	0.15	0.23					
54"	41/2"	8''	42''	8′′	0.19	0.19					
60''	5′′	8′′	48′′	8′′	0.25	0.25					

MANHOLE TYPE 1

APRIL

B-23a 1 of 1

5, 2003 E

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Knockouts shall have a wall thickness of 2" minimum to 21/2" maximum.

MANHOLE DIMENSION TABLE										
DIA	WALL THICKNESS	BASE THICKNESS	MAXIMUM KNOCKOUT SIZE	MINIMUM DISTANCE BETWEEN KNOCKOUTS	BASE REINFORCING STEEL in ² /ft IN EACH DIRECTION					
					INTEGRAL BASE	SEPARATE BASE				
72′′	6′′	8′′	60′′	12"	0.24	0.35				
96′′	8′′	12"	84''	12'	0.29	0.39				

MANHOLE TYPE 2

B-23b 1 of 1

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003-09-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Knockouts shall have a wall thickness of 2" minimum to 21/2" maximum.

MANHOLE DIMENSION TABLE										
DIA	WALL THICKNESS	BASE THICKNESS	MAXIMUM KNOCKOUT SIZE	MINIMUM DISTANCE BETWEEN KNOCKOUTS	BASE REINFORCING STEEL in ² /ft IN EACH DIRECTION					
					INTEGRAL BASE	SEPARATE BASE				
48''	4''	6′′	36''	8′′	0.15	0.23				
54"	41/2"	8′′	42''	8′′	0.19	0.19				
60′′	5′′	8′′	48′′	8′′	0.25	0.25				
72''	6′′	8′′	60′′	12"	0.24	0.35				
96''	8′′	12"	84′′	12"	0.29	0.39				

MANHOLE TYPE 3

B-23c 1 of 1

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

MANHOLE TYPE 4

ELEVATION

B-23d 1 of 1

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-09-97

TIVE: AUGUST 5, 2202 TO APRIL 6, 2003

%" Thick

COVER SKID DESIGN DETAIL

- 1. Casket and groove may be in the seat or underside of cover.
- 2. For bolt down manhole ring and covers that are not designated "watertight", the neoprene gasket, groove and washer are not required.
- 3. Washer shall be lead or neoprene.
- 4. In lieu of blind pick notch for storm sewer manhole covers, drill three 1" diameter holes at 120° spacing.
- 5. Proprietary manhole covers without bottom ribs are acceptable.

BOLT ON CAM TYPE LOCKING DEVICE-SECTION C

MANHOLE RING AND COVER

2003

6 뭂

2002

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

FRAME AND VANED GRATE

AUGUST 5, 2002 TO APRIL 6, 2003

RECTANGULAR ADJUSTMENT SECTION

PRECAST BASE SECTION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. As an acceptable alternate to rebar, wire mesh having a minimum area of 0.12 square inches per foot may be used. Wire mesh shall not be placed in knockouts.
- 2. The knockout diameter shall not be greater than 18". Knockouts shall have a wall thickness of $1\frac{1}{2}$ minimum to 2" maximum.
- 3. Frame and grate may be installed with flange down or cast into adjustment section.
- 4. The precast base section may have a rounded floor and the walls may be sloped at a rate of 1:24 or steeper.
- 5. Opening shall be measured at the top of the precast base section.

CONCRETE INLET

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 - 18-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Precast cone sections may be eccentric or concentric.
- 2. Seepage port orientation varies among manufacturers.

SEEPAGE PORT DETAIL (See Note 2)

PRECAST CONCRETE DRYWELL

48" ID BASE DETAIL

EXISTING PIPES.

1. CONCRETE COLLAR WIDTH SHALL BE ONE HALF OF THE OUTSIDE PIPE DIAMETER OF THE LARGEST PIPE. THE MINIMUM COLLAR

THE CONCRETE COLLAR OPTION SHALL ONLY BE USED TO EXTEND

2. WHEN A COUPLING BAND CONNECTION REQUIRES ATTACHING A BELL END OF A CONCRETE PIPE. THE BELL END OF THE PIPE SHALL BE REMOVED BEFORE THE CONNECTION IS INSTALLED.

3. INCREASE THE OUTSIDE DIAMETER OF THE METAL PIPE TO MATCH THE OUTSIDE DIAMETER OF THE CONCRETE PIPE WITH 12" WIDE RUBBER GASKETS, THICKNESS AS REQUIRED. RUBBER GASKETS SHALL BE IN ACCORDANCE WITH SECTION

4. USE A FLAT TYPE K COUPLING BAND. TYPE K COUPLING

5. STEEL WELDED WIRE FABRIC SHALL BE IN ACCORDANCE WITH SECTION 9-07.7 OF THE STANDARD SPECIFICATIONS. INSTALL TWO WRAPS FOR SIZE 6 x 6 W1.4 x W1.4 (10 GAGE) STEEL WELDED WIRE FABRIC OR ONE WRAP FOR ANY OF THE

6 x 6 W2.1 x W2.1 (8 GAGE)

6 x 6 W2.9 x W2.9 (6 GAGE) 4 x 4 W2.9 x W2.9 (6 GAGE) 4 x 4 W4.0 x W4.0 (4 GAGE)

BANDS WITH DIMPLES ARE NOT ALLOWED FOR THE INSTALLATION DETAIL SHOWN. THE COUPLING BAND OPTION SHALL ONLY BE USED FOR EXTENDING EXISTING PIPES THAT HAVE AN INSIDE

9-04.4(3) OF THE STANDARD SPECIFICATIONS.

DIAMETER OF 36" OR LESS.

FOLLOWING SIZES:

WIDTH SHALL BE 12". CONCRETE COLLARS MAY BE USED WITH ALL PIPE MATERIALS AND DIAMETERS.

10-06-99

CONNECTION DETAILS FOR

STANDARD PLAN B-28

APPROVED FOR PUBLICATION

SEE NOTE 1 CAST IN PLACE CONCRETE COLLAR STEEL WELDED WIRE FABRIC (SEE NOTE 5)

CONCRETE COLLAR OPTION

COUPLING BAND OPTION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST

ADDED COUPLING BAND OPTION, REVISED WIRE FABRIC SIZES.

Clifford E. Mansfield

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

DATE

REVISION

OLYMPIA, WASHINGTON

TO APRIL 6,

5, 2002

WYE CONNECTION

TEE CONNECTION

SIDE SEWER STANDARD PLAN B-29

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

APPROVED FOR PUBLICATION

Clifford E. Mansfield

4/24/98

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6,

STANDING SIDE SEWER CONNECTION STANDARD PLAN B-30

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REPORTS.

APPROVED FOR PUBLICATION

Clifford E. Mansfield

sfield 8/10/98

EFFECTIVE

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

TYPE 1

TYPE 1 ALTERNATE

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

WOOD POST ASSEMBLY DETAIL

STEEL POST ASSEMBLY DETAIL (All mounting hardware same as for

wood post assembly, except as noted)

TYPE 4

DATE

BEAM GUARDRAIL (W BEAM) STANDARD PLAN C-1

SHEET 1 OF 2 SHEETS

IOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATI THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE

ADD STEEL POST ASSEMBLY DETAIL

REVISION

APPROVED FOR PUBLICATION

Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

7/31/98

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

13'-61/2" 6'-3" 6'-3" 41/4" 41/4" Ф Ф Ф \circ 0 0 10 $\frac{3}{4}$ " x $2\frac{1}{2}$ " Post _ ∠²¾32 '' × 2'' Splice bolt slots (TYP) bolt slots (TYP)

RAIL ELEMENT

CHANNEL RAIL SPLICE

connection

(See Note 1)

EXPANSION SECTION DETAIL

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATI THE ORIGINAL SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

1. When required by the contract, a Snow Load Post Washer shall be used on the backside of the post (in lieu of the 13/4" post bolt washer) and a Snow Load Rail Washer shall be placed on the face side of Type 1 and Type 2 Beam Guardrail. Snow load rail washers are not to be installed on terminals.

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 2. Rail washers, also called "snow load rail washers" are not required on new installations, except as called for in Note 2. Rail washers need not be removed on existing installations, except posts 2 through 8 of a BCT installation.
- 3. Guardrail post spacing for Types 1 through 4 shall be 6'-3"
- 4. Timber block shall be toe-nailed to post with a 16d galvanized nail to restrict block rotation.
- 5. For post and block details See Standard Plan "Beam Guardrail Posts and Blocks.
- 6. When Beam Guardrail Type 1, __ Foot Long Post, is specified in Contract, the post length shall be stamped with numbers $1\frac{1}{2}^{\prime\prime}$ MIN height and $\frac{1}{4}^{\prime\prime}$ deep at the location where the letter "H" is shown on the detail. After installation of long post, it shall be the Contractor's responsiblity to ensure that the stamped numbers are still legible and $\frac{1}{4}$ deep.
- 7. When Beam Guardrail Type 1, __ Foot Long Post, is specified, in the Contract, steel post lengths shall be increased 1'-0" for auger and backfill installation. The identification stamp of the long post shall remain as specified by the Contract.

APRIL

FFECTIVE

7/31/98

BEAM GUARDRAIL (W BEAM) STANDARD PLAN C-1

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

DATE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON $\frac{2}{8}$ $\frac{5}{8}$ $\frac{1}{4}$ button head splice bolt with oval grip and recessed hex nut

WOOD POST ASSEMBLY

(Twelve required per splice)

 $1\frac{3}{4}$ post

bolt washer

See Note 1

 $\frac{5}{8}\text{"}\times18\text{"}$ button head bolts with $\frac{1}{32}$ " oval grip and

TYPE 10

recessed hex nut -

┌ Ground line

2003

5, 2002 TO

//*///

RAIL ASSEMBLY

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Type 10 posts shall be 6x8 timber or W6x9.

2. Type 10 guardrail post spacing shall be 6'- 3" on center. Type 11 shall be a maximum of 3'- $1\frac{1}{2}$ " on center.

THRIE BEAM RAIL ELEMENT

THRIE BEAM EXPANSION SECTION

STEEL POST ASSEMBLY

TYPE 10 and 11

FFECTIVE

BEAM GUARDRAIL (THRIE BEAM) STANDARD PLAN C-1a

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

APPROVED FOR PUBLICATION Clifford E. Mansfield 7/31/98

DEPUTY STATE DESIGN ENGINEER Add steel post assembly detail WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON DATE REVISION BY

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

1 through 4 10 or 11

POST LENGTH TABLE

6'-0"

6'-6"

STEEL POSTS

Driven

6'-0"

6'-6"

Auger and Backfill

7'-0"

7'-6"

6, 2003

APRIL

2002

AUGUST

EFFECTIVE:

BEAN WOOD BLOCK FOR WOOD POSTS

POSTS AND BLOCKS STANDARD PLAN C-1b SHEET 1 OF 2 SHEETS

OTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE HE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON HIS T THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED New Approval Date. TWS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

3/17/00 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Wood Breakaway Post

 $\frac{5}{8}$ " \times $7\frac{1}{2}$ " bolt, nut and washer

 $\frac{5}{8}$ " x $7\frac{1}{2}$ " bolts, nuts and washers

(two required per post)

Welded option for Steel Tube and

(see Note 7)

Soil Plate

Foundation Tube

Soil Plate connection

24" 6"

SOIL PLATE

9"

 \mathbf{O}

(MAX)

PRIL

4

2002

5

AUGUS

ANCHOR POST ASSEMBLY

–¾″hole

- 6X8

CONTROLLED RELEASING TERMINAL (CRT) POST

(Nominal)

21″

"0-

F===

_}}4" hole

FOUNDATION TUBE

·¾" holes

15%

5

.¾″ holes

WOOD BREAKAWAY POST

O

hole

_6x8 S4S

THRIE BEAM

ho l es

1/4" steel plate

holes

TS 8" × 6" × 0.1875"

- 1. Wood posts for all guardrail placement plans shall be 6x8 except where noted otherwise.
- 2. Lower hole is for rub rail of Type 2 and Type 3 Beam Guardrail.
- 3. W6x9 steel posts and timber blocks are alternates for 6x8 timber posts and blocks. 7'-0" long W6x15 steel posts and timber blocks are alternates for 6'-0" long 10x10 timber posts and blocks.
- 4. Holes shall be located on approaching traffic side of web.
- 5. When contract requires "Beam Guardrail Type 1, __ Foot Long Post," the steel post length shall be marked with numbers to ensure permanent identification at the location where the letter "H" is shown on the detail. The marking shall be 11/2" MIN height.
- 6. When contract requires "Beam Guardrail Type 1, __ Foot Long Post," steel post lengths shall be increased by 0.3 meter for auger and backfill installation. The identification stamp of the long post shall remain as specified by the contract.
- 7. Soil plate may be welded to foundation tube. If so, holes in soil plate and foundation tube may be omitted.

BEAM GUARDRAIL POSTS AND BLOCKS STANDARD PLAN C-1b

SHEET 2 OF 2 SHEETS

IOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. HE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT OF HIS T THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED Changed CRT post hole DIA TWS 3/00

APPROVED FOR PUBLICATION Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

3/17/00

O

6x8 S4S

V-BEAM

述

 For post details see Standard Plan, "Beam Guardrail Posts and Blocks".

BEAM GUARDRAIL

1c 1 of 1

APRIL 6, 2003

2002 TO

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 78.778.77 INTERMEDIATE GUARDRAIL

> POST CONNECTION DETAILS (Type A shown)

NOTEFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Saw top of post and block to 1" above thrie beam quardrail reducer section.

TYPE A

(Left section shown, right section reversed)

THRIE BEAM GUARDRAIL REDUCER SECTION

2002 TO

THRIE BEAM GUARDRAIL REDUCER SECTION TYPE B

NOTES

- 1. Type 4 anchor required. For details, see Standard Plan C-6c.
- 2. Post spacing is 6'-3" unless otherwise shown.
- 3. For Terminal type and details, see Contract Plans and applicable Standard Plan(s).
- 4. The slope from the edge of the shoulder into the face of the guardrail should not exceed 10:1 when the face of the guardrail is less than 12'-0" from the edge of the shoulder.
- 5. For one-way traffic, use Type 4 anchor. For two-way traffic, use Type 1 anchor. See applicable Standard Plan(s) for details.
- 6. When Beam Guardrail Flared Terminals are used on both ends a minimum of 25'-0" of Beam Guardrail shall be

GUARDRAIL PLACEMENT STANDARD PLAN C-2

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

DATE

APPROVED FOR PUBLICATION 01-06-00

Clifford E. Mansfield

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Terminal pay limit (SRT shown)

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. Post spacing is 6'-3'' except where noted.
- 2. For terminal type and details, see Contract and applicable Standard Plan(s).
- 3. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than 10:1 when the guardrail is within 12'-0" from the edge of the shoulder.
- 4. See Contract for dimensions.
- 5. See Contract for Guardrail Transition Section and Guardrail Connection to Bridge Rail or Concrete

FLARE	RATE TABLE		
RATE	POSTED SPEED (MPH)		
15:1	70		
14:1	60		
12:1	55		
11:1	50		
10:1	45		
9:1	40 or less		

PRI

2002

Ш

7/17/98

GUARDRAIL PLACEMENT STANDARD PLAN C-2a

APPROVED FOR PUBLICATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

REVISION AUGA

Revised Flare Rate Table and

Case 6 lengths

DATE

Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003

- 3. The Type 10 or Type 11 Guardrail shall extend 12'-6" MIN past the structure to allow installation of the Type 16 transition for the opposing traffic.
- 4. If the minimum number of 12'-6" thrie beam sections required to span the structure extends more than 6'-3'' (but less than 12'-6'') past the structure, then a 6'-3" section of nested thrie beam should be added. Otherwise, install an additional 12'-6'' section.
- 5. Thrie Beam Guardrail Reducer Section Type B.
- 6. This Type 16 Transition shall end at a 10 \times 10 post. Place nested thrie beam with 10×10 posts at $3'-1\frac{1}{2}$ MAX spacing between the end of the transition and the structure.

CASE 8

PRI

GUARDRAIL PLACEMENT

STANDARD PLAN C-2b

APPROVED FOR PUBLICATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Revise Flair Rate Table.

AUGU REVISION

OLYMPIA. WASHINGTON

6/12/98

TABLE - All Dimensions in Feet							
W (ft)	Number of 12'-6" Sections	L ₁ See Note 1	X ₁ See Note 1	L ₂ See Note 1	X ₂ See Note 1		
14′	3	25.0	1.1	37.2	2.5		
15′	3	25.1	1.8	37.2	2.9		
16' - 23'	3	24.9	2.1	37.1	3.9		
24′ - 29′	4	37.4	3.1	49.7	4.9		
30′ - 35′	5	49.9	4.3	62.2	6.1		

One Way Traffic 🗨

- 1. L_1 and L_2 are measured along the tangent line. X_1 and X_2 are measured from the tangent line to the face of the guardrail.
- 2. The distance between the Type 7 anchors is measured from centerline to centerline of anchor posts.
- 3. The guardrail should be curved and tapered to fit. Reverse curves shall not be used.
- 4. Type 7 anchor required.
- 5. For bridge connection details, see applicable Standard Plan(s).
- 6. Post spacing is 6'-3" except where noted.
- 7. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than 10:1.
- 8. Within this area, the slope normal from each roadway should not be steeper than 10:1. The slope in the longitudinal direction should be approximately level.
- 9. The nose terminal section shall be lapped to the outside of each connecting guardrail section. All other laps shall be in the direction of traffic.
- 10. For Transition Type and details, see the Contract and applicable Standard Plan(s).

GUARDRAIL PLACEMENT MEDIAN BULL NOSE STANDARD PLAN C-2c

APPROVED FOR PUBLICATION

NTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE E ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

REVISION

Corrected Detail A, Revised Plan View

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

1/08/99

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Face of bridge rail

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. SRT Terminal shown, for terminal type and details, see Contract or applicable Standard Plan(s).
- 2. Post spacing is 6'-3'' except where noted.
- 3. Type 4 anchor required. See applicable Standard Plan(s).
- 4. The slope from the edge of the shoulder into the face of the guardrail should not exceed 10:1 when the guardrail is within 12'-0'' from the edge of the shoulder.

One or Two Way Traffic (see Note 4)

CASE 10 A, B or C

One Way Traffic CASE 10C

EXPIRES MAY 3, 2000

GUARDRAIL PLACEMENT STANDARD PLAN C-2d

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE APPROVED FOR PUBLICATION AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST. Brian Ziegler 5/22/98 STATE DESIGN ENGINEER 5/19/98 Deleted Flare Rate Table. WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON DATE REVISION

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

AUGUST 5, 2002 TO APRIL 6, 2003

GUARDRAIL PLACEMENT

One Way Traffic

CASE 11B

C-2e

- 1. SRT Terminal shown. For terminal type and details see Contract and applicable Standard Plan(s).
- 2. Attach standard blocks to concrete structure with $\frac{5}{6}$ " DIA expansion anchor or $\frac{5}{6}$ " DIA threaded rod in a 1" DIA x 8" hole grouted with epoxy.
- 3. Type 4 anchor or Type 4 anchor (Thrie Beam) required.
- 4. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than 10:1 when the guardrail is within 12^{\prime} -0" from the edge of the shoulder.
- 5. If the distance from end of Type 11 Guardrail to column/ structure exceeds 6'-3" using 12'-6" thrie beam sections, add a 6'-3" nested section of thrie beam with 10 x 10 posts, spaced at 3'-1½" (MAX), and begin transition.
- 6. Thrie Beam Guardrail Reducer Section Type B.
- 7. Guardrail post spacing for Type 11 Guardrail past the End Bridge Pier shall be at 6^{\prime} - $3^{\prime\prime}$ spacing, maximum, with 6×8 post and standard block.

GUARDRAIL PLACEMENT

One Way Traffic

C-2e

03-07-97

APRIL

1. See Contract for quardrail connection to bridge rail and

2. The slope from the edge of the shoulder into the face of

3. Attach to rail with $\frac{5}{6}$ " x 9" long bolt, nut and

4. For terminal type and details, see Contract and

5. Radius dimensions shall be etched into plate replacing the letters "HH", shown on the Identification Plate Detail. Digits shall be $1\frac{1}{2}$ " MIN height and $\frac{3}{4}$ " MAX width.

6. The guardrail radius Identification Plate shall be mounted on the back side of the Rail Element using the lowest splice bolt at the P.C. of the quardrail radius.

7. First letter of case designation placement indicates end treatment on side road. Second letter indicates end treatment on main road. For instance, a Type 5 Anchor on the side road and a bridge connection on the main road

8. For the 8'- 6" radius, five CRT posts are required including the CRT post at point B.

9. For CRT post details, see Standard Plan "Beam Guardrail Posts

GUARDRAIL PLACEMENT

WEAK POST INTERSECTION DESIGN (8'- 6" MAX RADIUS)

EFFECTIVE: (see Note 6) 5

SEE NOTE 2

CASE 13 B

(SEE NOTE 7)

CASE 13 A

(SEE NOTE 7)

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

REVISION

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

CORRECTED NOTES: ADDED "VIEW A"

3. Fewer CRT posts are required for smaller radii; include CRT Post at Point B. Attach guardrail to post with a 5/16" x 9" long bolt, a 3/8" I.D. x 7 1/2" snug fitting inser and a 1 1/2" washer with nut on back of post.

4. For terminal type and details, see Contract and applicable Standard Plan(s).

 Radius dimensions shall be etched into plate replacing the letters "HH", shown on the GUARDRAIL RADIUS IDENTIFICATION PLATE DETAIL. Digits shall be 1 1/2" minimum height and 3/4" maximum width. Plate shall be galvanized after etching.

6. The guardrail radius Identification Plate shall be mounted on the back side of the rail element using the lowest splice bolt nearest the PC of the guardrail radius (See View A).

7. The first letter of the Case Designation indicates the end treatment on the side road. The second letter indicates the end treatment on the main road. For example, a Type 5 Anchor on the side road with a bridge connection on the main road would be Case 13 AC, the combination shown.

8. For CRT post details, see Standard Plan C-1b.

GUARDRAIL PLACEMENT WEAK POST INTERSECTION DESIGN (35' MAX. RADIUS) STANDARD PLAN C-2g

APPROVED FOR PUBLICATION

Clifford E. Mansfield

ifford E. Mansfield 07-27-01
STATE DESIGN ENGINEER DATE
Washington State Department of Transportation

GUARDRAIL RADIUS

IDENTIFICATION PLATE

DETAIL

AUGUST 5, 2002 TO APRIL 6, 2003

- 3. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than 10:1.
- 4. See Standard Plan "Beam Guardrail Posts and Blocks".

GUARDRAIL PLACEMENT

 The slope from the edge of the shoulder into the face of the guardrail should not be steeper than 10:1

- See Standard Plan for Box Culvert Guardrail Steel Post.
- 4. For spans up to 18'- 9", see Standard Plan for Guardrail Placement Cases 19, 20, and 21.

DETAIL

——→ C-2i

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-28-97

LI.

GUARDRAIL PLACEMENT

Anchor pay limit (see Note 1)

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Type 4 anchor required. For details, see applicable Standard Plan(s).
- 2. For terminal type and details, see contract and applicable Standard Plan(s).
- 3. Post spacing is 6'-3" except where noted.
- 4. For guardrail to bridge rail connection see applicable Standard Plan(s) or Contract.
- 5. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than 10:1 when the guardrail is within 12'-0" from the edge of the shoulder. Beyond 12'-0'', the slope shall not be steeper than 6:1.

CASE 17

See Note 4

Beam Guardrail pay limit

See Note 5

Bridge end

Edge of shoulder

Terminal pay limit (SRT shown)

(see Note 2)

FLARE RATE TABLE				
Rate	Posted Speed			
	(MPH)			
15:1	70			
14:1	60			
12:1	55			
11:1	50			
10:1	45			
9:1	40 or less			

GUARDRAIL PLACEMENT STANDARD PLAN C-2;

APPROVED FOR PUBLICATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

6/12/98

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

One Way Traffic

CASE 18

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

-Varies (see contract)

Anchor pay limit-(See Note 1)

Curb face extension line

See Table

One Way Traffic

CASE 16

Revise Flair Rate Table. DATE REVISION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

SECTION (A

ONE-WAY TRAFFIC LAYOUT

AUGUST 5. 200

Clifford E. Mansfield

07-13-01

NOTES

- 1. See Contract for transition and connection type.
- 2. The slope from the edge of the shoulder into the face of the guardrail should not be steeper than
- 3. Guardrail installation shall be Beam Guardrail Type 1 with standard post and block.
- 4. First letter of case designation indicates end treatment on side road. Šecond letter indicates 🖺 end treatment on main road. For instance a terminal on the side road and a bridge connection on the main road would be Case 22 BC.
- 5. For terminal type and details, see Contract and applicable Standard Plan(s).
- 6. Radius dimensions shall be etched into plate replacing the letters "HH" shown on the Identification Plate Detail. Digits shall be $1\frac{1}{2}^{\prime\prime}$ MIN height and $\frac{3}{4}^{\prime\prime}$ MAX width. Plate shall be galvanized after etching.
- 7. The quardrail Identification Plate shall be mounted at the lower splice bolt on the back side of the rail element at the PC of the auardrail radius.

GUARDRAIL PLACEMENT

STRONG POST INTERSECTION DESIGN

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

C-2p 1 of 1
EFFECTIVE: AUGUST 5. 2002 TO APRIL 6 2003-28-97

TYPE 1

TYPE 1a

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGILIST 5, 2002 TO APRIL 6, 2003

- 1. See Standard Plan, "Guardrail Connection to Bridge Rail or Concrete Barrier."
- 2. Use 6'-0'' long 10×10 timber posts with 8×8 blocks.
- 3. Use 6'-6'' long 10×10 timber posts with 8×8 blocks.

TYPE 2

GUARDRAIL TRANSITION SECTIONS STANDARD PLAN C-3

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER

DATE AUGUSTON Z

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

8/10/98

Transition pay limit

Beam Guardrai EFFECTIVE: AUGUSTES 2002 TO APRIL 6, 2003

Sheet 1 of 2 Sheets **EFFECTIVE: AUGUST 5. 2002 TO**

PERSPECTIVE

PLAN

BEAM GUARDRAIL BURIED TERMINAL TYPE 1

STANDARD PLAN C-4

APPROVED FOR PUBLICATION

Clifford E. Mansfield

07-13-01

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

BEAM GUARDRAIL TYPE 1 PAY LIMIT

W BEAM RUB RAIL

BURIED TERMINAL TYPE 2 PAY LIMIT (TERMINAL LENGTH VARIES)

ELEVATION (PROFILE ALONG RAIL) TOP OF CUT

BEAM GUARDRAIL ANCHOR TYPE 2

(SEE STANDARD PLAN C-6a)

BURIAL POINT

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. Posts installed on a slope steeper than 10:1 shall be 8' long.
- 2. The height of the anchor is measured from an imaginary line extending at a slope of 10:1 from the edge of shoulder at an offset, W.
- 3. The flare rate of the guardrail may be steepened after crossing the ditch bottom to shorten the length of the terminal.

FLARE RATE TABLE				
RATE	POSTED SPEED (mph)			
15 : 1	70			
14 : 1	60			
12 : 1	55			
11 : 1	50			
10 : 1	45			
9:1	40 or less			

BEAM GUARDRAIL BURIED TERMINAL TYPE 2 STANDARD PLAN C-4a

APPROVED FOR PUBLICATION

Clifford E. Mansfield 07-13-01

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

DITCH BOTTOM

.

2003

6,

APRIL

NOTES

- 1. Unless otherwise indicated in the contract, the SRT 350 (12.5, 8 Post) as manufactured by Trinity Industries, Inc, or a FLEAT 350 as manufactured by Road Systems Inc, shall be installed per manufacturer's recommendations. If specified in the Contract, the FLEAT TL2 as manufactured by Road Systems, Inc. shall be installed per manufacturers recommendations.
- 2. Where terminal is placed on a curve, and post offsets would result in the rail encroaching onto the shoulder (e.g., the inside of a curve), the posts shall be installed so that the face of the rail is at the edge of the shoulder.
- 3. When snow load post washers and snow load rail washers are called for in the contract, the snow load rail washers must be omitted within the terminal limits.
- 4. Offset distances: FLEAT 350 - 4'-0" FLEAT TL2 - 1'-8" (MIN)

BEAM GUARDRAIL FLARED TERMINAL STANDARD PLAN C-4b

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE Revised Note 1 and SRT End Section. TWS 6/00

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

06/23/00 WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

2002 TO

- 2. A reflectorized object marker shall be installed according to manufacturer's recommendations.
- 3. When snow load post washers and snow load rail washers are required by the contract, the snow load rail washers must not be installed within the terminal limits.
- 4. Terminal shall be installed at a taper, ensuring that end piece is entirely off shoulder.
- 5. Length for ET 2000-PLUS (TL3) and SKT-350 is 50'. Length for ET 2000-PLUS (TL2) and SKT-TL2 is 25'.

BEAM GUARDRAIL NON-FLARED TERMINAL STANDARD PLAN C-4e

OLYMPIA, WASHINGTON

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE APPROVED FOR PUBLICATION THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED Clifford E. Mansfield 03-17-00 REVISED NOTE 1 & ADDED NOTE 5. WASHINGTON STATE DEPARTMENT OF TRANSPORTATION DÅTE REVISION

3. This case is also applicable for vertical faces with no curbs.

D CONNECTION

See Note 3

E CONNECTION

B CONNECTION

0

2002

ů

AUGUST

GUARDRAIL CONNECTION TO BRIDGE RAIL OR CONCRETE BARRIER

> C-5 03-14-9

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

APRIL

2002

TYPE 1 ANCHOR

- 1. Anchor plate may be constructed from $1/\!\!/_4$ plates welded to equal strength and dimensions as shown.
- For end section details see Standard Plan "Beam Guardrail End Sections".
- For post details, see Standard Plan "Beam Guardrail Posts and Blocks".
- 4. Eight % x $11/2^{\prime\prime}$ machine bolts with hex nut and washer. Place washer on face side of rail.
- Outside nut shall be torqued against inside nut a minimum of 100 ft-lbs.
- Toenail bearing plate with 10d nail at corners to prevent turning.
- Anchor pay limit does not apply when anchor is included in a Beam Guardrail Terminal.

BEAM GUARDRAIL ANCHOR TYPE 1

> C-6 *05-30-97*

ANCHOR PLATE (See Note 1)

ANCHOR RAIL WASHER

AUGUST 5, 2002 TO APRIL 6, 2003

BEAM GUARDRAIL ANCHOR

C-6 *05-30-97*

NOTES

- 1. For details, see Standard Plan C-6.
- 2. For end section details see Standard Plan C-7 or C-7a.
- 3. For details, see Standard Plan C-1b.
- 4. Outside nut shall be torqued against inside nut a minimum of
- 5. Post and block shall match beam guardrail posts.

FFECTIVE

01-06-00

BEAM GUARDRAIL ANCHOR TYPE 4 **STANDARD PLAN C-6c**

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield

MODIFIED "END SECTIONS" TO DESIGN "C", CHANGED WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

DATE

NOTE 2 AND DETAIL TITLES.

APRIL 6, 2003

2002 TO

(see Note 5)

1/4/

-2½" × 2½" × ¼" × 8"

 End Section Design G (see Note 2)

3/4" Cable clips (6 required) torque nuts to 50 ft/lbs.

Bearing plate (see Note 3) Standard 2" ID pipe sleeve

└─ Two 1" Nuts and washer (see Note 5)

(2¾" OD)

- 1. Attach W-beam to steel pipe with $\frac{5}{8}$ " x $\frac{1}{4}$ " button head bolt with no washer. No connection to the post is required.
- 2. For end section details see Standard Plan. "Beam Guardrail End Sections".
- 3. For details see Standard Plan, "Beam Guardrail Anchor Type 1".
- 4. For details see Standard Plan. "Beam Guardrail Posts".
- 5. Outside nut shall be torqued against inside nut a minimum of 100 ft/lbs.

DETAIL B

BEAM GUARDRAIL ANCHOR

TYPE 5

Anchor Post Assemblies (see Note 4)

TYPE 5 ANCHOR

NOTES

- For details, see Standard Plan, "Beam Guardrail Anchor Type 1".
- The rail element is to be included in the "Beam Guardrail" pay item. The "Anchor" pay item includes the anchor post, anchor plate, anchor cable, bearing plate, nuts and washers.
- For details, see Standard Plan, "Beam Guardrail Posts and Blocks".
- 4. Post shall match beam guardrail posts.

BEAM GUARDRAIL ANCHOR
TYPE 7

C-6f

271/2" 10′′ PLAN

-Splice bolt slot (TYP) $^{2}\%_{32}$ '' × $1\frac{1}{8}$ ' Post bolt slot $-\frac{3}{8}$ " hole (optional) 5, 2002 TO APRIL -9**V** ELEVATION

DESIGN A

AUGUST

DESIGN F (See Note 4)

ELEVATION

EFFECPESION: DAUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. End Section Design G shall be used except where noted on the plans or contract.
- 2. Bolts shall be $\frac{7}{8}$ ASHTO M 164 chemically bonded anchors. Anchor installation shall be per manufacturer's recommendations, in dry conditions.
- 3. A single piece having similar dimensional shape to Design G and mating with the W-beam guardrail is an alternate.
- 4. In cases where Design "F" end section is lapped on the outside of the guardrail, a galvanized 1" ID, 2" OD, 0.134" thick, narrow Type A Plain Washer or a anchor rail washer shall be placed under the splice bolt heads.

PLAN

DESIGN G (See Note 3)

FFECTIVE

BEAM GUARDRAIL END SECTIONS STANDARD PLAN C-7

APPROVED FOR PUBLICATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

NOTE 4 and DESIGN G PLAN

REVISION

Clifford E. Mansfield

8/10/98 DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

DATE

- 1. Bolts shall be high strength, $7\!/\!g''$, with chemically bonded anchors.
- 2. In cases where Design F End Section is lapped on the outside of the guardrail, a galvanized 1" ID, 2" DD, 0.134" thick, narrow Type A Plain Washer or an anchor rail washer will be placed under the splice bolt heads.

THRIE BEAM END SECTIONS

DESIGN G (THRIE BEAM)

-7a 10f

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 BARRIER SEGMENT END VIEW

DATE

REVISION

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Anchor bolts

2" Conduit

DETAIL C

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. This plan shall be used for 40' and 50' light standards with 12' MAX length double mast arms.
- 2. For details on wire rope and connecting pin, see Standard Plan "Concrete Barrier Type 2."

ANCHOR BOLT DETAIL

	All d		AR L	.IST re out to	BENDING DIAGRAM					
MARK	LOCATION	QTY.	SIZE	а	Ь	С	LENGTH	M) 7/\		
M1	Footing-Dowel	28	4	1'-9''	2'-31/2''	4′′	4'-3''	96.		
M2	Footing	18	4		Straight		4′-8′′	J T (*		
м3	Footing	9	4		Straight		8'-8''			
M4	Concrete Barrier	4	4	1'-6''	5′-3′′		12'-0''			
M5	Concrete Barrier	4	4		Straight		12'-0''	Non-ion		
М6	Concrete Barrier	20	4	3" to 9"	2'-7"	T 6	5'-3" to 5'-9"	C 66 Varies 66 3 to 1		
	ELLI		IVE	AU	1903	1 3	o, ZUUZ II	U APRIL 6, 2003		

EXPIRES JANUARY 17, 1999

CONCRETE BARRIER LIGHT STANDARD SECTION STANDARD PLAN C-8b

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE APPROVED FOR PUBLICATION

Clifford E. Mansfield 7/17/98 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

─ SHIM (SEE NOTE 2)

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED **TYPE 3 ANCHOR** FOR TEMPORARY OR PERMANENT PRECAST CONCRETE BARRIER INSTALLATIONS UPDATED ALL DETAILS AND NOTES.

DATE

PINNING HOLE (TYP.)

PLAN VIEW

TYPE 3 ANCHOR

PINNING HOLE LOCATIONS

1' - 0"

ON ASPHALT CONCRETE PAVEMENT

STATE DESIGN ENGINEER BY

Harold J. Peterfeso

EXPIRES JULY 24, 2004

PRECAST CONCRETE **BARRIER ANCHORS**

STANDARD PLAN C-8e

SHEET 1 OF 1 SHEET APPROVED FOR PUBLICATION

06-24-02

1" DIAM. × 30"

GALVANIZED STEEL PIN

PRECAST BARRIER SECTIONS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1 1/2"

FOR TYPE 1 ANCHOR:

3" × 1/2" × 5 1/2"

3/4" EXPANSION BOLT \neg

REVISION

2' - 0"

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Use Type 1 Anchors when a deeper embedment (5 1/2") into the bridge deck or conc. pavement is permitted by the Engineer.

PRECAST CONCRETE

BARRIER SECTION (TYP.)

NOTES

FOR TYPE 1 ANCHOR:

1 1/16" DIAM. HOLE

(1) Slope varies to suit conditions Not steeper than 2:1 Not steeper than 3:1 for mowing

6, 2003

5, 2002 TO APRIL

AUGUST

- (2) Berm transition offset optional for approach end
- (3) 10'-0" Minimum radius rounding when conditions permit

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-14-97

BOX CULVERT GUARDRAIL STEEL POST TYPE 1

(6'' to 36'' ground cover)

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

BOX CULVERT GUARDRAIL STEEL POST TYPE 2

(0" to 6" Ground cover)

POST BASE ATTACHMENT DETAIL

BOX CULVERT GUARDRAIL STEEL POST STANDARD PLAN C-10

SHEET 1 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED Added wood block for steel posts. DATE REVISION

APPROVED FOR PUBLICATION Clifford E. Mansfield 07/31/98

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

- Center line of W6x9 See Post Base Plate Detail 3/4" Grout pad ◆ See Note 2 Center line of Double Box Culvert POST ANCHOR ATTACHMENT DETAIL

Center line of W8x35 See Base Plate Detail $\frac{3}{4}$ Grout pad **←**See Note Center line of double box culvert

ANCHOR ATTACHMENT DETAIL (See Note 4)

(See Note 4)

2002

EFFECTIVE:

POST BASE PLATE DETAIL 15′′ 11′′ 5%'' Steel plate 5%'' Steel plate 1" DIA Hole (TYP)

1" DIA Hole (TYP)

BEARING PLATE DETAIL

POST BEARING PLATE DETAIL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Length of W8x35 and W6x9 shall be determined by measurement from top of ground to top of grout pad. This distance shall be verified by the contractor.
- 2. Attach guardrail post to box culvert with $\frac{3}{4}$ " high strength bolts with resin bonded anchors.
- 3. Drill $1\frac{1}{4}$ diameter hole in concrete slab for $\frac{7}{8}$ high strength bolts. Length of bolt is determined by top slab of box culvert thickness which shall be verified by the contractor.
- 4. For details of post attachment to double box culvert see Standard Plan "Guardrail Placement," Case 15.

BOX CULVERT GUARDRAIL STEEL POST STANDARD PLAN C-10

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield 07/31/98

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

3/4" Wire -

rope (TYP)

1.1

1.1

1.1

TYPE 2

Hook Bolt (TYP)

- S3 × 5.7 × 5'-3"

∼See Detail C

See Detail A

1/8/1/8/1/8/1/8

II

II

I = I1.1

TYPE 1

3/4" Wire -

rope (TYP)

711811811811811

Hook Bolt (TYP)

 $-53 \times 5.7 \times 5' - 3''$

-See Detail C

3/4" Wire -

rope (TYP)

TIISIIISIIISII

TYPE 3

See Detail B

Hook Bolt (TYP)

 $-53 \times 5.7 \times 5' - 3''$

See Detail C

See Detail B

TABLE A											
Curve Radius	Post Spacing										
700' or more	16′										
699' to 220'	12'										
219' to 110'	6′										
Less Than 110′	Use Not Recommended										

CABLE BARRIER PLACEMENT STANDARD PLAN C-11a

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Brian Ziegler

2/19/99 DEPUTH STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Noted maximum length on Plan View DATE REVISION

1. Stagger Spring Cable End assemblies for clearance between units. Installation of cable end assemblies shall be as follows:

Up to 500' - Use the Spring Cable End Assembly on one end, and turnbuckle only on the other end of each cable.

Over 500' to 2000' - Use the Spring Cable End Assembly on each end of each cable.

- 2. See Standard Plan C-11a for post spacing.
- 3. Distance from tangent of barrier run to notch for top cable on breakaway anchor angle shall be 4'.
- 4. The distance from the top of the footing to top of the highest cable is: \mathbb{N}

27" for TYPE 1 Cable Barrier, 30" for TYPE 2 and TYPE 3 Cable Barrier.

5. Where the cable is connected to a cable socket with a wedge type connector, one wire of the wire rope shall be crimped over the base of the wedge to hold it firmly in place.

POST SLIP BASE PLAN VIEW

SHEET 1 OF 2 SHEETS APPROVED FOR PUBLICATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

REVISED POST CONNECTION TO FOOTING

Harold J. Peterfeso

Vashington State Department of Transportation

09-28-01

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

DATE REVISION

for wrench

SPRING CABLE END ASSEMBLY

Galvanized spring

wire \%' DIA

 $2\frac{1}{4}$ Right-hand threads

 $\frac{3}{4}$ " Hex nut

Spring stop $4\frac{1}{2}^{"}$ long

Standard turnbuckle

12" takeup

-Flatten

for wrench

Right-hand

threads 7

CABLE END ASSEMBLY TO BREAKAWAY ANCHOR ANGLE DETAIL

Brass keeper rod must be installed prior to tensioning cable

" DIA Holes (TYP)

KEEPER PLATE DETAIL

-28 Gage galvanized sheet metal

CABLE BARRIER TERMINAL STANDARD PLAN C-11b

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST

APPROVED FOR PUBLICATION

Harold J. Peterfeso

09-28-01 ngton State Department of Transportation

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

ADDED KEEPER PLATE DETAIL

ROADSIDE INSTALLATION DETAIL

MEDIAN INSTALLATION DETAIL

INSTALLATION DETAILS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

ATTENUATOR CONFIGURATIONS

60 MPH

1. An Energite III System, fabricated by Energy Absorption Systems, Inc., a Fitch System as fabricated by Roadway Safety Service, Inc., or a Traffix Sand Attenuator as fabricated by Traffix Devices, Inc. shall be installed in accordance with the manufacturer's recommendations.

2. For temporary installations, the inertial barriers may be placed on wood pallets that are 4" or less in height.

3. For Terminal Section or Concrete Barrier details see Standard Plan C-8.

FFECTIV

07-27-01

IMPACT ATTENUATOR **INERTIAL BARRIER CONFIGURATIONS STANDARD PLAN C-12**

APPROVED FOR PUBLICATION

Clifford E. Mansfield

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

55 MPH

CORRECTED GORE INSTALLATION DETAIL

DATE

70 MPH

- 1. PERMANENT BARRIER SHALL BE PLACED INTO THE PAVEMENT A MINIMUM OF 3". NO EMBEDMENT REQUIRED FOR TEMPORARY BARRIER.
- 2. USE 42" BARRIER FOR GRADE SEPARATIONS UP TO 5". USE 48" BARRIER FOR GRADE SEPARATIONS UP TO 7". USE 54" BARRIER FOR GRADE SEPARATIONS UP TO 10".
- 3. USE ON A HORIZONTAL CURVE WITH RADII LESS THAN 2000' REQUIRES A MODIFIED END DESIGN.

EXPIRES MAY 3, 2000 **SINGLE SLOPE BARRIER PRE-CAST TYPE** STANDARD PLAN C-13

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 04-16-99

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

BENDING DIAGRAM

BAR LIST

TO APRIL

2002

AUGUST

54" 42" 28.6" 10.3"

SINGLE SLOPE BARRIER PRE-CAST TYPE STANDARD PLAN C-13

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield 04-16-99

OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

10 1/2"

2002

2)#4

3#6

10 1/2"

13/4" CLR

3" MIN -

SECTION

13/4"-CHAMPER-TYP.

2#4

③#6·

B

20' BARRIER SECTION

STANDARD PLAN C-13a

APPROVED FOR PUBLICATION

Clifford E. Mansfield

OLYMPIA, WASHINGTON

04-16-99 WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

9"

SECTION

EFFECTIVE: AUGUST 5, 2002 TO APRIL

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

SINGLE SLOPE BARRIER PRE-CAST TYPE SINGLE SIDED SECTION STANDARD PLAN C-13b

APPROVED FOR PUBLICATION

Clifford E. Mansfield

Ord E. Mansfield 04-16-99
UTY STATE DESIGN ENGINEER DATE

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION
OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

UP TO 10"

4' - 6"

10 1/4" 2' - 4 1/2"

10"

5

12

2002

AUGUS

AUGUS

ALL BENDS ARE 2" RADIUS

1' - 0"

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE

APRIL

APRIL

2002

	ר ז	MENSIO	NC 14+	FE	CTIN	/E :F	ONITOC	REINFOR	CEMEN	200	2 TC) AP	RIL	6, 2	003					STEM RE	INFORC		/E: ,,	AUG	USTNO	E
							BAR F			BAR K											BAR G (size #4)		JANTITY		С	
	H (f+)	В	C _V	D		h	SIZE SP	AC. LENG	H SIZE	SPAC.	LENGTH	h	b		*			barrier				LENGTH	CONCRETE CY/LF	STEEL LBS/LF	H (f+) 3.	Wh
	-		2'-0''	1'-0"	3'-4''	2'-9"	' '	9′′ 3′-6		9''	7'-2"	4'-7''	3'-0"					Concret Alterno				3'-10''	0.36	26.3	J	C (
	_		2'-0''	1'-0"	3'-4''	2'-9"		9" 3'-5		9"	8'-3''	5'-7"	3'-1"	-				Concret				4'-10''	0.41	29.5	6	
		5'-9"	2'-3''	1'-0"	3'-4''	2'-9"		9'' 3'-4		9"	9'-7''	6'-7''	3'-5"	-				Alterno				5'-10''	0.47	31.8	-	w i
	8	5 -9	2 - 3	1'-0"	3'-4"	2'-9"		9'' 3'-3 9'' 3'-1	// #5 // #5	9"	10'-8"	7'-7''	3'-6"	-								6'-10'' 7'-10''	0.53	35.0 38.5		i
		6'-3''	2'-3"	1'-0''	3'-4''	2'-9"	<u> </u>	9' 3'-6	J	9"	12'-0'' 12'-11'	8'-7'' '9'-7''	3'-9"	-								8'-10"	0.67	40.6	10 5.	т
	1 1	6'-6''	2'-3"	1'-0"	3'-4''	2'-9"		9'' 3'-8	// #5	9''	14'-0"	10'-7"	3'-10''	-	* *			of reint			D.C	9'-10"	0.75	44.7		S
	12	7'-0''	2'-6"	1'-0"	3'-4"	2'-9"	, ,	9'' 3'-10		8''	14'-4"	11'-7"	4'-2"	-				Alterno ing stee				10'-10''	0.84	49.6	12	S
	1.3	7'-6''	2'-6''	1'-0"	3'-4''	2'-9"	#5 1			7''	15'-5"	12'-7"	4'-3''	1				nng steet - per L		burre	I	11'-10''	0.93	57.5	13 6.	
	14	7'-9''	2'-6"	1'-0''	3'-4"	2'-9"		9'' 4'-8	" #5	7''	17'-7"	13'-7"	4'-4''	1		ATTO	nare z	per L	_ ,			12'-10''	1.02	63.9	14	Μ,
	15	8'-3''	2'-6''	1'-0"	3'-4''	2'-9"	#5	7'' 4'-10)'' #5	6′′	17'-9"	14'-7''	4'-6''	1								13'-10''	1.12	73.4	15 7。	Н
	16	8'-9''	2'-9"	1'-3''	3'-8''	3'-0''	#6 1		′′ #5	6′′	20'-1"	15'-7"	4'-10''	1								14'-7''	1.29	80.0	16	М
\sim	17	9'-3''	3'-0"	1'-6"	3'-8''	3'-0"	#6 1		″ #5	6′′	21'-5"	16'-7''	5'-2"			BAR N	.1			BAR	1	15'-7''	1.46	84.8	17 8.	C
	18	9'-9''	3'-3''	1'-6"	3'-11''	3'-3''	#6	9'' 5'-10		7''	22'-7''	17'-7''	5'-5"			DAK	v			BAR	J	16'-4''	1.58	100.9	18	Р
40	19	10'-0''	3'-6"	1'-9"	3'-11''	3'-3''		9" 6'-3		6"	24'-0"	18'-7"	5'-10''	SIZE	SPAC	LENGT	H r	ı b	S 1 7	E SPAC.	LENGTH	17'-4"	1.77	118.1	1 3	а
		10'-9''	3'-6''	1'-9"	4'-2''	3'-6''	#6 8			6''	25'-2''	19'-7''	6'-0''									18'-1''	1.91	124.0	20	Р
	21		3'-9''	2'-0"	4'-5"	3'-9"	#6 8			1'-2"	17'-8''	11'-11'	6'-4''		1'-2"	10'-7					<u> 18′ - 11′′</u>	18'-10''	2.12	133.8	21	
	22	11'-9''	4'-0''	2'-0"	4'-5''	3'-9"	#6	7′′ 7′-0		1'-1"	18'-5"	12'-4''	6'-8''			10'-1					<u> 19' - 11''</u>	19'-10''	2.26	148.5	22	
	23	12' - 3''	4'-3''	2'-3"	4'-8''	4'-0''	#6	7'' 7'-2	// #7	1'-0"	19'-2"	12'-10'	7'-0"		1 ' - 0''	11'-6		1			20'-8"	20'-7''	2.49	161.3	23	
	24	12′-9′′	4'-3''	2'-3"	4'-8''	4'-0''		6'' 7'-7	" #8 " #0	1'-2"	20'-7"	14'-2"	7'-1''	#8 1	1'-2"	12′-6					21'-8''	21'-7"	2.64	188.5	24	
4	25	13'-5	4 - 6	2'-6"	4'-11''	4'-3''		6'' 7'-9 6'' 7'-1	_	1'-1"	21'-7"	14'-9"	7'-6"	#8 1	1 ' - 1 '' 1 ' - 0 ''	13'-2 13'-6					22'-5" 23'-5"	22'-4"	2.89 3.06	205.0	25	
	26 27	10 -9	5'-0''	2'-6"	5'-2"	4'-6"		6'' 7'-1: 6'' 8'-1	" #8 " #9	1'-0"	24'-2"	15'-1''	7'-11'' 8'-2''	#8 1	1'-0 1'-2''	15'-0		1 1			24'-2''	24'-1''	3.33	253.9	26	
	28	14 - 3	5'-3"	3'-0"	5'-5"	4'-6'		6'' 8'-3		1'-1"	25'-0"	17'-3"	8'-6"	#9 1	1'-1''	15 - C		<u> </u>			<u> 24 -2</u> 24′-11′′	24'-10''	3.61	275.9	28	
	29	15'-3"	5'-6"	3'-3"	5'-8"	5'-0"		6'' 8'-5		1'-0''	25'-3"	17'-9"	8'-11''	, , ,	1'-0''	15'-7					25'-9''		3.90	299.0	29	
	30	16'-0''	5'-9''	3'-3"	5'-8''	5'-0''	#7 -	7'' 9'-8		1 0	26'-8"	18'-2"	9'-3''	#9	11"	16'-7		2 0 11			26'-6''		4.12	340.3		
3	31		6'-0''	3'-6"	5'-11''	5'-3''		7'' 9'-10		11"	27'-6"	18'-8"	9'-7''	#9	11''	17'-2					27'-6''	27'-4"	4.43	352.3		
	32	17'-0''	6'-3''	3'-9"	6'-2"	5'-6''	#7 -	7'' 10'-0		10"	28'-5"	19'-3"	9'-11''	#9	10''	17'-9	8'-	8" 9" - 11	′′ #9		28'-3"	28'-1"	4.76	390.0		
		17'-6''	6'-6''	4'-0''	6'-4''	5'-9''	#7 (6'' 10'-2		10''	29'-2"	19'-9"	10'-2"	#9	10''	18'-3	i'' 8'-	11'' 10' - 2	" #9			28'-10''	5.09	406.4		
3	34	18'-0''	6'-9''	4'-3''	6'-8''	6'-0"	#7 (6'' 10'-4		10''	30'-2"	20'-3"	10'-8''	#9	10′′	19'-C		2" 10'-8	3′′ #9		29'-9"		5.44	417.8		
	35	18'-6''	7'-0''	4'-6"	6'-11''	6'-3''	#7 (6'' 10'-6	5′′ #10	11''	32'-4"	22'-2"	11'-0''	#10	11''	20'-10	0'' 10' -	-9''11'-0)'' #1C	11"	30'-6''	30'-3''	5.79	491.0	35	
5							1777																			
_	S	et top	of re	etaini	ng wall at foot	back	/2 ···			<u></u> ;	Surchar	ge- wher	٦					,	24' M	TNIa.a.+	المالية ا					
5	h	rom la meiahts	H +0	20′	For ab	1119 10 10 ve 20	, wall 'use	101/2"	′-6′′	,	specifi	ed in co	ontract			r each			∠4 M all a	IN vert	icai Cu r break	ırve at) points				
3					t (inch					^`o \				sid	de of	join-	† `			p of wa						
	(H in fe	eet)				8	→ - :	1,21	`				7	" Cle	aranc	е —	\	3	11					>	
(5)								_ _ _		N	. / / /					-	†		(T	YP)					(%) P.	
				A				- 11 rt-	/\/	/\$///\$	///					L		\rightarrow			/ //				,0 /O.	

ቼş 2002 TO APRIL 6, 2003

- All concrete including traffic barrier shall be Class 4000 except as noted.
- For backfill requirements, see Standard Plan ''D-4''.
- When Wall Type 1-SW (saltwater) is specified, the concrete cover over steel in the front face and the total wall thickness shall be increased by 1".
- When Wall Type 1-SW (saltwater) is specified, concrete in the table column "Material Quantity" shall be increased by $0.003 \times H CY/LF$.
- If Bar W1 interferes with the retaining wall form, it shall be field bent only at the angle point. The bar shall not be twisted.
- Toe height for traffic barrier may vary, 2 $^{\prime\prime}$ MIN to 6 $^{\prime\prime}$
- Height of traffic barrier may vary if required to provide a profile pleasing to the eye.
- Concrete in the 24 foot wall sections shall be placed separately between expansion joints with a minimum 12 hour period between concrete placement.

Bar	MIN Splice
#4	2'-0''
#5	2'-0''
#6	2'-1''
#7	2'-11''
#8	3'-9''
#9	4'-9''
#10	6'-1''

At 1'-6" centers

SECTION - VERTICAL FACE

AUGUST

Bar	Radius
#5	9''
#6	11''
#7	1 ' - 1 ''
#8	1'-3''
#9	1'-6''
#10	1'-8''

BARS K AND M

WALL DESIGN WITH VERTICAL FRONT FACE AND 2' SURCHARGE OR TRAFFIC BARRIER

FFECTIVE

01-23-02

REINFORCED CONCRETE RETAINING WALL TYPE 1 AND 1 SW **STANDARD PLAN D-1a**

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

STATE DESIGN ENGINEER Washington State Department of Transportation

corrected concrete quantity MAS for barrier alternate 2 REVISION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

final ground line at front face of wall

ELEVATION

AUGUST 5. 2002 TO APRIL 6.

4. When Wall Type 3-SW (saltwater) is specified, concrete in the table column "Material Quantity" shall be increased by $0.003 \times H CY/LF$.

5. Concrete in the 24 foot wall sections shall be placed separately between expansion joints with a minimum 12 hour period between concrete placement.

in contract

Set top of retaining wall back — $\frac{1}{2}$ " from face of wall at footing for wall heights H to 20'. For H above 20' use formula:

4

2002

AUGUS

WALL TOP DETAIL

SECTION - VERTICAL FACE

► Bars S are #5 and 1'-0" OC

Not required on walls

H = 5' thru H = 12

Front face of wall→

at top of footing

Bottom of

Clearance

ELEVATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

10/99	Added note 5.	TWS
DATE	DEVICEOU	

WALL DESIGN WITH VERTICAL FRONT FACE AND 2:1 BACKSLOPE

REINFORCED CONCRETE **RETAINING WALL** TYPE 3 AND 3 SW **STANDARD PLAN D-1c**

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

10/06/99

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

10 APRIL 6, 2003

STEM REINFORCEMENT

DIMENSIONS									TOUTING INCLINENT													STEM REINI ORCEMENT				MATERIAL		
BAR (size						, BAF		AR F		BAR K						BAR N	1			BAR	J	BAR G (size #4)	QUA	NTITY				
H (f†) P	cv	,	Ն	h _k	LENCTH	h	SIZE	SPACINC	LENCTH	SIZE	SPACINO	LENCTH	h	Ь	SIZE	SPACINO	LENCTH	h	Ь	SIZE	SPACING	LENCTH	LENCTH	CUNCRETE (CY/LF)	STEEL (LPS/LF)	H (ft)	
5	1)'' 1 ' - 3			0		2'-9'	#4	1'-0''	2'-6"	#5	1'-0''	6'-6''	4'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	3'-10''	0.252	21.698	5	
6		1'-6			0	3'-5"		/ #4	1'-0''	_	#5	1'-0''	7'-10''	5'-7''	2'-8'		N/A	N/A	N/A	N/A	N/A	N/A	N/A	4'-10''	0.315	24.870	6	
7		'' 1 ['] - 9			0	3'-5"	2'-9"	/ #4	1'-0''	2'-6"	#5	1'-0''	9'-2"	6'-7''	3'-0'		N/A	N/A	N/A	N/A	N/A	N/A	N/A	5'-10''	0.372	26.706	7	
8		′′ 1′-9		′-0′′	0	3'-5"	2'-9'	/ #4	1'-0''	2'-6"	#5	1'-0''	10'-2''	7'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	6'-10''	0.443	29.531	8	
9		1'' 2'-(0	3'-5"	2'-9"	/ #4	1'-0''	2'-6"	#5	1'-0''	11'-6''		3'-4'		N/A	N/A	N/A	N/A	N/A	N/A	N/A	7'-10''	0.517		9	
10		′′ 2′-3			0	3'-5"	2'-9"	/ #4	1'-0''	2'-6"	#5	1'-0''	12'-11'		3'-9'		N/A	N/A	N/A	N/A	N/A	N/A	N/A	8'-10''	0.594		10	
1 1	6'-0			′-0′′	0	3'-5"	2'-9"	/ #4	10′′		#5	10′′	14'-6''	10'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	9'-10''	0.685		1 1	
12		3'-(0	3'-5"	2'-9"	/ #4	8′′	2'-10'		8′′	15'-4''	11'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	10'-10''	0.770		12	
13)'' 3'-3					2'-9'	/ #5	10′′		#5	7''		12'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	11'-10''	0.933		13	
1 4		1'' 3' - 6		′-0′′1	<u>1 ' - 0 '</u>		2'-9"		7′′	3'-8"		7′′	18'-7''	13'-7"			N/A	N/A	N/A	N/A	N/A	N/A	N/A	12'-10''	1.035		14	
		1 3 - 9		′ - 0′′ 1	1 ' - 0	<u>'</u> 1 3′-6''	2'-9"	′ #5	6′′	4'-1''		6′′		14'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	13'-10''	1.141		15	
16		′′ 4′-(′ - 3′′ 1	1 ' - 0	<u>'</u> 1 3′-8''	2'-9"	/ #6	6''	5'-0"		6′′	21'-4"	15'-7"			N/A	N/A	N/A	N/A	N/A	N/A	N/A	14'-10''	1.315		16	
	10'-			′ – 3′′ 1		′′ 3′-8′′	3'-0'	/ #6	6′′	5'-5"		5′′	22'-8"	16'-7"			N/A	N/A	N/A	N/A	N/A	N/A	N/A	15'-7''	1.434		17	
	10'-			′ - 6′′ 1		" 3'-8"	3'-0"	/ #6		5'-10'		5′′	23'-8"	17'-7''			N/A	N/A	N/A	N/A	N/A	N/A	N/A	16'-7''	1.620	126.835		
	11'-			′ - 6′′ 1		<u> </u>	′ 3′-3′	/ #7	6′′	7'-1"		6′′	26'-0''	18'-7"			N/A	N/A	N/A	N/A	N/A	N/A	N/A	17'-4''	1.817		19	
20	12′-			′ - 9′′ 1			3'-6"	/ #7	5′′	7'-9"		5''	26'-2"	19'-7"	7'-0'	′ N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18'-1''	2.040		20	
21	12'-			′-0′′1		′′ 4′-5′′	3'-9'	/ #8	8′′	8'-8"		11''		12'-11'	7'-7'	/ #8	11"	12'-9''	5'-9''	7'-7''	#8	11''	18'-11''	18'-11''	2.261		21	
		6′ 5′-3					4'-0'	′ #8	7''		#8	11''	20'-9''				11"	13'-4"	6'-1''	7'-11'	/ #8	11''	19'-8''	19'-7''	2.514		22	
		O' 5'-6					4'-0'	/ #8	6''	9'-6"		10′′		13'-10'			10''	13'-8''		8'-3"	#8	10′′	20'-8''	20'-7''	2.679		23	
						′′ 4′-11′′		/ #8		9'-11'		9''		14'-4''			9''	14'-4''		8'-8''		9''	21'-5''		2.958		24	
		6′6′-0					4'-6'	/ #8	6′′	10'-4'		10′′		16'-0''			10′′	15′-10′		9'-0"	#9	10′′	22'-2''		3.252		25	
		3′(6′-3					4'-9'	/ #8	5′′	10'-9'		9''	25'-2''	16'-6"	9'-4'	/ #9	9''	16'-5"		9'-4"	#9	9''	22'-11"	22'-10''	3.563		26	
27	16'-	9′6′-6	6′′ 3′	′-3′′1	1'-6		5'-0'	/ #8		10'-11			25′-11′				8′′	17'-0''		9'-8''	#9	8′	23'-8''	23'-7''	3.859		27	
28	17′-	6′6′-9	9′′ 3	′ - 6′′ 1	1'-6	′′ 5′-11′′	5'-3'	/ #8	5′′	11'-5'		8′′		17'-7''			8′′	17'-7''		10'-0'	/ #9	8′′	24'-6''	24'-4''	4.200	448.327	28	
		3′′7′-(5'-6'	/ #8	5′′	11'-10	1/#9	9''	29'-0''	19'-5"	10'-4	′1#10	9"	19'-5"				9''	25'-3''		4.556	494.468	29	
		D' 7' - 3					5'-9"	/ #9	6′′	13'-4'		8′′		20'-0"				20'-1"				8′′	26'-0''	25'-10''	4.928			
31	19'-	6′ 7′-6	6′′ 4	′-3′′1	1 ′ - 6	′′ 6′-8′′	6'-0'	/ #9	5′′	13'-6'	1#10	8′′	30'-10'	20'-6''	11'-1	′1#10	8''	20'-8''	11'-1'	111'-1'	#10	8′′	26'-9''	26'-7''	5.277	559.628	31	
																									WALL DE	CICN WIT	CII \/	

WALL DESIGN WITH VERTICAL FRONT FACE AND 2:1 BACKSLOPE

MATERIAL

Bar	MIN Splice
#4	2'-0"
#5	2'-0''
#6	2'-1''
#7	2'-11''
#8	3'-9''
#9	4'-9''
#10	6'-1"

BAR E at 1'-6" centers

Bar	Radius
#5	9''
#6	11''
#7	1'-1''
#8	1'-3''
#9	1'-6''
#10	1'-8''

FOOTING REINFORCEMENT

BARS K AND M

EXPIRES JUNE 29, 2000

REINFORCED CONCRETE **RETAINING WALL TYPE 3 AND 3 SW STANDARD PLAN D-1c**

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

10/06/99

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Ш

GUTTER DETAIL

H = 5" thru H = 14"

KEY DETAIL

NOTE

- 1. All concrete shall be Class 4000 except as noted.
- 2. For backfill requirements, see Standard Plan "D-4".
- 3. When Wall Type 4-SW (saltwater) is specified, the concrete cover over steel in the front face and the total wall thickness shall be increased by 1".
- 4. When Wall Type 4-SW (saltwater) is specified, concrete in the table column "Material Quantity" shall be increased by 0.003 x H CY/LF.
- 5. Concrete in the 24 foot wall sections shall be placed separately between expansion joints with a minimum 12 hour period between concrete placement.

Bar	MIN Splice
#4	2'-0''
#5	2'-0''
#6	2'-1''
#7	2'-11''
#8	3'-9''
#9	4'-9''
#10	6'-1''
#8	3'-9'' 4'-9''

Bar	Radius
#5	9''
#6	11''
#7	1'-1''
#8	1'-3''
#9	1'-6''
#10	1'-8''

BAR E

BARS K AND M

At 1'-6" centers

WALL DESIGN WITH SLOPING FRONT FACE AND 2:1 BACKSLOPE

REINFORCED CONCRETE RETAINING WALL TYPE 4 AND 4 SW STANDARD PLAN D-1d

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

_ 1<u>0/06/99</u>

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

ELEVATION

- Provide 24′ MIN vertical curve at all anale (or break)

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

10/99 Added note 5. TWS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

		FOOTIN	STEM REINFO	RCEMENT	MATERIAL		
DIMENSIONS	BAR E (size #4)	BAR F	BAR K	BAR M	BAR J	BAR G (size #4)	QUANTITY
$\begin{pmatrix} H \\ (f+) \end{pmatrix}$ B C_V D h_k	LENGTH h SIZE	SPACE LENGTH SIZE	SPACE LENGTH h	SIZE SPACE LENGTH h	b SIZE SPACE LENGTI	H LENGTH	CONCRETE STEEL H (CY/LF) (LBS/LF) (ft)
5 2'-6"1'-9"1'-0" 0	3'-5" 2'-9" #4	1'-0'' 2'-0'' #5	1'-0'' 5'-7'' 4'-7'' 1	-4'' N/A N/A N/A N/A 1	/A N/A N/A N/A	3'-10''	0.233 19.072 5
6 2'-9" 1'-9" 1'-0" 0	3'-5" 2'-9" #4		1'-0'' 6'-7'' 5'-7'' 1	-4'' N/A N/A N/A N/A 1	/A N/A N/A N/A	4'-10''	0.287 22.063 6
7 3'-0"2'-3"1'-0" 0	3'-5" 2'-9" #4		1'-0'' 8'-1'' 6'-7'' 1	<u>-10' N/A N/A N/A N/A 1</u>	<u>/A N/A N/A N/A </u>	5'-10''	0.344 23.906 7
8 3'-6"2'-6"1'-0" 0	3'-5" 2'-9" #4		1'-0'' 9'-4'' 7'-7'' 2	<u>-1'' N/A N/A N/A N/A 1</u>	<u>/a N/a N/a N/a </u>	6'-10''	0.415 27.158 8
9 4'-0"3'-0"1'-0" 0	3'-5'' 2'-9'' #4	1'-0'' 2'-3'' #5	1'-0" 10'-10" 8'-7" 2		/A N/A N/A N/A	7'-10''	0.489 30.504 9
10 4'-6"3'-6"1'-0" 0	3'-5" 2'-9" #4		1'-0" 12'-4" 9'-7" 3	-1'' N/A N/A N/A N/A 1	/A N/A N/A N/A	8'-10''	0.567 33.182 10
11 5'-3" 3'-9" 1'-0" 0	3'-5" 2'-9" #4	1'-0'' 2'-9'' #5	1'-0'' 13'-7'' 10'-7'' 3	-4'' N/A N/A N/A N/A 1	/A N/A N/A N/A	9'-11''	0.657 38.638 11
12 6'-0'' 4'-0'' 1'-0'' 0	3'-5" 2'-9" #4	1'-0" 3'-3" #5	10" 14'-10" 11'-7" 3	-8" N/A N/A N/A N/A 1	/A N/A N/A N/A	10'-11''	0.752 43.820 12
13 6'-6'' 4'-6'' 1'-0' 0	3'-5" 2'-9" #4	10" 3'-3" #5	9" 16'-4" 12'-7" 4	-1'' N/A N/A N/A N/A N	/A N/A N/A N/A	11'-11''	0.841 48.848 13
14 7'-3" 4'-9" 1'-3" 0	3'-8" 3'-0" #4	9" 3'-9" #5	7'' 17'-7'' 13'-7'' 4	-4'' N/A N/A N/A N/A 1	/A N/A N/A N/A	12'-8''	0.920 60.089 14
15 7'-6"5'-0"1'-3" 0	3'-8" 3'-0" #4	8" 3'-9" #6	8" 18'-10" 14'-7" 4	-8'' N/A N/A N/A N/A 1	/A N/A N/A N/A	13'-8''	1.218 76.409 15
16 8'-3"5'-3"1'-3" 0	3'-8" 3'-0" #5	8" 4'-7" #6	7'' 20'-0'' 15'-7'' 4'	-10'' N/A N/A N/A N/A I	/A N/A N/A N/A	14'-8''	1.333 89.333 16
17 9'-0'' 5'-6'' 1'-3' 0	3'-8" 3'-0" #5	8" 5'-1" #6	6" 21'-3" 16'-7" 5	-1'' N/A N/A N/A N/A 1	/A N/A N/A N/A	15'-8''	1.452 104.903 17
18 9'-9" 5'-6" 1'-3" 0	3'-8" 3'-0" #6	6" 6'-4" #6	5" 22'-3" 17'-7" 5	-1'' N/A N/A N/A N/A 1	/A N/A N/A N/A	16'-8''	1.575 132.792 18
19 10'-6'15'-9''1'-6'11'-6	7 3 - 11 7 3 - 3 1 #6	5'' 6'-10'' #7	6" 23'-5" 18'-7" 5		/A N/A N/A N/A	17'-5"	1.775 157.038 19
20 11'-3'6'-0'1'-9'1'-6	'' 4'-2'' 3'-6' ¹ #6	5" 7'-4" #7	5" 24'-9" 19'-7" 5	-8" N/A N/A N/A N/A I	/A N/A N/A N/A	18'-2"	1.992 184.972 20
21 12'-0'16'-3''2'-0'11'-6	" 4'-4" 3'-9" #6	5'' 7'-10'' #8	11'' 14'-1'' 8'-10'' 5'	-10' #8 11'' 11' -1'' 5' -10' 5'	-10' #8 11'' 18' - 10	0'' 18'-11''	2.224 195.265 21
22 12'-6'6'-6''2'-0'1'-6	4'-4'' 3'-9'1 #7	5'' 8'-11'' #8	10" 14'-9" 9'-3" 6	-2" #8 10" 11'-4" 5'-10' 6	-1" #8 10" 19'-10	0'' 19'-11''	2.405 231.507 22
23 13'-0'17'-0''2'-0''2'-0	<u> </u>	5'' 8'-11'' #8	10" 15'-8" 9'-7" 6	-8'' #8 10'' 11'-11'5'-10' 6	-8" #8 10" 20'-10	0'' 20'-11''	2.585 240.484 23
24 13'-9'17'-3''2'-3'12'-0	4'-8'' 4'-0'' #7	5" 9'-5" #8	9" 16'-4" 10'-1" 6	-10" #8 9" 12'-4" 6'-1"6'	-10′ #8 9′′ 21′-7	′′ 21′-8′′	2.848 269.186 24
25 14'-3'17'-6''2'-3''2'-6	4'-8'' 4'-0'1 #8	5" 10'-8" #9	10" 16'-11" 10'-6" 7	-1" #9 10" 13'-7" 7'-2" 7	-1" #9 10" 22'-7		3.102 331.336 25
26 15'-0'17'-9''2'-3''2'-6	4'-8'' 4'-0'1 #8	5" 11'-2" #9	9" 17'-6" 10'-10' 7	-4" #9 9" 13'-10" 7'-2" 7	-4" #9 9" 23'-7		3.278 367.361 26
27 15'-6'8'-3''2'-6'2'-6	7 4'-11'' 4'-3'1 #8	5" 11'-2" #9	8" 18'-7" 11'-5" 7	-10" #9 8" 14'-5" 7'-5" 7'	-10′ #9 8′′ 24′-4		3.551 414.105 27
28 16'-0'8'-9''2'-6'2'-6	4'-11''4'-3'' #9	5" 11'-2" #9	8" 19'-5" 11'-9" 8	-4" #9 8" 15'-1" 7'-5" 8	-4" #9 10" 25'-4	'' 25'-6''	3.718 426.488 28
29 16'-9'9'-0''2'-9'2'-6	5'-2" 4'-6" #9	5" 12'-9" #10	9" 20'-3" 12'-4" 8	-8" #10 9" 16'-11' 9'-0" 8	-8" #10 9" 26'-1	′′ 26′-3′′	4.035 519.157 29
30 17'-6'9'-3''3'-0'2'-6	7 5 - 5 7 4 - 9 7 # 9	5" 13'-3" #10	8" 20'-11"12'-10'8	10" #10 8" 17'-4" 9'-3" 8'	-10' #10 8'' 26' -10		4.369 580.877 30
31 18'-0'9'-6''3'-0'3'-0	7 5 - 5 - 4 - 9 - # 9	5" 13'-6" #10	8" 21'-7" 13'-3" 9	-1" #10 8" 17'-7" 9'-3" 9	-1" #10 8" 27'-10	28'-0''	4.674 597.591 31
32 18'-9'9'-9''3'-3''3'-6	7 5'-8" 5'-0" #9	5" 14'-0" #10	8" 22'-2" 13'-9" 9	-4" #10 8" 19'-5"11'-0" 9	-4" #10 8" 28'-7		5.170 730.715 32
33 19′-3′10′-0′13′-6′13′-6			8" 23'-0" 14'-3" 9	-8" #10 8" 20'-0"11'-3" 9	-8" #10 8" 29'-4	'' 29'-6''	5.510 751.136 33

WALL DESIGN WITH SLOPING FRONT FACE AND 2:1 BACKSLOPE

REINFORCED CONCRETE RETAINING WALL TYPE 4 AND 4 SW STANDARD PLAN D-1d

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. APPROVED FOR PUBLICATION 10/06/99 Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 wall $\frac{3}{4}$ Chamfer (TYP) Back face Special wall face treatment of wall when specified in contract 10 Conc. Gutter (cl.3000, 4" Thick) WALL TOP DETAIL GUTTER DETAIL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

KEY DETAIL Not required on walls H = 5'thru H = 25

- 1. All concrete shall be Class 4000 except as noted.
- 2. For backfill requirements, see Standard Plan "D-4".
- 3. When Wall Type 5-SW (saltwater) is specified, the concrete cover over steel in the front face and the total wall thickness shall be increased by
- 4. When Wall Type 5-SW (saltwater) is specified, concrete in the table column "Material Quantity" shall be increased by $0.003 \times H CY/LF$.
- 5. Concrete in the 24 foot wall sections shall be placed separately between expansion joints with a minimum 12 hour period between concrete placement.

9′′ #6 1'-6' #9 1'-8'' #102'-8"

|Bar |Radius|

2002

WALL DESIGN WITH VERTICAL FRONT FACE AND 2:1 BACKSLOPE

REINFORCED CONCRETE RETAINING WALL TYPE 5 AND 5 SW STANDARD PLAN D-1e

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

01-23-02

Harold J. Peterfeso

Washington State Department of Transportation

SECTION - VERTICAL FACE

ELEVATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

New Approval Date REVISION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

		DIMENSI		E: A	FOOTING REINFORCEMENT											EFFECTIVE: AUG					STEM REINFORCEMENT				MATERIAL	
		BIMENSI		BAR (size	BAR F				BAR	К				BAR M				BAR	J	BAR G (size #4)	Q	UANTITY				
(f	H B	CV	D	h _k	LENGTH	h	SIZE	SPAC.	LENGTH	SIZE	SPAC.	LENGTH	h	Ь	SIZE	SPAC.	LENGTH	h	Ь	SIZE	SPAC.	LENGTH	LENGTH	CONCRETE (CY/LF)	STEEL (Ibs/LF)	H (f+)
	3'-(0'' 1'-0''	1'-0''	0	3'-5''	2'-9''	#4	1 '-0''	2'-0''	#5	1'-0''	6′-3′′	4'-7''	2'-0''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3′-10′′	0.252	21.017	5
	3'-(1'-0''	0	3'-5''	2'-9''	#4	1'-0''	2'-0''	_	1'-0''	7′-3′′	5′-7′′	2'-1''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4'-10''	0.296	23.928	6
	7 3′-3		1'-0''	0		2'-9''	#4	1'-0''	2'-1''	#5	1'-0''	8'-4''	6′-7′′	2'-2"	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5′-10′′	0.354	25.554	7
	8 3'-6	5′′ 1′-0′′	1'-0''	0		2'-9''	#4	1'-0''	2'-2''	#5		9′-5′′	7'-7''	2'-3''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6′-10′′	0.415	28.526	8
	9 4'-		1'-0''	0		2'-9''	#4	1'-0''	2'-4''	#5		10'-10''	8'-7''	2'-8''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7′-10′′	0.489	31.896	9
1	0 4'-6		1'-0''	0	3'-5''	2'-9"	#4	10′′	2'-9''	#5		11'-11''	9'-7''	2'-9''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8′-10′′	0.567	34.117	10
	1 5'-0		1'-0''	0		2'-9"	#5	1'-0''	3'-3''	#5	1'-0''	13'-3''	10'-7''	3′-1′′	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9'-10''	0.648	38.474	1 1
7 1	2 5'-		1'-0''	0		2'-9''	#5	9′′	3'-8''	#5	11′	14'-4''	11'-7''	3'-2''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10'-10''	0.733	44.454	12
<u> 1</u>	3 6'-		1'-0''	0		2'-9"	#5	7′′	4'-1''	#5	9′′	15'-8''	12'-7''	3'-6"	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11'-10''	0.831	58.247	13
	4 6'-		1'-0''	0		2'-9"	#6	7′′	4'-11''	#5	7′′	16'-10''	13'-7''	3'-8''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12'-10''	0.924	68.698	1 4
N 1	5 7'-		1'-3''	0		3'-0''	#6	7′′	5'-4''	#5	6′′	18'-3''	14'-7''	4'-0''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13′-5′′	1.079	78.188	15
	6 8'-		1'-3''	0		3'-0''	#6	5′′	5'-9''	#5	6′′	19'-6''	15'-7''	4'-4''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14'-5''	1.195	89.572	16
	7 8'-		1'-6''	0		3'-3''	#6	5′′	6'-2''	#5	5′′	20'-8''	16'-7''	4'-5''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15'-4''	1.362	104.579	17
	8 9'-3		1'-6''	0	3'-11''	3'-3''	#7	6′′	7'-5''	#6	6′′	21'-8''	17'-7''	4'-6''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16'-4''	1.490	126.468	18
	9 9'-6			0	4'-2''	3'-6''	#7	6′′	7'-4''	#6	5′′	23'-0''	18'-7''	4'-10''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17'-1''	1.646	145.732	19
	0 10'-		2'-0''	0	4'-5''	3'-9''	#7	6′′	7′-3′′	#6	5′′	24'-8''	19'-7''	5′-6′′	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17′-10′′	1.841	151.845	20
_	1 10'-		2'-0''	0		3'-9''	#7	6′′	7'-2''	#7	1'-0''	17'-5''	11'-11''	6′-1′′	#7	1'-0''	10'-3''	4'-10''	6′-1′′	#7	1'-0''	18′-11′′	18'-10''	1.974	166.668	21
	2 11'-		2'-0''	0	4'-5''	3'-9''	#7	6′′	7'-4''	#7	11''	18'-2"	12'-4''	6'-5''	#7	11''	10'-7''	4'-10''	6′-5′′	#7	1 1 ''	19'-11''	19'-10''	2.111	188.243	22
_	3 11'-		2'-3''	0		4'-0''	#7	6′′	7'-9''	#8	1 ' - 0''	19'-9''	13'-11''	6'-6''	#8	1 ' - 0''	11'-11''	6′-1′′	6′-6′′	#8	1'-0''	20′-8′′	20'-7''	2.332	209.377	23
	4 12'-		2'-3''	0	4'-8''	4'-0''	#8	7''	9'-2''	#8	11"	20'-6''	14'-4''	6'-10''	#8	11''	12′-3′′	6′ 1′′	6′-8′′	#8	11''	21'-8''	21'-7''	2.501	240.204	24
	5 12′-		2'-6''	0	4'-11''	4'-3''	#8	6′′	9'-7''	#8	10′′	21'-2''	14'-10''	7′-0′′	#8	10′′	12′-6′′	6'-4''	7'-0''	#8	10′′	22′-5′′	22'-4''	2.743	282.675	25
_	6 13′-		2'-6''	2'-0''		4'-3''	#8	6′′	9'-3''	#8	10′′	22'-1''	15'-2''	7'-7''	#8	10′′	13′-1′′	6'-4''	7'-7''	#8	10′′	23'-5''	23'-4''	3.101	295.370	26
	7 13′-		2'-6''	2'-0''		4'-3''	#8	6′′	9'-5''	#9	11''	23′-10′′	16′-8′′	7'-11''	#9	11''	14'-6''	7′-5′′	7'-11''	#9	11''	24′-5′′	24'-4''	3.264	332.292	27
	8 14'-		2'-9''	2'-0''		4'-6''	#8	6	9'-7''	#9	10′′	24'-8''	17'-2''	8'-3''	#9	10′′	15′-1′′	7'-8''	8'-3''	#9	10′′	25'-2''	25′-1′′	3.530	365.742	28
	9 14'-		2'-9''	2'-0''		4'-6''	#8	6''	9'-5''	#9	10′′	25'-8''	17'-7''	8'-10''	#9	10′′	15'-7''	7'-8''	8'-10''	#9	10′′	26'-2''	26′-1′′	3.704	393.720	29
	0 15′-		2'-9''	2'-0''	5'-2''	4'-6''	#8	6′′	9'-4''	#9	9′′	26'-8''	17'-11''	9'-6"	#9	9′′	16′-3′′	7'-8''	9'-6''	#9	9′′	27'-2''	27'-1''	3.882	440.386	30
	1 15'-		3'-0''	2'-0''	5'-5''	4'-9''	#8	6′′	9'-6''	#10	10′′	28'-9''	19'-9''	9'-10''	#10	10''	18'-2''	9'-3''	9'-10''	#10	10′′	27'-11''	27′-11′′	4.174	491.523	31
_	2 16'-		3'-0''	2'-0''	5'-5''	4'-9''	#8	6′′	9'-8''	#10	9′′	29'-6''	20'-2''	10'-2''	#10	9′′	18'-6''	9'-3''	10'-2''	#10	9′′	28'-11''	28′-11′′	4.363	549.081	32
	3 16′-		3'-3''	2'-0''	5'-8''	5'-0''	#9	(''	11'-2''	#10	9′′	30'-4''	20′-8″	10'-6''	#10	10′′	19'-1''	9'-6''	10'-6''	#10	9′′	29'-8''	29'-5''	4.704	575.423	33
	4 17'-		3'-6''	2'-0''		5'-3''	#9	(''	11'-1''	#10	9''	31'-5''	21'-3''	11'-1''	#10	9′′	19'-11''	9'-9''	11'-1''	#10	9′′	30′-5′′	30'-4''	5.028	592.018	34
	5 17'-	9'' 7' - 6'	3'-6''	2′-0′′	5'-11''	5′-3′′	#9	7''	11'-3''	#10	8′′	32'-3''	21'-7''	11'-6''	#10	8 .	20'-4''	9'-9''	11'-6''	#10	8	31′-5′′	31'-4''	5.236	666.586	35

WALL DESIGN WITH VERTICAL FRONT FACE AND 2:1 BACKSLOPE

REINFORCED CONCRETE RETAINING WALL TYPE 5 AND 5 SW STANDARD PLAN D-1e

SHEET 2 OF 2 SHEETS

UPON REQUEST

EFFECTIVE: ALIGHET 5 2002 TO ADDIL 6 2002

APPROVED FOR PUBLICATION

Harold J. Peterfeso 01-23-02

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: ALIGHET 5 2002 TO ADDIL 6 2002

CORRECTED TABLE

GUTTER DETAIL

KEY DETAIL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

24' (MIN) vertical

3′′¹(TY<mark>P</mark>:

3" Drains at about

12' centers and 6'

above final grade line

ELEVATION

at front face of wall

curve at all angle (or break) points in top of wall profile

- 1. All concrete shall be Class 4000 except as noted.
- 2. For backfill requirements, see Standard Plan "D-4".
- 3. When Wall Type 6-SW (saltwater) is specified, the concrete cover over steel in the front face and the total wall thickness shall be increased by 1''.
- 4. When Wall Type 6-SW (saltwater) is specified, concrete in the table column "Material Quantity" shall be increased by $0.003 \times H CY/LF$.
- 5. Concrete in the 24 foot wall sections shall be placed separately between expansion joints with a minimum 12 hour period between concrete

Bar	MIN	Sp	lice
#4	2′	-	0''
#5	2′	-	0''
#6	2′	_	1 ′′
#7	2′	-	11"
#8	3′	-	9"
#9	4 ′	-	9''
#10	6′	_	1 ′′

Bar	Radius											
#5	9′′											
#6	11''											
#7	1' - 1''											
#8	1' - 3''											
#9	1' - 6''											
#10	1' - 8''											

BAR E At 1'-6" centers

BARS K AND M

WALL DESIGN WITH SLOPING FRONT FACE AND 2:1 BACKSLOPE

REINFORCED CONCRETE **RETAINING WALL TYPE 6 AND 6 SW STANDARD PLAN D-1f**

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

10/06/99

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. 10/99 Added note 5.

Clearance MIN

Clearance MAX

 $\frac{1}{2}$ Premolded joint

filler in expansion

joints at 24" centers

Bars J (TYP)

only for H > 21'

Bars K (TYP)

Bars M (TYP)

Construction joints

only for

H ≥ 21'

in footing at

120' centers MAX

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

REVISION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

2003	
9	
APRIL	
0	
2002	
5	
GUST	

DIMENSIONS						FOOTING REINFORCEMENT														STEM REINFORCEMENT					MATERIAL	
DIMENSIONS				BAR E (size #4)			BAR F			BAR K					BAR M					BAR J			QUANTITY			
H (ft)	В	C _V	D	h k	LENGTH	h	SIZE	SPACING	LENGTH	SIZE	SPACING	LENGTH	h	ь	SIZE	SPACING	LENGTH	h	Ь	SIZE	SPACING	LENGTH	LENGTH	CONCRETE (CY/LF)	STEEL (LBS/LF)	H (f+)
5	2'-6"	2'- 0''	1'-0"	0	3'- 5''	2'- 9"	#4	1'-0''	1'- 9''	#5	1'- 0''	5'-11''	4'- 7''	1'- 8''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3'-10''	0.233	19.253	5
6	2'-9"	2'- 0"	1'-0"	0	3'- 5''	2'- 9"	#4	1'-0''	2'- 0"	#5	1'- 0''	6'-11''	5'- 7''	1'- 8''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4'-10''	0.287	22.244	6
7	3'-0''	2'- 3''	1'-0"	0	3'- 5''	2'- 9"	#4	1'-0''	2'- 0''	#5	1'- 0''	8'- 1''	6'- 7''	1'-10''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5'-10''	0.349	23.906	7
8	3'-0''	2'- 3"	1'-0"	0	3'- 5"	2'- 9"	#4	1'-0''	2'- 0''	#5	1'- 0''	9'-1"	7'- 7''	1'-10''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6'-10''	0.396	26.731	8
9	3'-6"	2'- 3"	1'-0"	0	3'- 5"	2'- 9"	#4	1'-0''	2'- 6''	#5	1'- 0''	10'- 1''	8'- 7''	1'-10''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	7'-10''	0.470	29.889	9
10	3''-9''	2'- 9"	1'-0"	0	3'- 5''	2'- 9"	#4	1'-0''	2'- 3''	#5	1'- 0''	11'- 6''	9'- 7''	2'- 4"	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	8'-11''	0.539	31.682	10
11	4'-3''	3'- 0''	1'-0"	0	3'- 5"	2'- 9"	#4	1'-0''	2'- 6''	#5	1'- 0''	12'-11''	10'- 7''	2'- 8''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	9'-11''	0.620	35.108	11
12	5'-0"	3'- 3''	1'-0''	0	3'- 5''	2'- 9"	#4	1'-0''	3'- 0''	#5	1'- 0''	14'- 1''	11'- 7''	2'-11''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	10'-11''	0.715	39.108	12
13	5'-9''	3'- 6''	1'-0''	0	3'- 5''	2'- 9"	#4	9′′	3'- 6''	#5	9′′	15'- 4''	12'- 7''	3'- 1"	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11'-11''	0.813	47.301	13
14	6'-3''	3'- 6''	1'-0"	0	3'- 5''	2'- 9"	#5	9′′	4'- 4''	#5	9''	16'- 4''	13'- 7''	3'- 1''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12'-11''	0.906	53.382	1 4
15	7'-0''	3'- 9''	1'-0"	0	3'- 5"	2'- 9"	#6	8′′	5'- 4''	#6	9''	17'- 6''	14'- 7''	3'- 4''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	13'-11''	1.011	74.154	15
16	7'-6''	3'- 9''	1'-0"	0	3'- 5"	2'- 9"	#6	6′′	5′-10′′	#6	8′′	18'- 6''	15' - 7''	3'- 4''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	14'-11''	1.111	86.742	16
17	8'-0''	4'- 0''	1'-3"	0	3'- 8''	3'- 0"	#6	6′′	6'- 1''	#6	7''	19'-10''	16' - 7''	3'- 8''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	15' - 8''	1.267	99.328	17
18	8'-9"	4'- 3''	1'-3"	0	3'- 8''	3'- 0"	#6	5′′	6'- 7''	#6	6′′	21'- 0''	17'- 7''	3'-10"	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16' - 8''	1.390	117.247	18
19	9'-0"	4'- 6''	1'-6"	0	3'-11''	3'- 3"	#7	7''	7'- 5''	#6	6''	22'- 3''	18' - 7''	4'- 1''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	17'- 5''	1.553	125.039	19
20	9'-3"	4'- 9''	1'-6"	0	3'-11''	3'- 3"	#7	7''	7'- 5''	#7	7''	23'- 5"	19' - 7''	4'- 4''	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18' - 5''	1.662	142.034	20
21	9'-9''	5'- 0''	1'-6"	0	3'-11''	3'- 3"	#7	6′′	7'- 8''	#7	1'- 0''	12'- 8''	8'- 6''	4'- 8''	#7	1'- 0''	8'-6''	4'- 4''	4'- 8''	#7	1'- 0''	19' - 4"	19'- 5''	1.788	149.230	21
22	10'-3"	5'- 3''	1'-9"	0	4'- 2"	3'- 6"	#7	6′′	7′-11′′	#7	11"	13'- 5''	9'-1"	4'-10''	#7	11"	8'-11''	4'- 7''	4'-10''	#7	11''	20' - 1"	20'- 2"	1.986	160.101	22
23	10'-9''	5'- 6''	1'-9"	0	4'- 2''	3'- 6"	#7	6''	8'- 2''	#7	10′′	14'- 0''	9'- 5"	5'- 1''	#7	1'-10''	9'- 2"	4'- 7''	5'- 1''	#7	10′′	21'- 1"	21'- 2''	2.123	171.973	23
24	11'-3''	5'- 9''	2'-0"	0	4'- 5''	3'- 9"	#7	6′′	8'- 5''	#7	10''	14'-10''	10'- 0''	5'- 4''	#7	1'-10''	9'-8"	4'-10''	5'- 4''	#7	10′′	21'-10"	21'-11''	2.341	181.868	24
25	11'-6''	6'- 3''	2'-0"	2'-0"	4'-5"	3'- 9"	#7	6′′	8'- 5''	#7	9"	15'- 8''	10'- 4''	5'-10"	#7	9"	10'- 2"	4'-10''	5'-10"	#7	9"	22'-10"	22'-11''	2.693	192.607	25
26	12'-0''	6'-6''	2'-3"	2'-0"	4'-8''	4'- 0''	#7	6′′	8'- 5''	#7	9"	16'- 5''	10'-10''	6'-1''	#7	9"	10'- 8''	5'-1''	6'- 1''	#7	9′′	23' - 7''	23'- 8''	2.927	202.605	26
27	12'-6''	7'- 0''	2'-3"	2'-0"	4'-8''	4'- 0''	#7	6′′	8'- 5''	#7	8′′	17'- 5''	11'- 3''	6'-8''	#7	8′′	11'- 3''	5'-1"	6'- 8''	#7	8′′	24' - 7''	24'- 8''	3.086	213.332	27
28	13'-0''	7'- 3''	2'-6"	2'-0"	4'-11''	4'- 3''	#7	6′′	8'- 8''	#8	9"	18'- 0''	11'- 9''	6'-10''	#8	9"	12' - 7''	6'- 4''	6'-10''	#8	9"	25' - 4"	25' - 6''	3.338	255.188	28
29	13'-6''	7'- 6''	2'-6"	2'-0"	4'-11''	4'- 3''	#8	6''	9'-11''	#8	8′′	18'- 8''	12'- 2"	7'- 1''	#8	8′′	12'-10"	6'- 4''	7'- 1''	#8	8′′	26' - 4"	26'- 6''	3.509	299.649	29
30	14'-0''	8'- 0''	2'-9"	2'-0"	5'- 2"	4'- 6''	#8	6''	9'-11''	#8	8''	19' - 9''	12'- 8"	7'- 8''	#8	8′′	13'- 8''	6' - 7''	7'- 8''	#8	8′′	27'- 1"	27'- 3''	3.780	317.688	30
31	14'-6''	8'- 3''	2'-9"	2'-0"	5'- 2"	4'- 6''	#8	6′′	10'- 2''	#8	8′′	20' - 4''	13' - 1''	7'-10''	#8	8′′	13'-10"	6' - 7''	7'-10''	#8	8′′	28'- 1"	28'- 3''	3.962	326.716	31
32	15'-0''	8'- 6''	3'-0"	2'-0"	5'-5"	4'- 9''	#8	6′′	10'- 5''	#9	9"	21'- 0''	13' - 5''	8'- 1''	#9	9"	15'- 4''	7'-11''	8'- 1''	#9	9''	28'-11"	29'- 0''	4.252	393.547	32
33	15′-6′′	8'- 9''	3'-0"	2'-0"	5'-5"	4'- 9''	#8	6′′	10'- 8''	#9	8''	21'- 8''	14'- 0''	8'- 4''	#9	8′′	15' - 7''	7'-11''	8'- 4''	#9	8′′	29'-11"	30'- 0''	4.444	424.671	33
34	16'-3''	9'- 3''	3'-3"	2'-0"	5'-8"	5'- 0"	#8	6′′	10'-11''	#9	8′′	22'- 8''	14'- 6''	8'-10''	#9	8′′	16'- 4''	8'- 2"	8'-10''	#9	8′′	30' - 7''	30'- 9''	4.783	440.218	34
35	16'-9''	9'- 6"	3'-6"	2'-0"	5'-11''	5'- 3"	#8	5′′	11'- 2''	#10	8′′	23' - 4''	15'- 0''	9'- 1"	#10	8′′	18'- 1"	9'- 9"	9'- 1"	#10	8′′	31'- 4"	31'- 6''	5.106	544.207	35

WALL DESIGN WITH SLOPING FRONT FACE AND 2:1 BACKSLOPE

EXPIRES JUNE 29, 2000

REINFORCED CONCRETE RETAINING WALL TYPE 6 AND 6 SW STANDARD PLAN D-1f

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

10/06/99

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

FOOTING WIDTH TRANSITION DETAIL

(For locations without footing step) NOTE: Transverse bars not shown

NOISE BARRIER - TYPE 2 CAST-IN-PLACE CONCRETE WAL ON SPREAD FOOTING

> D-2b 03-14-97

FOOTING WIDTH TRANSITION DETAIL
(For locations without footing step)

NOTE: Transverse bars not shown

JOINT AND CORNER DETAIL

NOISE BARRIER - TYPE 3
CAST-IN-PLACE CONCRETE WALL
ON SPREAD FOOTING
(OFFSET FOOTING)

D-2c 03-14-97

JOINT AND CORNER DETAIL

NOISE BARRIER - TYPE 4
CAST-IN-PLACE CONCRETE WALL
ON SHAFT FOUNDATION

D-2d 03-14-97

1. Wall to be designated Noise Wall Type 7A. 7B. 7C or 7D.

- The Contract specifies actual wall designations. 2. For intermediate wall heights, use the next higher H.
 - Panels shall have at least 3 feet of level ground on
- 4. Construction joints in the footing shall be spaced at 120 feet maximum.
- The Contract specifies actual foundation requirements D1 or D2.

Reinforced per

listed panel height

JOINT AND CORNER DETAIL

CAST-IN-PLACE CONCRETE WALL WITH TRAFFIC BARRIER

ON SHAFT FOUNDATION

reinforcement schedule L_Traffic side

3/4" Chamfer (TYP)

** Height may vary if required to provide a smooth profile consistant with the roadway profile

D-2g 1 of 1
EFFECTIVE: AUGUST 5. 2002 TO APRIL 6 2/03-14-97

EFF	FECTIVE: ATYPE 8AST 5, 2002 TO APRILIYEE, 8B.003					TYPE 8C ECTIVE: AUGUST 5TYPE 802 TO APRI							RIL 6	, 2003						
WALL HT H		WALL THICK T	DEPTH D1	DEPTH D2	BAR D	WALL THICK T	DEPTH D1	DEPTH D2	BAR D	WALL THICK T	DEPTH D1	DEPTH D2	BAR D		WALL THICK T	DEPTH D1	DEPTH D2	BAR D	WALL HT H	
6'-0"		5′′	3'-6''	3'-3''	#3 at 15"	5′′	3'-9''	3'-6''	#3 at 131/2"	5''	3'-6"	3'-3''	#3 at 15"		5′′	3'-9''	3'-6''	#3 at 11"	6'-0''	
8'-0"		5′′	3'-9''	3'-3''	#3 at 13''	5′′	4'-0''	3'-9''	#3 at 81/2"	5′′	3'-9''	3'-6"	#3 at 11"		5′′	4'-3''	3'-9"	#4 at 12"	8'-0"	
10'-0"		5′′	4'-0''	3'-6"	#3 at 81/2"	5"	4'-3''	4'-0''	#4 at 101/2"	5′′	4'-0"	3'-9''	#3 at 121/2"		5′′	4'-6''	4'-0''	#4 at 11"	10'-0"	
12'-0"		5′′	4'-3''	3'-9''	#4 at 12"	5′′	4'-9''	4'-3''	#4 at 10"	5′′	4'-6''	4'-0''	#4 at 10½"		5′′	5'-0''	4'-6''	#5 at 12"	12'-0"	
14'-0"		5′′	4'-6''	4'-0''	#4 at 101/2"	5′′	5'-0"	4'-6''	#5 at 11"	5′′	4'-9''	4'-3''	#4 at 91/2"		5''	5'-3''	4'-9''	#5 at 8¾"	14'-0''	
16'-0"		5′′	4′-9′′	4'-3''	#5 at 14"	5′′	5′-3′′	4'-9''	#5 at 81/2"	5′′	5'-0''	4'-6''	#5 at 11"		5′′	5'-9''	5'-0''	#6 at 9½"	16'-0''	
18'-0"		5′′	5′-0′′	4'-6"	#5 at 11"	5′′	5'-6"	5'-0''	#6 at 91/2"	5′′	5'-3''	4'-9''	#5 at 8½"		6"	6'-0"	5'-3''	#6 at 9"	18'-0"	
20'-0"		5′′	5'-3''	4'-9''	#5 a+ 6''	6′′	5'-9''	5'-3''	#6 at 91/2''	5′′	5'-6"	5'-0''	#5 a+ 6"		6′′	6'-3''	5'-6''	#6 at 71/2"	20'-0''	
22'-0"		5′′	5′-6′′	5'-0"	#5 at 7"	6′′	6'-0''	5′-6′′	#6 at 8"	6′′	5'-9''	5'-3''	#5 at 8"		7′′	6'-6''	5′-9″	#6 at 7"	22'-0''	
24'-0"		5′′	5'-9''	5'-3"	#6 at 8"	7''	6'-3''	5′-9′′	#6 at 61/2"	6′′	6'-0''	5'-6"	#5 at 6"		7′′	6′-9′′	6'-0''	#6 at 6"	24'-0"	

JOINT AND CORNER DETAIL

STEP IN PANEL TOP

NOTES

- 1. Wall to be designated Noise Wall Type 8A, 8B, 8C or 8D. The Contract specifies actual wall designations.
- 2. For intermediate wall heights, use the next higher H.
- 3. Panels shall have at least 3'-0" of level ground on
- each side. Construction joints in the footing shall be spaced at 120 feet maximum.
- 5. All joints shall be in full contact and sealed.
- The Contract specifies actual foundation requirements D1 or D2.

TRENCH FOOTING There shall not be more than 1'-0" differential backfill height

NOISE BARRIER - TYPE 8 iii PRECAST CONCRETE WALL ON TRENCH FOOTING

ELEVATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-14-97

DETAIL B

FOOTING WIDTH TRANSITION DETAIL

(For locations without footing step)
NOTE: Transverse bars not shown

NOISE BARRIER - TYPE 9
PRECAST CONCRETE WALL
WITH SPREAD FOOTING

D-2i

03-14-97

DETAIL B

FOOTING WIDTH TRANSITION DETAIL

(For locations without footing step)
NOTE: Transverse bars not shown

NOISE BARRIER - TYPE 10
PRECAST CONCRETE WALL WITH
OFFSET SPREAD FOOTING

D-2j 03-14-97

ANGLE (Degree)

30

40

50

60

70

80

90

2003

5, 2002 TO APRIL 6,

71/4"

73/4"

8′′

91/4"

OPTIONAL ANGLE POINT

NOISE BARRIER - TYPE 11 PRECAST CONCRETE WALL ON SHAFT FOUNDATION

D-2k 03-14-97

EFFECTIVE: AUGUST 5. 2002 TO APRSheet 3 of 3 Sheets

TYPE 12D TYPE 12A TYPE 12B TYPE 12C WALL HT WALL HT BAR B BAR D BAR B BAR D BAR B BAR D BAR B BAR D 6'-0" #6 at 12" #4 at 15" #6 at 12" #4 at 15" #6 at 12' #4 at 15" #6 at 12" #4 at 15" 6'-0" #4 at 15' #4 at 15' 8'-0" #6 at 12" #4 at 15' #6 at 12' #6 at 12' #6 at 12" #4 at 15' 8'-0" 10'-0' #6 at 12" #4 at 15' #6 at 12" #4 at 15' #6 at 12' #4 at 15" #6 at 12' #4 at 15' 10'-0' #4 at 15' 12'-0' #6 at 12" #4 at 15' #6 at 12' #4 at 15' #6 at 12' #6 at 12" #4 at 12' 12'-0' 14'-0" #6 at 12" #4 at 15" #6 at 12' #4 at 11" #6 at 12' #4 at 11' #4 at 10" 14'-0" #6 at 12" 16'-0' #6 at 12" #4 at 10" #6 at 12' #4 at 10" #6 at 12' #4 at 10" #6 at 12" #5 at 12' 16'-0" 18'-0" #6 at 12" #4 at 10" #6 at 12' #4 at 10' #6 at 12' #5 at 12' #6 at 9' #5 at 9" 18'-0" @ Wall

- EFFECTIVE: NOTES JGUST 5, 2002 TO APRIL 6, 2003
 - Wall to be designated Noise Barrier Type 12A, 12B, 12C and 12D. The Contract specifies actual wall designation.
 - Compaction of trench height differential shall not exceed
 - Panels shall have at least 3 feet of level around on each
 - Construction joints in the footing shall be spaced at 120 feet maximum.

2. For intermediate wall heights, use the next higher H.

All joints shall be in full contact and sealed.

STEP IN PANEL TOP

NOISE BARRIER - TYPE 12

PRECAST CONCRETE WALL WITH TRAFFIC BARRIER ON TRENCH FOOTING

TYPICAL SECTION

2002

SOS.

**Height may vary if required to provide a smooth profile consistant with the roadway profile

ELEVATION

03-14-97

NOISE BARRIER - TYPE 12

PRECAST CONCRETE WALL
WITH TRAFFIC BARRIER
ON TRENCH FOOTING

D-2I 03-14-97

DETAIL B

NOISE BARRIER - TYPE 13

PRECAST CONCRETE WALL
WITH TRAFFIC BARRIER ON
SPREAD FOOTING

D-2m 03-14-97

TYPICAL EXPANSION JOINT

NOISE BARRIER - TYPE 16

MASONRY WALL
ON TRENCH FOOTING

D-2p 03-14-97

BAR SIZE

#6

#7

#8

SPLICE LENGTH

2'-8"

3'-8"

4'-10'

Expansion joint

filler placed in

sash block recesses.

Cells with vertical

reinforcing and bond

FOOTING WIDTH TRANSITION DETAIL (For locations without footing step) NOTE: Transverse bars not shown

NOISE BARRIER - TYPE 17 MASONRY WALL ON SPREAD FOOTING

> **D-2**q 03-14-97

BAR SIZE

#6

#7

#8

SPLICE LENGTH

2'-8"

3'-8''

4'-10'

Bond beam — uni†s			1'-0" MAX TYP) Bond beam Timit
BOND	BEAM	DETAIL	

Typical both sides of wall

FOOTING WIDTH TRANSITION DETAIL

(For locations without footing step)

NOTE: Transverse bars not shown

NOISE BARRIER - TYPE 18

MASONRY WALL ON
OFFSET SPREAD FOOTING

D-2r 03-14-97

TYPICAL EXPANSION JOINT

DETAIL B
Typical both sides of wall

NOISE BARRIER - TYPE 19
MASONRY WALL ON SHAFT
WITH GRADE BEAM FOUNDATION

D-2s 03-14-97

#6 \times 5'-0" with greased or taped

end penetrating pipe sleeve 8" MIN

1/2" Clearance to face shell

SECTION D-D

Typical Expansion Joint

Backer rod with polyurethane sealant both wall faces

Two #4 full height

→ Pipe to #6

 $\frac{y_4}{}^{\prime\prime}$ DIA x 1'-0" Sched 40 pipe with "6 x 30" grade 40 welded tail as shown lapped with and spaced per C Bars

C Bar

5, 2002 TO APRIL 6, 2003

AUGUST

Solid

grout cap

One - #5 Full height-

C Bar —

Traffic side

Right-of-Way side

NOISE BARRIER - TYPE 20 MASONRY WALL ON SHAFT FOUNDATION

D-2t

03-14-97

Reinforcement C Bars

at center line of wall

Reinforcement C Bar

gravel base

SECTION C-C

- Grout all cells below grade solid, MIN two courses (TYP)

·4" Compacted level crushed

Alternate: Use Douglas Fir 2x8

material for leveling first course

continuous or other suitable

APRIL 6. 2003-07-97 3'-1" 4'-3"1'-4"1 4 91 ′ - 4′′|11′ - 10′ **EFFECTIVE: AUGUST 5. 2002 TO APRIL** 22 4 91

2'-11"4'-3"

8′′

MK BAR BEND NUMBERSIZE TYPE

4

TOTAL LENGTH

1'-5" 11'-5"

*Height may vary if required to provide a smooth profile consistant with the roadway profile

MK NUMBER		BEND TYPE	NUMBER PER DOOR	Х	Y	TOTAL LENGTH	×	≻	X
10	4	50	8	4'-0''	4'-0''	4'-0"		× <u>T</u> 135°	-
12	4	50	8	8'-2"	8'-2"	8'-2"	^ → X ~	A	Bend Type
14	4	90	8	5¾′′	2'-0"	4'-8"	Bend Type	Bend Type	50
16	5	92	- 16	41/2"	11/2"	1'-0"	921	90 "	

-2y 1 of

EFFECTIVE: AUGUST 5, 2002 TO APRIL 5, 2003 TO APRIL 5, 2003 TO APRIL 5, 2004 TO APRIL 5, 20

GEOSYNTHETIC WALL, TYPES 2 & 3

PERMANENT GEOSYNTHETIC WALL CROSS SECTION

(INCLUDES SEISMIC DESIGN)
GROUND ACCELERATION COEFFICIENT, A=0.16g TO 0.30g.

PERMANENT GEOSYNTHETIC WALL CROSS SECTION

(STATIC DESIGN ONLY)
GROUND ACCELERATION COEFFICIENT, A=0.15g OR LESS.

PERMANENT GEOSYNTHETIC WALL TYPES 1-6 STANDARD PLAN D-3

EXPIRES JULY I, 2003

SHEET 1 OF 4 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

01-23-02

NOTES:

DETERMINED.

1. THE LONG-TERM GEOSYNTHETIC DESIGN STRENGTH, TAI SHALL BE DETERMINED IN ACCORDANCE WITH WSDOT TEST METHOD

2. SEE PLANS FOR Tal REQUIRED FOR VARIOUS WALL GEOMETRIES.

925. SEE QUALIFIED PRODUCTS LIST FOR PRODUCTS IN WHICH TAI HAS BEEN

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

GEOSYNTHETIC REINFORCEMENT LENGTH AND DOWELS

TOTAL WALL HEIGHT	CIP CONC FASCIA		GE0SYI	#4 🔻 DOWEL REINFORCEMENT REQUIRED	TOTAL WALL HEIGHT				
H+Hs (ft)	B (ft-in)	TYPE 1	TYPE 2	TYPE 3	TYPE 4	TYPE 5	TYPE 6	N (qty.)	H+Hs (ft)
≤ 5′	1'-0"	6.0	6.0	6.5	6.0	6.0	6.0	2	≤ 5′
6'	1'-0"	6.0	6.0	7.9	6.0	6.0	6.0	3	6'
7'	1'-0"	6.4	6.9	9.3	6.4	6.4	6.4	3	7'
8'	1'-0"	6.9	7.9	10.7	6.9	6.9	7.1	3	8'
9'	1'-0"	7.4	8.9	12.1	7.4	7.4	8.1	3	9'
10'	1'-0"	7.9	10.0	13.5	7.9	7.9	9.0	4	10'
11'	1'-01/2"	8.4	11.0	14.7	8.4	8.4	10.0	4	11'
12'	1'-01/2"	8.8	12.0	16.1	8.8	8.8	10.9	4	12'
13'	1'-1"	9.3	13.0	17.5	9.3	9.3	11.9	4	13'
14'	1'-1"	9.8	13.9	18.9	9.8	9.8	12.8	4	14'
15'	1'-2"	10.5	14.9	20.3	10.5	10.5	13.7	6	15'
16'	1'-2"	11.2	16.0	21.7	11.2	11.2	14.7	6	16'
17'	1'-21/2"	11.9	17.0	22.9	11.9	11.9	15.6	8	17'
18'	1'-21/2"	12.6	18.0	24.3	12.6	12.6	16.6	8	18'
19'	1'-3"	13.3	19.0	25.7	13.3	13.4	17.5	8	19'
20'	1'-3"	14.0	20.1	27.1	14.0	14.1	18.5	10	20'
21'	1'-31/2"	14.7	21.1	28.5	14.7	14.8	19.4	10	21'
22'	1'-3½"	15.4	22.2	29.9	15.4	15.5	20.4	10	22'
23'	1'-4"	16.1	23.2	31.1	16.1	16.2	21.3	10	23'
24'	1'-4"	16.8	24.2	32.5	16.8	16.9	22.3	10	24'
25'	1'-5"	17.5	25.2	33.9	17.5	17.7	23.2	10	25'
26'	1'-5"	18.2	26.3	35.3	18.2	18.4	24.2	10	26'
27'	1'-51/2"	18.9	27.3	36.7	18.9	19.1	25.1	10	27'
28'	1'-51/2"	19.6	28.2	38.1	19.6	19.9	26.1	10	28'
29'	1'-6"	20.3	29.2	39.5	20.3	20.6	27.0	10	29'
30'	1'-6"	21.0	30.3	40.7	21.0	21.3	28.0	10	<i>30'</i>
31'	1'-61/2"	21.7	31.4	42.1	21.7	22.0	28.9	10	31'
32'	1'-61/2"	22.4	32.3	43.5	22.4	22.8	29.9	10	32'
33'	1'-7"	23.1	33.3	44.9	23.1	23.4	30.8	10	33'
34'	1'-7"	23.8	34.3	46.3	23.8	24.2	31.8	10	34'
35'	1'-8"	24.5	35.4	47.7	24.5	24.9	32.7	10	35'

GEOSYNTHETIC REINFORCEMENT SPACING AND STRENGTH

TOTAL WALL HEIGHT H+Hs	DEPTH BELOW TOP OF SURCHARGE	GEOSYNTHETIC REINFORCEMENT VERTICAL SPACING	LC	ONG-TERM GEOS		FORCEMENT ST al 5/in.)	RENGTH REQUIR	PED	TOTAL WALL HEIGHT H+Hs	
(ft)	Z+Hs (ft)	Sv (ft)	TYPE 1	TYPE 2	TYPE 3	TYPE 4	TYPE 5	TYPE 6	(ft)	
	5	0.75	20.3	18.3	19.0	20.3	18.3	19.0		
UP TO 5	5	5	1.0	27.1	24.5	25.4	27.1	24.5	25.4	UP TO 5
	5	1.25	<i>33.8</i>	30.6	31.7	33.8	30.6	31.7	1	
	0 to 10	0.75	34.8	34.6	36.5	34.8	34.6	36.5		
5 < H+Hs ≤ 10	0 to 10	1.0	46.4	46.1	48.7	46.4	46.1	48.7	5 < H+Hs ≤ 10	
71	0 to 10	1.25	58.0	57.6	60.9	58.0	57.6	60.9	1	
	0 to 10	0.75	34.8	41.5	48.3	34.8	38.9	44.5		
	10.1 to 20	0.75	63.8	67.9	73.5	63.8	67.9	73.5	=	
	0 to 10	1.0	46.4	55.4	64.5	46.4	51.9	59.3]	
10 < H+Hs ≤ 20	10.1 to 20	1.0	<i>8</i> 5.0	90.6	98.0	85.0	90.6	98.0	10 < H+Hs ≤ 20	
	0 to 10	1.25	<i>58.</i> 0	69.2	80.6	58.0	64.9	74.1	1	
]	10.1 to 20	1.25	106	113	122	106	113	122	1	
	0 to 10	0.75	36.8	51.7	62.0	34.8	44.0	52.4		
]	10.1 to 20	0.75	63.8	73.0	83.3	63.8	73.0	81.4	1	
]	20.1 to 30	0.75	92.8	102	110	92.8	102	110	1	
]	0 to 10	1.0	49.1	69.0	82.6	46.4	58.7	69.9	1	
20 < H+Hs ≤ 30	10.1 to 20	1.0	<i>8</i> 5.0	97.4	111	<i>8</i> 5.0	97.3	109	20 < H+Hs ≤ 30	
]	20.1 to 30	1.0	124	136	147	124	136	147		
11	0 to 10	1.25	61.3	86.2	103	58.0	73.4	87.3	-	
1	10.1 to 20	1.25	106	122	139	106	122	136	-	
1	20.1 to 30	1.25	155	170	184	155	170	184	-	
	0 to 10	0.75	38.7	56.9	68.8	34.8	46.6	56.4		
1	10.1 to 20	0.75	63.8	78.1	90.1	63.8	75.6	85.4	-	
1	20.1 to 30	0.75	92.8	104.5	114	92.8	104.5	114	-	
1	30.1 to 35	0.75	107	119	129	107	119	129	-	
11	0 to 10	1.0	51.6	75.8	91.8	46.4	62.1	75.2	-	
11	10.1 to 20	1.0	85.0	104	120	85.0	101	114	-	
30 < H+Hs ≤ 35	20.1 to 30	1.0	124	139	152	124	139	152	30 < H+Hs ≤ 35	
1	30.1 to 35	1.0	143	159	172	143	159	172	1	
]	0 to 10	1.25	64.4	94.8	115	58.0	77.6	93.9	1	
]	10.1 to 20	1.25	106	130	150	106	126	142	† 	
1	20.1 to 30	1.25	155	174	191	155	174	191	† 	
1	30.1 to 35	1,25	179	198	215	179	198	215	1	

PERMANENT GEOSYNTHETIC WALL TYPES 1-6 STANDARD PLAN D-3

SHEET 2 OF 4 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

01-23-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

4 CONSTR. JOINT W/

ROUGHENED SURFACE

1> N = #4 ♥ VERTICAL DOWEL REINFORCEMENT REQUIRED @ 5'-O" HORIZONTAL O.C. 201 #4 @ 1'-6" O.C. W/ 2'-0" MIN. SPL. 2'-0" Q GEOTEXTILE FOR UNDERGROUND DRAINAGE 200 #4 @ 1'-6" O.C. 6" MIN. CLASS A, LOW SURVIVABILITY __1'-0" MAX. (ONLY NEEDED IF A GEOGRID IS USED FOR GEOSYNTHETIC REINFORCEMENT) 202 #4 1'-6" O.C. WHEN H ≥ 20'-0" 3 1' MIN. OVERLAP TOP & BOTTOM 40 FRACTURED FIN FINISH **GEOSYNTHETIC** SEE DETAIL THIS SHEET LAYERS € 3" DIAM. WEEP HOLES AT -(3)-- 10'-0" HORIZ. SPACING GRAVEL BORROW BACKFILL N.S.T. 3:1 4'-0" MIN. FINISHED GROUND LINE 1 1/2" MIN. CLR. (TYP.) EXCEPT IF H ≤ 20'-0" THEN WALL AND FTG. REINFORCEMENT IS CENTERED " MIN. CLR. 100 #4 @ 1'-6" O.C.-'n 101 #4 @ 1'-6" O.C. W/ 2'-0" MIN. SPL. GEOSYNTHETIC REINFORCEMENT LENGTH AND LIMITS OF STRUCTURE EXCAVATION CLASS B INCL. HAUL, WALL BACKFILL AND COMPACTION.

PERMANENT GEOSYNTHETIC RETAINING WALL WITH CIP CONC. FASCIA

TYPICAL SECTION

♥ = EPOXY COATED
N.S.T. = NOT STEEPER THAN

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

SHOTCRETE FACING DETAIL

SECTION

PERMANENT GEOSYNTHETIC RETAINING WALL WITH SHOTCRETE FACING

PERMANENT GEOSYNTHETIC WALL TYPES 1-6 STANDARD PLAN D-3

SHEET 3 OF 4 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

so 01<u>-23-02</u>

ON FILE BTAINED WE

STATE DESIGN ENGINEER DATE
Washington State Department of Transportation

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. SET FORM ON COMPLETED LIFT.

2. UNROLL GEOSYNTHETIC AND POSITION IT SO THAT A 4'-O" WIDE "TAIL" DRAPES OVER THE FORM. IF A GEOGRID IS USED FOR THE GEOSYNTHETIC REINFORCEMENT, POSITION GEOTEXTILE TO PREVENT BACKFILL FROM

SPILLING THROUGH GEOGRID OPENINGS.

PLACE THE BACKFILL UNTIL THE BACKFILL IS UP TO HALF OF THE REQUIRED VERTICAL GEOSYNTHETIC LAYER SPACING.

4. PLACE A WINDROW TO SLIGHTLY GREATER THAN FULL LIFT HEIGHT AGAINST THE FORM.

5. PLACE THE GEOSYNTHETIC "TAIL" OVER THE WINDROW AND LOCK INTO PLACE WITH BACKFILL.

6. COMPLETE BACKFILLING UNTIL THE COMPACTED BACKFILL LAYER THICKNESS IS EQUAL TO THE REQUIRED VERTICAL GEOSYNTHETIC LAYER SPACING.

RESET THE FORM AND REPEAT THE SEQUENCE.

GEOSYNTHETIC WALL CONSTRUCTION SEQUENCE

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. FORMING TWO LAYERS AT A TIME WILL HELP MAINTAIN THE WALL FACE BATTER.
- 2. CONSTRUCTION JOINTS IN THE CONC. FASCIA BASE SHALL BE SPACED AT 120.00 FT. MAX.
- 3. FOR DETAILS OF EXPANSION JOINTS IN CONC. FASCIA, SEE STANDARD PLAN D-1e, SHEET 2, ELEVATION.

ELEVATION

PLACE STRAPS AT 4' TO 6' CENTERS ALONG WALL FACE.

TEMPORARY FORM SYSTEM DETAIL (OPTIONAL)

PERMANENT GEOSYNTHETIC WALL TYPES 1-6 STANDARD PLAN D-3

SHEET 4 OF 4 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

01-23-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

Vashington State Department of Transportation

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

CONDITION A

CONDITION B

CONDITION A OR CONDITION B WITH GEOTEXTILE

ALTERNATE DETAIL

TYPICAL FOR CONSTRUCTION WITH SHORING.

DATE

BACKFILL AND DRAINAGE FOR RETAINING WALLS **STANDARD PLAN D-4**

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE REMOVED GURADRAIL, CURB & METAL CRIB WALLS.

APPROVED FOR PUBLICATION

'KIL 6. 2003

Clifford E. Mansfield

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

12/11/98

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

REVISION

2002 TO APRIL 6, 2003

AUGUST

EFFECTIVE:

CROSS-CONNECTING WIRE PLACEMENT, END CELLS

STANDARD PLAN D-6

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

APPROVED FOR PUBLICATION Clifford E. Mansfield 6/19/98 DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

TYPE 1 ANCHOR (FOR USE IN EARTH)

TYPE 2 ANCHOR (FOR USE IN COMBINED EARTH AND ROCK)

SECTION A-A

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

1. Two twin base wire rope clips at 3'' centers may be substituted for three u-bolted wire rope clips shown.

SLOPE PROTECTION STANDARD PLAN D-7a

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

Title changed; cable references changed to wire rope.

APPROVED FOR PUBLICATION

Clifford E. Mansfield

10/06/99

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

ELEVATION CONCRETE SLOPE PROTECTION

(Pneumatically placed or poured in place cement concrete shown)

TYPE 1 SLOPE PROTECTION FILL SECTION DETAIL (Semi-open concrete masonry units shown)

TYPE 2 SLOPE PROTECTION CUT SECTION DETAIL

(Pneumatically placed or poured in place cement concrete shown)

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6.

SIDE ELEVATION

(For fill section on lower roadway)

*Fill slope shall be rounded to allow placement of concrete slope protection.

CONCRETE SLOPE PROTECTION STANDARD PLAN D-9

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield

12/11/98

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATI

EFFECTIVE: AUGUST 5. 2002

Concrete
Slope
protection
Embankment slope
protection
SECTION

NOTES

- The design and shape of the semi-open concrete masonry unit shown is only one example of the products that may be used.
- 2. The Type 3 Slope Protection Curb Detail shall be used only when the lower roadway cross section requires a curb.

SKEWED BRIDGE PLAN

(Semi-open concrete masonry units shown)

5, 2002 TO

AUGUST

TYPE 3 SLOPE PROTECTION CURB DETAIL (Elevation)

(Semi-open concrete masonry units shown)

ALEXANDER YOUNG STATE OF WASHINGTON

Principal Architect

CONCRETE SLOPE PROTECTION STANDARD PLAN D-9

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL INNONMERPHING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE OVERALL, BROWED BY THE BINGWERF AND APPROVAD FOR PUBLICATION, IS REST ON HILE
AT THE MEMBERSTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE GITAMED
UPON REQUEST.

APPROYED FOR PUBLICATION

Clifford E. Mansfield 12/11/98

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

DATE NUMERALS

1 of 1

bolts and malleable washers.

 $\frac{1}{2}$ "x3"x3" Bearing plate with 1" DIA hole

Base plate

TYP >

late

Б

-⊕

TS 3"x6"x1/4" Steel post

 $\frac{3}{4}^{\prime\prime}$ DIA $\times 7\frac{1}{2}^{\prime\prime}$ bolt AASHTO M 164

.1 1/4" DIA x8" Rod with lockwasher threaded 2" (TYP)

- ½''×5'' Lag bolt (TYP)

Distribution plate

4 x "varies", treated timber paving bulkhead (fasten to timber deck with 5%" DIA lag bolts at 2'-0" centers)

face of distribution plate

Deck plate shall be beveled as required at

5/8" Steel deck plate

11/4" DIA Hole (TYP)

Post

BASE PLATE DETAIL

- 2. All timber and lumber shall be #2 or better and untreated Douglas fir-larch.
- All piling shall be untreated Douglas fir and shall be driven to develop a minimum load bearing capacity of 15 tons.
- 4. Blocking for frame bents shall be proportioned to carry a minimum load of 15 tons per post.
- 5. All hardware shall be black, ungalvanized.
- 6. Each deck plank shall be nailed to each stringer with two 7" spikes, number 1 or larger.
- On 17'spans, stringers shall be 6x16 S1E. On 15' spans, stringers shall be 5x16 S1E. Two-lane bridges shall use thirteen lines of stringers, one-lane bridges shall use seven lines of stringers.
- 8. Overlay thickness must be sufficient to cover bolts.

DISTRIBUTION PLATE DETAIL

BACKING PLATE DETAIL

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

PILE OR FRAME DETOUR BRIDGE WITH ASPHALT OVERLAY

USE ONLY FOR TEMPORARY BRIDGES

STANDARD PLAN E-2

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Brian Ziegler STATE DESIGN ENGINEER 5/29/98

FFECTIVE

EFFECTISECTIONUBBIST 5, 2002 TO APRIL 6, 2003

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

RING AND COVER

6, 2003

APRIL

AUGUST

MANHOLE COVER

MANHOLE RING AND COVER FOR BRIDGES STANDARD PLAN E-5

EXPIRES JANUARY 17, 1999

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

APPROVED FOR PUBLICATION

Brian Ziegler

STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

TYPE A CURB STRAIGHT SECTION

TYPE A CONNECTING DIVIDER **NO. 2**

TYPE A CONNECTING DIVIDER NO. 1

TYPE C CURB

TYPE C NOSING

PLAN VIEW

The main body of the curb and the longitudinal rib shall form a uniform transition from a Type C section to a Type A (back to back) section.

TYPE A CONNECTING DIVIDER **SECTION**

LONGITUDINAL SECTION THROUGH TRANSVERSE RIB

TYPE A AND C NOSING ELEVATION

TYPE A NOSING

PRECAST TRAFFIC CURB **STANDARD PLAN F-2**

08/27/99

APPROVED FOR PUBLICATION

Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

BY DATE REVISION

Deleted table & radial section identified rebar

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

BLOCK TRAFFIC CURB

AUGUST 5, 2002 TO APRIL 6, 2003

TYPE 1 (ASPHALT)

TYPE 2 (ASPHALT)

TYPE 3 (ASPHALT)

TYPE 4 (CEMENT CONCRETE)

TYPE 5 (CEMENT CONCRETE)

(CEMENT CONCRETE)

TYPE 4a (CEMENT CONCRETE) See Note 2

TYPE 5a (CEMENT CONCRETE) See Note 2

EXTRUDED CURB

F-2b

03-14-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. See Standard Specifications for anchoring methods.
- Type 4a and Type 5a curbs do not require steel tie bars or adhesive for anchoring.

SPACING OF ANCHOR BARS

EXTRUDED CURB

F-2b 03-14-97

CURB RAMP

Ramp texture TYP

(see detail & Note 7)

Flush with roadway

(See Note 10)

surface or gutter pan

NOTE: Grade area behind sidewalk

to transition to existing ground.

Cement Concrete Barrier Curb-

Flush with roadway

(See Note 10)

surface or gutter pan

3/8" Expansion

-joint (TYP)

-Back of sidewalk

SIDEWALK AND CURB RAMP DESIGN C

2003

6

APRIL

2002

ú

AUGUST

EFFECTIVE:

NOTE: Curb Ramp Designs A and B are the preferred designs. Use Curb Ramp Design C

** X spaces at 16'-0"

(see contract plans)

-Landing (See Note 6)

EXPIRES MAY 3, 2000

CEMENT CONCRETE SIDEWALK AND **APPROACH DETAILS** STANDARD PLAN F-3

SHEET 1 OF 2 SHEETS

2/09/00

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATI THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED MODIFIED "CURB RAMP" AND "CURB RAMP ALTERNATE"

DATE

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION REVISION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 NOTES

4. This area may also incorporate the following; Decorative paving, Open graded paving. Raised or leveled planters, and gutter section shown Benches or seating areas.

5. Curb ramps shall be poured as a separate unit from the sidewalk, isolated by expansion joint material on all sides except at end of ramp next to the roadway.

cleaned and edged.

flow past curb ramps.

6. Minimum landing width is 4' for new construction. For alterations, the minimum is 3'. See Contract

1. A minimum 3' wide accessible route shall be maintained in all pedestrian accessible areas.

3. Inlets shall be located so that runoff does not

2. Contraction joints shall be placed along sidewalks at 15' maximum spacing. All joints shall be

- 7. Ramp texturing is to be done with an expanded metal grate placed and removed from wet concrete to leave a diamond pattern as shown. The long axis of the diamond pattern shall be perpendicular to the curb. Grooves shall be $\frac{1}{8}$ " deep and $\frac{1}{4}$ wide.
- 8. See Contract Plans for mounting height of Sign
- 9. Cement concrete approaches shall be constructed of air-entrained concrete Class 3000 and may be poured integral with curb.
- 10. When a flush condition is not feasible, the change in elevation between surfaces shall not exceed $\frac{1}{2}$. The edge of the higher surface, up to $\frac{1}{4}$ " in height, may be vertical. The edge of the higher surface, up to 1/2" in height, shall be beveled with a slope no steeper that 2:1.

STANDARD APPROACH - HALF ELEVATION

Note: Use Optional Approach only when a sidewalk is used at the back of the approach and the sidewalk is set back a minimum of 6 feet from curb.

STANDARD APPROACH - HALF ISOMETRIC

OPTIONAL APPROACH - HALF ISOMETRIC

EXPIRES MAY 3, 2000

2002

CEMENT CONCRETE SIDEWALK AND **APPROACH DETAILS** STANDARD PLAN F-3

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATI THE ORIGINAL, SIGNED BY THE REGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY DE OBTAINED APPROVED FOR PUBLICATION

REVISED NOTES 6 & 8. ADDED NOTE 10. DATE REVISION

Clifford E. Mansfield 02-09-00 DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

(7' MIN)

SIGN INSTALLATION

BEHIND TRAFFIC BARRIER

EDGE OF TRAVELED WAY_

ON STEEP FILL SLOPES

MIN

CURB

SIGN INSTALLATION

IN CURB SECTION

EDGE OF TRAVELED

WAY

-SIGN

(7' MIN)

SECONDARY SIGN INSTALLATION ON

EXPRESSWAYS AND FREEWAYS

NOTES

 Refer to the Sign Specification Sheet of the contract for the 'V' and 'W' distances

SIGN WITH SUPPLEMENTAL PLAQUE INSTALLATION IN FILL SECTION

SHOULDER 12' MIN Q DITCH MIN 2' MIN V (7' MIN)

MULTIPLE SIGN POST INSTALLATION IN DITCH SECTION

SIGN

TRAFFIC BARRIER

SLOPE BREAK

SIGN INSTALLATION
IN DITCH SECTION

GROUND MOUNTED SIGN PLACEMENT STANDARD PLAN G-1

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON PEOLIFET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 09-12-01

STATE DESIGN ENGINEER

Washington State Department of Transportat

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

FFECTIVE: AUGUST 5, 2002 TO

base plate

END VIEW

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

AUGUREVISION, AUG

03/2002 ADDED MATERIALS SPECIFICATIONS BY APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-04-02 STATE DESIGN ENGINEER

ASTM A 36

or ASTM A 53

A 500 Grade B

ASTM A 36

STD. SPEC.

9-06.5(3)

AASHTO M 111

AASHTO M 232

Washington State Department of Transportation

LENGTH 60' or less 3/4′′ 7/8′′ 5/8′ 61' to 90' 81/2 1 ′′ 91' to 120'

— Horizontal diagonal when

Interior diagonal when required (see Truss

Framing Sheet)

Alternate Joint Detail is used

DAPRIL 6, 2003 91/2" 11/4" 121' to 150'

PLAN

See Note 4

TYPICAL JOINT DETAIL

Chord shown - End Post Similar

ALTERNATE JOINT DETAIL

See Note 4

Not for connections between vertical diagonals and chords.

 -45° for chords over $\frac{1}{4}$ " thick (Square for $\frac{1}{4}$ " or less)

END POST OR CHORD SHOP SPLICE

PLAN

See Note 9

SECTION C-C

SECTION D-D

Diagonal shall be —

slotted for gusset

PLAN

 \triangle

 $\frac{1}{2}$ 3/4

7/8

7/8

1 1/4

 $1\frac{1}{2}$

 $1\frac{3}{8}$

1 5/8

23/8

21/8

21/2

2 1/8

3%

LENGTH

40′

50′

60′

61′

70′

80′

90′

91′

100′ 110'

120′

130′

140′

For span lengths not listed, interpolate values of \triangle .

Fabricate truss with chords curved to provide camber. Do not camber by using shims between chord at splices.

DEAD LOAD CAMBER

CHORD FIELD SPLICE	
(NO CHORD FIELD SPLICE PERMITTED MIDDLE THIRD OF SPAN LENGTH)	ΙN

	ALTERNATE JOINT DETAIL DATA					
SPAN LENGTH	е	d	BOLT Q DIAMETER			
60' or less	1 1/4′′	21/2′′	3/4′′			
61' to 90'	11/2′′	3′′	7⁄8′′			
91' to 120'	11/2''	3′′	7/8′′			
121' to 150'	1 3/4′′	31/2′′	1 ''			

3/6" Gusset plate. See Note 7

- Bolts K

F Bolt circle

Diameter of hole in

flange $\frac{1}{16}$ larger than

chord outside diameter.

SIGN BRIDGE STANDARD PLAN G-2

SHEET 2 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-04-02 STATE DESIGN ENGINEER

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

03/2002 CORRECTED WELDING SYMBOL

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

DATE AUGUREVISION, ZUUZ

BY

VIEW B-B

Washington State Department of Transportation

Structure members

Pole and bracket wire

CONDUIT PLACEMENT

To sign luminaire

isolation switch

enclosure

3. Details not shown are same as Chord to End Post Connection Type R, omitting the $\frac{3}{4}$ " plate stiffener on the tee member.

4. Ends of diagonals shall be cut to fit neatly against chord or post. Fillet weld size to be diagonal tube or pipe thickness plus $\frac{1}{16}$.

5. Horizontal diagonals must join chords where vertical diagonals connect (panel points).

6. Interior diagonals shall be placed at panel points, 40' maximum spacing. Locate symmetrically about centerline of span if possible. An interior diagonal is not required at span ends.

7. Omit gussets or shims where interior diagonals are not required at chord field splice.

8. Dimension shall equal chord thickness or $\frac{1}{4}$, whichever is less.

9. No post splices permitted in lower third of height, nor closer than 3'-0" to bottom of chord. No chord shop splices permitted in middle third of span. Maximum of one splice in each end post.

10. Drill hole in chord at each diagonal and strut. Diameter shall be 1" for spans over 60'. For spans 60' or less, diameter shall be $\frac{3}{4}$.

6

2002

END POST BASE WITH HANDHOLE LOCATION

HANDHOLE DETAIL

EXPIRES JUNE 29, 2004

SIGN BRIDGE STANDARD PLAN G-2

SHEET 3 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

STATE DESIGN ENGINEER

Washington State Department of Transportation

06-04-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

03/2002 DELETED BALLAST BOX AND ATTACHMENT DETAILS MAS

DATE AUGUSTION 2002 BY

IL b. ZUUJ

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

 $\frac{3}{4}$ " Chamfer

Galvanizing

— 2″ Clearance

Notch as required to clear

shaft reinforcment when D = 4'-0''

11/16" DIA Holes

End posts shall be erected on a true vertical. Plumbing shall be accomplished by adjustment of the nuts located in the

base. After plumbing, tighten upper nut on anchor bolt $\frac{1}{4}$ turn min. to $\frac{1}{3}$ turn max. past snug tight.

PL 5/4" × 21" × 1'-9"

DIA

Provide screen around base.

See SCREEN DETAIL

Clearance

Anchor bolt - $1'' \times 2' - 9'$

heavy hex nuts.

 $1\frac{1}{4}$ " rigid galv. steel conduit

by the engineer

Conduit Cap-

Finish

, - 6 MIN

Conduit Cap-

9

4

to be installed where directed

Symmetrical about © except conduit

N equal spaces

Base elevation -

ELEVATION

BAR (2) #4 LAP SPLICE DETAIL

Stainless steel self-

tapping $\frac{1}{4}$ " ϕ screw

with S.S. washer,

bolt

SCREEN DETAIL

spa. at ≈ 9" ctrs.

- Top of

base

from bottom of

foundation

leveling nut to

top of foundation

Span Length

Length 7'-0" 10 5'-6" 8'-6" 6'-6' 8'-6" 10'-0" 11'-6" Symmetrical about Conduit and anchor bolts same as Type 1 spaces $\frac{3}{4}$ Chamfer 2" Clearance → 1'-0"(TYP) Finishground (12)— ----- Clearance 10'-0' 3'-0" VIEW H-H ELEVATION

FOUNDATION - TYPES 2 AND 3

MATERIAL SPECIFICATIONS Class 4000P SHAFT CONCRETE Class 4000W ALL OTHER CLASS 4000 CONCRETE STEEL AASHTO M 31 REINF. BAR ASTM F 1554 ANCHOR RODS GRADE 105 ANCHOR NUTS AASHTO M 291 ANCHOR AASHTO M 291 WASHERS ANCHOR BOLT STD. SPEC. NUTS, AND 9-06.5(4) WASHERS ANCHORAGE AASHTO M 232 GALVANIZING ΔSTM Δ 36 TEMPLATE

SIGN BRIDGE FOUNDATIONS

STANDARD PLAN G-2a

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-04-02 STATE DESIGN ENGINEER

Washington State Department of Transportation

SIGN BRIDGE FOUNDATIONS

Foundation

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED ADDED MATERIALS SPECIFICATIONS AND SCREEN DETAIL 03/2002 DATE REVISION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

FOUNDATION - TYPE 1

Construction joint with $5\frac{1}{2}$ × $1\frac{5}{8}$ × 2'-0" shear key

Hemispherical Post Finial, $\frac{1}{8}$ MIN thickness. Install

snug fit

Removable raintight hand

steel (ASTM F-593) screws

HANDHOLE DETAIL

DATE

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

ADDED MATERIAL SPECIFICATIONS CORRECTED WELD SYMBOL

hole cover with gasket.

FINIAL DETAIL

after galvanizing.

elevation

base plate

2" DIA Holes-

See Handhole Detail. 2'-6" DIA -

Bolt circle

for anchor bolts

from main roadway

1'-41/2''

O

ELEVATION

0

POST BASE DETAIL

Ends of diagonals shall be cut to fit

- 1. Vertical and horizontal clearance requirements shall be as
- No post splices permitted in lower third of height, nor closer than 3^{\prime} - $0^{\prime\prime}$ to bottom chord. No chord shop splices permitted in first two-thirds of the span. Only one splice permitted in post. For post or chord shop splice details, see Standard Plan "Sign Bridge".
- All bolt holes shall be drilled, and the diameter shall be $\frac{1}{16}$ larger than the nominal bolt diameter except as noted.

CHORD SELECTION Sign Area Chord Size (X times Y) NOM DIA Wall
/
(ft) ²
50 or less 2" .154"
50+ +o 100 2" .218"
100+ to 150 21/2" .203"
150+ to 200 3" .216"

x/2" slot for allen hollow

set screw with dog

point (corrosion

 $\frac{1}{2}$ " DIA steel bolt, $\frac{1}{2}$ " long, with

nut for

ground.

resisting metal or

1/8" Plate MIN

coatina)

Total Sign Area∗	POST	Size
$\Sigma(X \text{ times } Y)$ $(ft)^2$	OD	Wall
50 or less	16′′	.500′′
50+ to 100	16′′	.500′′
100+ +o 150	18′′	.438′′
150+ +o 200	18′′	.500′′
200+ +o 250	20′′	.500′′
250+ to 300	24''	.375′′
300+ to 350	24''	.438′′
350+ to 400	24''	.500′′

POST SELECTION

*Sum of sign areas for double cantilever

MATERIAL SPECIFICATIONS PIPE ASTM A 36 (Chords, or ASTM A 53 Grade B, Diagonals, Struts and Type E or S, or A 500 Grade B Posts) PLATES & ASTM A 36 SHAPES BOLTS, NUTS STD. SPEC. AND WASHERS 9-06.5(3) PIPE, PLATE & SHAPE AASHTO M 111 GALVANIZING FASTENER AASHTO M 232 GALVANIZING

S

O

EXPIRES JUNE 29, 2004

CANTILEVER SIGN STRUCTURES STANDARD PLAN G-3

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-04-02

STATE DESIGN ENGINEER

TYPICAL TRUSS DETAILS

neatly against chords.

t = chord wall thickness

3%" set screw-

90° intervals

Drill and tap wall — for $\frac{3}{8}$ " allen set screw

Hand hole

frame

All diagonals and struts shall be $1\frac{1}{4}$ " pipe (0.140" wall)

CHORD TO POST CONNECTION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

·Hole in plate 1/16" larger than post outside diameter

Bottom of lighting bracket -

BY

on anchor bolt

-3(7)#10 -2(6)#10

(5)#4 Hoops

Stainless steel self-

After post is aligned,

tighten upper nut 1/4

turn min. to 1/3 turn

max. past snug tight.

 $\frac{3}{4}$ " Chamfer (TYP)

Construction joint with 2 shear keys $5\frac{1}{2}$ × $1\frac{1}{2}$ × 2 ′ - 6 ′′

23/4" 61/4" 5" 5" 61/4" 23/4"

(a)

*****@_@

3'-0"

PLAN

- 18 #10

4'-0"

Provide screen

See SCREEN DETAIL

 (∞)

`. `. `.

5,4

4,

3" Clearance —

(2)#4 Spiral-

13(1)#10

around base.

200

9

PRIL

FFECTIVE

BAR (2) #4 LAP SPLICE DETAIL

A LITTE -(A) SECTION EXPIRES JUNE 29, 2004

BY

CANTILEVER SIGN STRUCTURE FOUNDATIONS

STANDARD PLAN G-3a

SHEET 1 OF 2 SHEETS

A. W

THE OF WASHINGTON

APPROVED FOR PUBLICATION

Harold J. Peterfeso

06-04-02 STATE DESIGN ENGINEER Washington State Department of Transportation

BAR LIST - TYPE 1

All dimensions are out to out

6

APRIL

2002

Ď

AUGUS

MARK	LOCATION	NO	SIZE	LENGTH	BENDING DIAGRAM
1	Shaft - vertical	26	10	12'-2"	Str 5"
2	Shaft - spiral	2	4	117'-2''	135
3	Cap beam - horitzontal	14	9	13'-1''	$1 \sim 7/2^{\circ} R$ $1 \sim 1 $
4	Cap beam - sides	4	9	12'-10''	2'-8" (5) (8)
5	Cap beam hoop	8	4	10'-7''	3 10'-7" 10'-4" 21 Spaces at 6"
6	Pedestal - vertical	12	10	7′-11′′	5'-0"
7	Pedestal - vertical	6	10	7′-8′′	6 3 -0
8	Pedestal - hoop	7	4	11'-8''	

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

2003

REVISION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

ADDED MATERIALS SPECIFICATIONS AND SCREEN DETAIL

DATE

BAR LIST - TYPES 2 AND 3

		All dimensions are out to out	BENDING DIAGRAM				
		TOTAL SIGN AREA				5"	
FOUNDATION TYPE	MARK	LOCATION		0 sf less		sf+ Osf	135°
			NO	SIZE	NO	SIZE	(1) 2'-8" 6"
	1	Pedestal hoop	5	4	5	4	2′-6″.
	2	Foundation wall ties	8	5	8	5	1′-11″
2 and 3	3	Foundation wall horizontal	4	5	4	5	Str T
	4	Foundation wall vertical	12	10	16	10	7½" R
	5	Foundation wall vertical	22	6	34	6	Str -
2	6	Foundation wall horizontal	10	5	12	5	
3	6	Foundation wall horizontal	12	5	14	5	

VALUES OF Z

FOUNDATION TYPE 2 AND 3

F	Total S	ign Area	C-:1	
Foundation Type	200 sf	200 sf+	Soil Type	
Турс	or less	-400 sf		
2	8'-0''	10'-0''	Average	
3	10'-0''	12'-6''	Poor	

CANTILEVER SIGN STRUCTURE FOUNDATIONS

STANDARD PLAN G-3a

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-04-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED REVISED DIMENSIONS ON REBAR MARK (
AND HEIGHT ABOVE GROUND DATE

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

2003

TS 4" x 4" x 3/16", 4" x 6" x 3/16",

6" x 6" x 3/16", OR 6" x 8" x 3/16"

A 501 (GALV.) PER AASHTO M111.

ASTM A 500 GRADE B (GALV.) PER AASHTO M111 OR ASTM

3" MAX.

CLASS 3000 CONCRETE

SINGLE POST DETAIL

ELEVATION TWO POST SIGNS

POST INS	TALLAT	ION TABLE						
POST SIZE	D	NOTCH DEPTH & HOLE DIAM.						
4 x 4	3'-0"	NOT REQ'D						
4 x 6	4'-0"	1 1/2"						
6 x 6	4'-0"	2"						
6 x 8	4' 0"	3"						
6 x 10	5'-0"	NOT REQ'D						
8 x 10	5'-0"	NOT REQ'D						
8 x 12	6'-0"	NOT REQ'D						

MULTIPLE POST DETAIL *NOTCH REQUIRED FOR MULTIPLE

POST INSTALLATIONS ONLY

0.35X 0.35X [∠]0.15X 0.15X-3" MIN. **SELECTED BACKFILL MATERIAL ALL POSTS** SAME SIZE **ELEVATION THREE POST SIGNS**

1/2" DIAMETER

HOLES TYP.

4" MIN. CL B

(SEE STANDARD

SPEC. 9-03.12(1)B)

BACKFILL

MATERIAL

(SEE NOTE 3)

NOTES

- 1. See "Sign Specifications" sheet of contract for H₁, H₂, H₃, H₄, X & Y
- 2. Post sizes 6" X 10", 8" X 10" & 8" X 12" can only be installed behind traffic barrier.

2002

- 3. Use two 3/8" X 3" lag screws to hold the sign posts into the foundation sleeve.
- 4. See Std. Plan G-1 for sign placement requirements.

ROADSIDE SIGN STRUCTURES ON TIMBER POSTS STANDARD PLAN G-4a

CONCRETE FOUNDATION SLEEVE DETAIL (TO BE USED WHEN PLACING POST IN A PAVED AREA)

WOOD

POST

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE Added multiple post detail; revised foundation

APPROVED FOR PUBLICATION

Harold J. Peterfeso 01-23-02

EFFECTIVE: AUGUST 5, 2002 TO APRII

sleeve; deleted back slope detail

ELEVATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- Mileposts of the type specified shall be placed as shown hereon. If conditions preclude placement at the correct location, the mileposts may be moved as much as 50° in either direction; mileposts that cannot be placed within this degree of accuracy shall be omitted entirely.
- Mileage for mileposts shall commence at the south or west terminus of the highway route and progress in a north or east direction.
- 3. All Spur and Equation signs shall have "S" and "B" plagues.
- Mileposts in cut sections shall be placed at back of ditch. Milepost markers may be placed up to 30' from the edge of the traveled way.
- See "Washington State Sign Fabrication Manual" for the dimensions and colors of the Milepost/Plaque.

PLACEMENT OF MILEPOST AT CUT SECTION

MILEPOST

PLACEMENT OF MILEPOST AT FILL SECTION

G-7

7 1 of

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 H_1 , H_2 , H_3 = Distance from top of stub post to top of post assembly. Upper post V = Elevation difference from edge of lane to bottom of sign. W = Distance from edge of lane to center of nearest post. X = Horizontal measurement of sign.Y = Vertical measurement of sign(s).Z = Length of longest post assembly, minus $\frac{1}{2}$ of the Y distance. See "Sign Specifications" sheet of Contract Plans for H, V, Bottom oflowest sign W, X and Y values. 0.2X For material requirements, see Standard Specification 9-06.16. Edge of connection (See detail) — Lane Edge of Lower post- $\frac{3}{4}$ " DIA × 2" bolt with washer and nut (eight required at each joint) Upper post Type 1, 2a or 2b base connection Concrete -> foundation 13/6 "DIA holes in post flange TWO POST SIGN INSTALLATION THREE POST SIGN INSTALLATION SIDE VIEW SIGN INSTALLATION DIMENSION TABLE FOR TYPE 1 BASES Hinge plate (four required on each post) BASE CONNECTION DATA Lower post-POST SIZE FOUNDATION DATA BOLT DIMENSIONS ALTERNATE PRIMARY SIZE TORQUE BARS Τ, В HINGE CONNECTION DETAIL 63/4 23/4' 1/2" 2'-0" 7'-0' 8-#7 $W10\times22$ 1"×3¾ 60 ft-lbs W10x26 All multiple steel post signs 50 ft-lbs 2'-0" 6'-0" 8-#6 ½′′×3¾′ W8×18 W8×21 Hinge Connection Bolts shall be tightened $\frac{1}{2}$ turn past snug tight. W6×12 45 ft-lbs 5 5/8 $1\frac{3}{8}$ $1\frac{1}{4}$ 3/4′′ 3/8' 1'-6' 5'-0" 8-#5 Hinge plate shall be Type B-650 as manufactured by Transpo Industries, Inc., or an equal that has been crash tested and 25 ft-lbs 3/8′ 4'-0'' 3/4′′ 1'-6' 8-#5 W6×12 14' min. 6′ min. Edge of approved by FHWA. Primary posts are AASHTO M 183 Alternate posts are AASHTO M 222 or AASHTO M 223, Grade 50 $\,$ shoulder Post Depth — 28 Gage \circ 0 Bottomof Ditch -Bol+ DIA + 1/16 BACK SLOPE DETAIL Bolt, DIA Ground line BRASS SHIM DETAIL at ¢ post Furnish two .012" \pm thick and two .032" \pm thick shims per post KEEPER PLATE Galvanized Sheet Steel W6 AASHTO M32 spiral-6" pitch. Three flat turns on top', one flat turn on bottom.

TYPE 1 BASE CONNECTION DETAIL

Three washers per bolt

SECTION A-A

Section shown is for installations at right shoulder or in gore, Reverse plate slot bevels for installation at left shoulder. Slots are typical for top and bottom plates.

EFFECTIVE: AUGUST 5. 2002 TO APRIL

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

21/2"

Cleárance

-Concrete Foundation

TYPE 1 BASE (Drilled shaft permitted)
FOUNDATION DETAIL

9-99 MODIFIED BACK SLOPE DETAIL

Bars (See

Dimension

SHEET 1 OF 3 SHEETS APPROVED FOR PUBLICATION

10/06/99 Clifford E. Mansfield

EXPIRES JUNE 29, 2000

ROADSIDE SIGN STRUCTURES

FOR MULTIPLE

STEEL POST SIGNS

STANDARD PLAN G-8a

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

OLYMPIA, WASHINGTON

REVISION AUGUST 5, 2002 TO APRIL 6, 2003

Ш

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Sign post $\frac{1}{2}$ " DIA x $2\frac{1}{4}$ " bolt, lock washer, and nut (TYP) Coupling-bolt -Anchor coupling foundation – Anchor – ferrule 911/16

FRONT VIEW

SIDE VIEW

TYPE 2A BASE CONNECTION DETAIL

Use only when sign area is less than 35 square feet per post.

BOSS & OFFS	ET TABLE
When Z > 8' ≤ 10'	0.0875′′
When Z > 10′ ≤ 14′	0.0625′′
When Z > 14′ ≤ 15′	0.0375"

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

TYPE 2A FOUNDATION DETAIL

Shims shall be 14 gage or 18 gage

SHIM DETAIL - TYPE 2A

Use no more than two shims per anchor coupling. Use no more than three shims for any two anchor couplings.

COUPLING BOLT DETAIL - TYPE 2A

ANCHOR FERRULE DETAIL - TYPE 2A

<u>----</u> 5% - 11 UNC

ROADSIDE SIGN STRUCTURES FOR MULTIPLE STEEL POST SIGNS **STANDARD PLAN G-8a**

SHEET 2 OF 3 SHEETS

10/06/99

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST. NEW APPROVAL DATE REVISION

APPROVED FOR PUBLICATION Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

BRACKET DETAIL - TYPE 2A

DETAIL - TYPE 2A

			17 21 710	DIMEN	ISION TABLE FO	R TYPE 2B B					
Post Size	Anchor F Spac	Ferrule ing	K	eyway Offset (Distances ar (± 0.004"	K e	Bracket Width	Hole DIA	Spacing S		Fastners	
5126	Length	Width	K = .200''	K = .150''	K = .100''	BW	BW HD	9	Fastner	Length	Size
W6×9	13 ¹⁵ / ₁₆ ′′	3′′				5 ¹ / ₄ ′′	17/32	11/2"	Top bolt	21/2′′	DIA bolt with lockwasher
W6×12	141/16''		When Z,> 7'≤ 9'	When Z > 9' < 12'	When Z > 12' < 25'	Î			Middle bolt	2¾′′	A bolt
W6×16 W8×18	163/16		When 7 >	When 7 >	When 7 >				Bottom bolt	3''	1
W8×21	165/16′′	3′′	When Z > 8′ ≤ 10′	When Z > 10′ ≤ 14′	When Z > 14′ ≤ 25′	5 ¹ / ₄ ′′	17/32	11/2"	Cap screw	1 1/4′′	72,,
W10×22	183/6′′								Top bolt	23/4′′	- pol+
WIOXZZ	10/16	4′′	When Z > 9' < 11'	When Z > 11' ≤ 16'	When Z > 16′ ≤ 25′	61/2′′	21/32 ′′	2"	Middle bolt	3′′	5%" DIA bol with 5%" lockwasher
W10×26	187/16		5 11	11 7 16	16 7 25				Bottom bolt	31/4′′	, + Ω C + X × ×
									Cap screw	11/4′′	× × 0 −
	1-8UNC	٦									

TYPE 2B FOUNDATION DETAIL

SHIM DETAIL - TYPE 2B

Use no more than two shims per anchor coupling.

Use no more than three shims for any two anchor couplings.

ANCHOR COUPLING DETAIL - TYPE 2B

FRONT VIEW SIDE VIEW TYPE 2B BASE CONNECTION DETAIL

COUPLING BOLT DETAIL - TYPE 2B

NEW APPROVAL DATE

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

REVISION

EFFECTIVE: AUGUST 5, 2002

ROADSIDE SIGN STRUCTURES FOR MULTIPLE STEEL POST SIGNS STANDARD PLAN G-8a

SHEET 3 OF 3 SHEETS

APPROVED FOR PUBLICATION 10/06/99 Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

APRIL 6. 2003

BRACKET DETAIL - TYPE 2B

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

2 STEEL WASHERS

SIDE VIEW

SIGN ATTACHMENT DETAIL

(SEE SHEET 3 FOR "PIPE CLAMP" AND "U-BOLT" DETAILS)

FOR ALTERNATE ATTACHMENT TO ROUND POST

SEE STANDARD PLAN G-9b

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

(SEE SHEET 3 FOR T BAR DETAILS)

SMALL STEEL SIGN SUPPORT

STANDARD PLAN G-8b

SHEET 1 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-04-02

CONCRETE FOUNDATION

FOUNDATION DETAIL

(DRILLED SHAFT PERMITTED)

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

CORRECTED SIGN POST DIAM.;

PIPE CLAMP LOCATION

DATE

4 1/4"

SECTION

NOTES:

- 1. "T" & "U" bars mounted to post with 1/2" x 5 1/2" hex bolt, nut & washer, drill 9/16" hole in sign post.
- 2. Use a 5/16" x 1" square head bolt with full threads in slot. The bolt head must not turn in the slot.
- 3. Install the medium nylon washer against sign face to prevent scratching. Use the medium sized steel washer between the nylon washer and the 5/16" galvanized steel or aluminum selflocking hex head nut.

MATERIALS	
Steel Pipe	ASTM A500 Gr. B or ASTM A 53 Gr. B, Galv. AASHTO M111
Steel Keeper Plate	ASTM A653 G 90
Upper Slip Base	Ductile iron casting ASTM A536 Gr. 65- 45-12, Galv. AASHTO M232
Base Plate	ASTM A 36, Galv. AASHTO M111
Split Shaft Collar	AASHTO M169 12L14, Zinc plating ASTM B-633 SC-2 with Type 1 clear coat
Pipe Clamp	Steel casting ASTM B26 or B108 or Alum. alloy A 444.0-T4 or 356.0-F
1/2" & 5/8" Diam. High Strength Bolts,Nuts and Washers	AASHTO M164 or AASHTO M291 Gr. DH. ASTM F436 Galv. AASHTO M232
U-Bolts, Nuts, and Washers	ASTM F 593 and F 594, TYPE 304
Mechanical Tubing	ASTM A 513 S5 Gr. 50 Type 1 or 2, Galv. AASHTO M 111

SMALL STEEL SIGN SUPPORT

STANDARD PLAN G-8b

SHEET 3 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

06-04-02

U-BOLT DETAIL

REVISION

REV. PIPE DIAM., MATERIALS.

DATE

Α	В	С
8'-0"	6"	3'-6"
10'-0"	6"	4'-6"
12'-0"	6"	5'-6"
14'-0"	1'-0"	6'-0"
16'-0"	2'-0"	6'-0"

Α	В	С	D	Α	В	C	D
18'-0"	6"	3'-6"	5'-0"	26'-0"	6"	4'-6"	5'-4"
20'-0"	6"	3'-6"	6'-0"	28'-0"	6"	5'-6"	5'-4"
22'-0"	6"	3'-6"	4'-8"	30'-0"	1'-0"	6'-0"	5'-4"
24'-0"	6"	3'-6"	5'-4"	32'-0"	2'-0"	6'-0"	5'-4"

Α	В	С	D
34'-0"	6"	3'-6"	4'-4"
36'-0"	6"	3'-6"	4'-8"

OVERHEAD SIGN MOUNTING DETAILS STANDARD PLAN G-9a

SHEET 1 OF 4 SHEETS

APPROVED FOR PUBLICATION

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

HE

SHEET 2 OF 4 SHEETS

EFFECTIVE

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-25-02

NOTES

1. Refer to Contract Plans for Monotube Beam Bracket element sizes, dimensions and weld symbols.

OVERHEAD SIGN MOUNTING DETAILS STANDARD PLAN G-9a

EXPIRES JUNE 29, 2004

PRIL

SHEET 3 OF 4 SHEETS

APPROVED FOR PUBLICATION

lorold | Dotorfood

SIGN LIGHTING LUMINAIRE MOUNTING DETAILS FOR MONOTUBE STRUCTURES

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

OVERHEAD SIGN MOUNTING DETAILS STANDARD PLAN G-9a

SHEET 4 OF 4 SHEETS

APPROVED FOR PUBLICATION

AFFROVED FOR FOBLICATIO

ATTACHMENT TO

WOOD POST

BOLTED CONNECTION DETAIL

ALUMINUM WINDBEAM DETAIL

ATTACHMENT TO SINGLE TIMBER POST

WINDBEAM CONNECTION DETAIL

SIGN MOUNTING DETAILS STANDARD PLAN G-9b

SHEET 1 OF 3 SHEETS

APPROVED FOR PUBLICATION

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

04/02/99

EFFECTIVE: AUGUST 5, 2002 TO AP

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

ATTACHMENT TO

STEEL POST

13⁄4"

APRIL

NF THREADS

1/6" x13/6" SLOTS

STEEL OR ALUMINUM F.B. CLAMP 2" WIDE. POST O.D. ALTERNATE CLAMP: 3/4" STAINLESS STEEL U-BOLT

ALTERNATE 1 - ATTACHMENT TO ROUND POST MATERIAL SPECIFICATIONS PLATE-ASTM A 36 PIPE - ASTM A 53 GR. B FINISH - GALV. PER ASTM A 123 AFTER FABRICATION PROVIDE %" DIA. HOLES FOR 3/8" STAINLESS STEEL HEX. HD. BOLT & NUT & 2 WASHERS PER BOLT.

BRACE-11/2" x 3/6 6061-T6 **MOUNTING BRACKET DETAIL** LENGTH AS NEEDED **FOR ALTERNATE 2**

3/4"

11/₈"

CLAMP DETAIL FOR ALTERNATE 1

MOUNTING BRACKET (TYP)

TYPE 2

1/4" x 3/4" STAINLESS STEEL BOLTS,-NUTS, WASHERS & NYLON WASHER

-STAINLESS STEEL STRAP

└_ ¾" x 0.030" MIN.

2 MOUNTING STRAPS MINIMUM PER SIGN. 42" MAX. SPACING BETWEEN MOUNTING

SIGN MOUNTING DETAILS STANDARD PLAN G-9b

13⁄4"

STEEL _

SPECIAL SECTION FOR ALTERNATE 1

SHEET 2 OF 3 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

APPROVED FOR PUBLICATION

04/02/99 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

Clifford E. Mansfield

ATTACHMENT TO MAST ARM

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

OLYMPIA, WASHINGTON **EFFECTIVE: AUGUST 5, 2002 TO AP**

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

04/02/99

LIEU OF THE WELDED PLATES SHOWN

FACING

TRAFFIC

YELLOW

→ 3"

8"

SIDE

→ 3" ←

YELLOW

REFLECTIVE SHEETING

FACING

TRAFFIC

→ 3" ←

YELLOW

2'-0" MIN

8'-0" MAX.

(SEE CONTRACT)

MANUFACTURER'S BURY DEPTH

FLEXIBLE GUIDE POST

GROUND MOUNT

FACING

TRAFFIC

→ 3" ←

WHITE

8"

6,

APRIL

2002

AUGUS

FACING

TRAFFIC

3"

WHITE

SIDE

→ 3" |

WHITE

WHITE

TOP EDGE OF REFLECTIVE SHEETING

- 1. When guardrail runs concurrent, the contractor shall either:
- A. Drive the flexible guide post in line with the guardrail posts, or
- B. Mount the shorter flexible guide post onto the guardrail post.
- 2. Guide posts shall be fastened to the guardrail posts using two 2" x 3/8" lag screws with washers, along centerline of post. Also acceptable is any approved method submitted by the guide post manufacturer.
- 3. When concrete barrier runs concurrent, the contractor shall mount barrier delineators where guideposts are required.

GUARDRAIL MOUNT

SURFACE MOUNT

TYPE G2

(STD. PLAN H-1d)

G2

SIDE

→ 3" ←

WHITE

WHITE

GREEN

FACING

TRAFFIC

→ 3" ←

WHITE

G1

4"

SIDE

WHITE

WHITE

3" 🔫

FACING

TRAFFIC

→ 3" ←

WHITE

GREEN

GUIDE POSTS

EXPIRES OCTOBER 26, 2002

STANDARD PLAN H-1

SHEET 1 OF 1 SHEET APPROVED FOR PUBLICATION

Harold J. Peterfeso

01-10-02

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

2002

AUGUST

GUIDE POST PLACEMENT

OLYMPIA, WASHINGTON

TIE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE E ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OSTANIED APPROVED FOR PUBLICATION Clifford E. Mansfield 05/05/00 WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

GL	GUIDE POST SPACING (FEET)					
RADIUS	S	RADIUS	s			
50	30	3,000	240			
100	40	3,500	260			
150	50	4,000	280			
200	60	4,500	300			
250	70	5,000	320			
300	80	6,000	350			
500	100	7,000	380			
600	110	8,000	400			
700	120	9,000	420			
800	130	10,000	450			
900	140	11,000	470			
1,000	150	12,000	490			
1,500	170	13,000	510			
2,000	200	14,000	530			
2,500	220	TANGENT	530			

NOTES

- 1. The first guide post is positioned "S" distance from the beginning of curvature.
- 2. If the last guide post beyond the curve is 1/2 "S" or more, no additional posts are required.
- 3. If the last guide post beyond the curve is less than 1/2 "S", ... one additional post is required.
- For definitions of guide post types, see Standard Plan H-1, GUIDE POSTS.

MULTI-LANE DIVIDED HIGHWAYS

GUIDE POSTS ON INSIDE AND OUTSIDE OF CURVE FOR EACH DIRECTION OF TRAVEL

GUIDE POST PLACEMENT FOR HORIZONTAL CURVES

STANDARD PLAN H-1c

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso

01-10-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

AUGUST

LEGEND UNDIVIDED HIGHWAY WITHOUT ILLUMINATION

TYPE W

① TYPE WW

TYPE G1

 $\bigoplus_{\mathbf{G2}}$ TYPE G2

FOR DEFINITION OF GUIDE POST TYPES, SEE STANDARD PLAN H-1, GUIDE POSTS

TYPE Y

MISCELLANEOUS GUIDE POST PLACEMENT STANDARD PLAN H-1d

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso 01-10-02

STATE DESIGN ENGINEER

DATE

 Θ

DIVIDED HIGHWAY

LEGEND O Type W Type Y Type WW

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

See table in Standard Plan H-1 for definition of guide post types

APPROVED FOR PUBLICATION

FOR BRIDGES STANDARD PLAN H-1e

EXPIRES OCTOBER 26, 2000 **GUIDE POST PLACEMENT**

Clifford E. Mansfield 4/14/00

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NEW STAMP & APPROVAL DATE

TWS WASHINGTON STATE DEPARTMENT OF TRANSPORTATION TOP OF BARRICADE

SUPPORT ANGLE

(SEE NOTE 2)

PANEL

3. Stripes on barricade rails shall be alternating orange and white retroreflective stripes (sloping downward at an angle of 45 degrees in the direction traffic is to pass).

4. The Type 3 barricade design shown on this plan meets the crash test requirements of NCHRP 350. Alternate designs may be approved if they conform to the NCHRP 350 crash test criteria.

STEEL ANGLE

8" x 2" x 2"

5. When a sign is mounted on the barricade, it shall be securely bolted to at least two plywood panels. The top of the sign shall not be higher than the top panel of the barricade.

6. When sandbags are used in freezing weather, urea fertilizer shall be mixed with the sand in a quantity to prevent the sand from freezing.

ATTACHMENT DETAIL "A"

WARNING LIGHT ATTACHMENT DETAIL

USE ATTACHMENT

DETAIL "B"

DETAIL "A"

9

4

2002

FECTIVE

ATTACHMENT

ATTACHMENT DETAIL "B"

TYPE 3 BARRICADE

TYPE 3 BARRICADE STANDARD PLAN H-2

SHEET 1 OF 2 SHEETS

05-29-02

APPROVED FOR PUBLICATION

Harold J. Peterfeso

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE

STRIPES ON THE BARRICADES SHALL SLOPE **DOWNWARD IN THE DIRECTION TRAFFIC IS TO PASS**

STRIPES ON THE BARRICADES SHALL SLOPE **DOWNWARD IN THE DIRECTION TRAFFIC IS TO PASS**

ROAD CLOSURE AT INTERSECTION

ROAD CLOSURE AT OTHER LOCATIONS

TYPE 3 BARRICADE STANDARD PLAN H-2

SHEET 2 OF 2 SHEETS

2003

05-29-02

APPROVED FOR PUBLICATION

Harold J. Peterfeso

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

40

0 " MIN. 1/8" MAX.

RPM POSITIONING GUIDE SPACING FOR MULTILANE ONE WAY TRAFFIC

RPM POSITIONING GUIDE SPACING FOR TWO LANE TWO WAY TRAFFIC

NOTES:

1. Recessed pavement markers, when specified, shall be installed at the locations shown for Type 2W RPM's on multilane one way roadways, and type 2YY RPM's on two lane two way roadways.

MULTILANE ONE WAY TRAFFIC

- M-1. For lane lines, Type 2W RPM's shall be spaced at 80' intervals on tangents and horizontal curves with a radius of 5000' or more, and 40' intervals on horizontal curves having radii of less than 5000'.
- M-2. When specified, Type 2Y RPM's shall be placed outside the left edge line. Placement is shown on "Left Edge of Lane Placement".

TWO LANE TWO WAY TRAFFIC

T-1. For center lines, Type 2YY RPM's shall be spaced at 80' intervals on tangents and horizontal curves with a radius of 5000' or more, and 40' intervals on horizontal curves having radii less than 5000' Type 2YY RPM's are to be centered between skip lines.

40

Type 2 RPM Raised Face Colors					
Type 2YY	yellow and yellow				
Type 2W	white - one side only				
Type 2Y	Type 2Y yellow - one side only				
Type 1 RPM Colors					
Type IW	Type IW white				
Type IY	Type IY yellow				

APRIL

EFFECTIVE

RAISED PAVEMENT MARKING DETAILS STANDARD PLAN H-3

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

APPROVED FOR PUBLICATION

Clifford E. Mansfield 4/14/00

DELETED HED RPM'Is & MODIFIED "RECESSED PAVEMENT MARKER DETAILS".

TWS

DATE

DATE

REVISION

BY

-Adhesive

RECESSED PAVEMENT MARKER DETAILS

- 3. Stopping point shall be marked with stop bar only when mainline movement is controlled by a stop sign or traffic
- 4. Raised pavement markers shall be installed only when specified in the Contract Plans.
- 5. See Standard Plan H-3 for marker designation.
- 6. No Pass Line on approach side with skip center line on departure side unless Double Yellow Center Line is required in the contract.

TWO-WAY LEFT TURN LANE

TABLE 1		TABL	E 2	TABLE 3		
Posted Speed	Taper Rate	Posted Speed	Decel. Taper Length	Posted Speed	No pass length (Minimum)	
60 mph 55 mph 50 mph 45 mph 40 mph 35 mph 30 mph 25 mph	60:1 55:1 50:1 45:1 40:1 35:1 30:1 25:1	60 mph 55 mph 50 mph 45 mph 40 mph 35 mph 30 mph 25 mph	180' 165' 150' 135' 120' 105' 90' 75'	60 mph 55 mph 50 mph 45 mph 40 mph 35 mph 30 mph 25 mph	790' 725' 660' 590' 360' 260' 200' 150'	

6, 2003

2002 TO APRIL

Ú

AUGUST

EFFECTIVE

 W_1 = Approaching through lane

 W_2 = Departing lane

 T_1 = Width of left turn lane on approach side of G

 T_2 = Width of left turn lane on departure side of Ç

 W_T = Total width of channelization $(W_1 + W_2 + T_1 + T_2)$

DATE

END TWO-WAY LEFT TURN LANE

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED CHANGE "GORE STRIPE" TO "WIDE LINE". CHANGE WIDE TRAFFIC ARROWS TO NARROW TRAFFIC ARROWS. ADDED 60 mph TO TABLE 1, 2, AND 3. NOTE 6 ADDED.

REVISION

PAVEMENT MARKING DETAILS

STANDARD PLAN H-3a

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 6/23/00

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

5, 2002

AUGUST

2002

TRANCIED MAY

½" MIN., ¾" MAX.

CONTINUOUS SHOULDER RUMBLE STRIPS STANDARD PLAN H-4

SHEET 1 OF 3 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AND ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPROTATION. A COPY MAY BE OBTAINED 2/00 CHANGED "EDGE STRIPE" TO "EDGE LINE".

APPROVED FOR PUBLICATION

Clifford E. Mansfield

<u>2/18/00</u> WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

APRIL

AUGUST

CONTINUOUS SHOULDER RUMBLE STRIPS STANDARD PLAN H-4

SHEET 2 OF 3 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 2/18/00 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

2/00 CHANGED "GORE STRIPE" TO "WIDE LINE".

CONTINUOUS RUMBLE STRIPS

CONTINUOUS SHOULDER RUMBLE STRIPS STANDARD PLAN H-4

SHEET 3 OF 3 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AND ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPROTATION. A COPY MAY BE OBTAINED

2/00 NEW APPROVAL DATE.

APPROVED FOR PUBLICATION

Clifford E. Mansfield 2/18/00 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6,

APRIL

2002

AUGUST

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

5, 2002 TO APRIL 6, 2003

AUGUST

COLLECTOR ROAD ON CONNECTION

PAVEMENT MARKING DETAILS STANDARD PLAN H-5b

2/00 CHANGED "GORE STRIPE" TO "WIDE LINE". DATE BY REVISION

APPROVED FOR PUBLICATION Clifford E. Mansfield 2/18/00

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

GENERAL NOTE See contract for location and material requirements.

	Α	В	С	USE
TYPE 1	12"	16'	4'	FREEWAYS
TYPE 2	6"	12'	3'	ARTERIALS & RAMPS

HOV LANE SYMBOL

PAVEMENT MARKINGS

STANDARD PLAN H-5c

SHEET 1 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-24-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

TYPE 6L (LEFT)

SHOWN

TYPE 6R (RIGHT)

MIRROR IMAGE OF ABOVE

FULL MARKER (1 MILE INTERVAL)

AERIAL SURVEILLANCE MARKERS

CATCH BASIN OR GRATE INLET

DRAINAGE MARKING

ROADWAY

5' MAX.

CROSSWALK LINES

8" TYP.

PAVEMENT MARKINGS

STANDARD PLAN H-5c

SHEET 2 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-24-02
STATE DESIGN ENGINEER DATE

STATE DESIGN ENGINEER DAW
Washington State Department of Transportation

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
INFON REGULEST

МРН	D*
25	50 Ft.
30	100 Ft.
35	150 Ft.
40	225 Ft.
45	300 Ft.
50	375 Ft.
55	450 Ft.
60	550 Ft.
65	650 Ft.
+ DIMENS	SIONS SH

* DIMENSIONS SHOWN ARE APPROXIMATE. SEE CONTRACT.

NOTES

1

2002

AUGUS

1 Bid Item "Railroad Crossing Symbol" includes "X" symbol, letters, and two 24" white transverse lines.

LAYOUT

- 2 24" white transverse line
- 3 Stop Line
- 4 W10-1 Advance Warning Sign (not included in RR Crossing Symbol Bid Item)
- (5) See "Standard Alphabets for Highway Signs and Pavement Markings," 1977 Edition (FHWA)
- 6 Place Stop Line 15' from the nearest rail or approximately 8 feet from RR gate, if present.

RAILROAD CROSSING SYMBOL

30,

EDGE LINE

BICYCLE LANE SYMBOL

GENERAL NOTE

See contract for location and material requirements.

ACCESS PARKING SPACE SYMBOL

PAVEMENT MARKINGS

STANDARD PLAN H-5c

SHEET 3 OF 3 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso 06-24-02

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED
UPON REQUEST.

5, 2002 TO APRIL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIV

STANDARD PLAN H-5d

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 4/14/00

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE

EXPIRES OCTOBER 26, 2000

RAISED PAVEMENT MARKER **SUBSTITUTION PATTERNS STANDARD PLAN H-5d**

SHEET 2 OF 2 SHEETS

OLYMPIA, WASHINGTON

APPROVED FOR PUBLICATION Clifford E. Mansfield

CHANGED "GORE STRIPE" TO "WIDE LINE". DELETED BARRIER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

4/14/00

PLAN

DETAIL OF GROOVE FOR 3/6" LETTERS

NOTE: Dotted letters to be $\frac{3}{6}$ high and will be stamped by WSDOT Personnel. Only the assigned identification numbers are to appear on the brass disc.

DETAIL OF GROOVE FOR 3/6" LETTERS

LEDGE ROCK OR CONCRETE INSTALLATION

SECTION GENERAL INSTALLATION

- 1. The brass disc will be furnished by the state.
- 2. The hole shall be 32" minimum in depth or 6" below the deepest recorded frost line.
 All loose material shall be removed from the bottom of the hole so that the concrete is placed on firm undistrubed earth.
- 3. The top of the concrete shall be troweled smooth and the brass disc set in the center with top flush and level. When the concrete is set, cover the entire monument with moist earth and leave for three days.
- Top of monument may be recessed or protruding depending on conditions.

SURVEY MONUMENT STANDARD PLAN H-6

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield

01-06-00 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

A (SIZE)

SECTION OF LETTER

5, 2002 TO APRIL 6, 2003

MONUMENT COVER

APPROXIMATE					
WEIGHTS					
Case	60	lbs			
Cover	19	lbs			
Total	79	lbs			

PLAN RISER RING

SECTION RISER RING

RISER RING DIMENSIONS

3′′

MONUMENT CASE AND COVER STANDARD PLAN H-7

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

8/10/98

EFFECTIVE

VALUES OF Z (feet) For Class A Slope Treatment

In this equation the term <code> +DKS/4</code> is positive when the slope treatment stake is lower than the slope stake (descending ground); and negative when the slope treatment stake is higher than the slope stake (ascending ground).

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. Slope treatment shall be constructed simultaneously with the roadway excavation. Ordinarily hand trimming will not be required if satisfactory results are obtained with mechanical equipment.
- 2. It is essential that the construction of cut and fill slopes and the application of slope treatment fit as naturally as possible into the existing landscape to provide an aesthetically and geometrically satisfactory completed roadway.
- 3. When the distance K is greater than the distance from the top of cut to the bottom of ditch, slope treatment shall begin at bottom of ditch.

LEGEND:

- Distance from slope stake to slope treatment stake, measured on natural ground slope.
- Distance from slope stake to lower limit of slope treatment, measured down face of cut slope.
- Difference in elevation between finished shoulder grade and slope stake.
- Difference in elevation between slope stake and slope treatment stake.
- Depth of slope treatment at slope stake as determined by a straight line between the midpoints of J and K.
- Horizontal distance per foot cut for the slope under consideration. (For a 3:1 slope, S=3)

CUT	Clas	Class B	
SLOPE	J	К	J and K
4:1	7′	5′	5΄
3:1	7′	5′	5΄
2:1	7′	9′	5΄
1.75:1	7′	12′	5΄

SLOPE TREATMENT

STANDARD PLAN H-8

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE

APPROVED FOR PUBLICATION

Clifford E. Mansfield

09/18/98

DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Pier bearing seat

BRIDGE ON BEARINGS

EMBANKMENT AT BRIDGE ENDS

2003

APRIL

FLAT SLAB BRIDGE

AUGUS

BEHIND SIDEWALK

NOTES:

- 1. An adjustable platform may be used in lieu of the platform design shown on this plan. Adjustable platforms must fit the bracket design shown on this plan. Brackets are required for all single post installations. Field drilling may be
- 2. A Type 2 support is required when 2 or more mailboxes are to be installed on one support. A maximum of 5 mailboxes may be installed on a Type 2 support. See Std. Spec. 9-32.7.
- 3. Attach a newspaper box to a steel post with two 1 7/8" Muffler Clamps spaced 4" apart. Field drill 7/16" holes in the newspaper box to fit. Use 2 1/2" × 1/4" lag bolts to attach newspaper boxes to wood posts. Newspaper boxes must not extend beyond the front of the mailbox when the mailbox door is closed.
- 4. Spacing of mailbox mounting holes varies among manufacturers. Attachment of the mailbox to the platform may require drilling additional holes through the mailbox to fit the platform.
- 5. Center the mailbox on the platform to ensure space for the mailbox door to open and to allow space for installing the fasteners.
- A socket and wedge anchoring system may be substituted in lieu of the anti-twist plate assembly for single steel posts shown on this plan. The socket and wedge anchoring system shall meet NCHRP 350 crash test criteria. Anti-twist plates are not required for wood post installations.

MAILBOX PLACEMENT SECTIONS

MAILBOX SPACING DETAIL

EXPIRES MAY 16, 2003

MAILBOX INSTALLATION TYPE 1 & TYPE 2 STANDARD PLAN H-12

SHEET 1 OF 3 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE CLARIFIED INSTALLATION DETAILS

DATE

APPROVED FOR PUBLICATION Harold J. Peterfeso

05-09-02

STATE DESIGN ENGINEER

State Department of Transportation

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

APRIL

2002

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

BRACKET DETAIL

PLATFORM DETAIL

MAILBOX & PLATFORM DIMENSIONS

W H 19" 6 1/2" 8 1/2"

MAILBOX DIMENSIONS PLATFORM DIMENSIONS

21" 8" 10 1/2" 19" 7 1/2" 1" 24" 11 1/2" 13 1/2" 21" 11" 1"

1"

ANTI-TWIST PLATE DETAIL

MAILBOX INSTALLATION TYPE 1 & TYPE 2 **STANDARD PLAN H-12**

SHEET 3 OF 3 SHEETS

APPROVED FOR PUBLICATION NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE Harold J. Peterfeso 05-09-02 REVISED PLACEMENT DETAIL State Department of Transportation DATE

TYPE 2 BOLLARD

H-13a 1 of 1

ALIGNMENT STAKE

PRIL 6, 2003

4

2002 TO

AUGUS

Stake every 100 feet on tangents, every 25 feet on curves

CLEARING/GRUBBING LATH

Stake at each full station, 100 feet on tangents, every 25 feet on curves. No hub necessary.

SLOPE STAKE

SLOPE LATH REFERENCES

SLOPE TREATMENT (ST) STAKES FOR CUT SECTIONS

DAYLIGHT STAKE

SURVEY STAKES

STANDARD PLAN H-14

SHEET 1 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield

04/23/99 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

9

APRIL

2002

AUGUS

STAKES FOR DITCH CONSTRUCTION

STAKING FOUNDATION FOR LUMINAIRES, SIGNALS OR SIGN STRUCTURES

EXPIRES MAY 3, 2000

STAKES FOR CURB/GUTTER

SURVEY STAKES

STANDARD PLAN H-14

SHEET 2 OF 2 SHEETS

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield

04/23/99 DEPUTY STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

STAKES FOR DRAINAGE

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

APPROXIMATE QUANTITIES					
Tank	Length	Concrete	Steel Reinf.	Cast Iron Soil	
Capacity	(X)		Bars	Pipe & Fitting	
Gal.	F†.	C.Y.	Lbs.	Lbs.	
6000	6	23	3800	471	
8000	8	28	4600	471	
10000	10	32	5400	471	
12000	12	37	6300	471	
14000	14	42	7100	471	

APRIL

B

- 1. Approval of local health department is required before work is started. 2. Excavated material shall be disposed of as directed by the Engineer.
- 3. All work shall be left open until inspected and approved by the Health Officer and the Engineer.
- 4. All grades shall be checked and approved by the Engineer.
- 5. Water tight manhole covers shall be approved by the Engineer prior to
- 6. Precast septic tanks are acceptable, subject to the approval of the Engineer. Materials shall meet or exceed those shown.
- 7. Plan dimensions may vary as site conditions and system design permit.
- 8. All concrete shall be Class 4000.

9. Reinforcing steel shall be Grade 300 or Grade 400.

REST AREA SEPTIC TANK

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-18-97

4

BRACKET (2 PER UNIT)

* REFERS TO DRAINAGE CUTS ON TOP AND BOTTOM OF PIPE

WATER INTAKE & CLEAN-OUT ASSEMBLY NOT TO SCALE

NOTE: POUR IN APPROXIMATELY 1 TABLESPOON OF CORK DUST AT INSTALLATION AND AFTER EACH READING

NOTE: GAGE ASSEMBLY BACKING BOARD, PIPE, ROD, AND ANGLE IRON CAN BE EXTENDED AS NEEDED TO FIT SITE REQUIREMENTS.

CREST GAGE

STANDARD PLAN I-2

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield *04-23-99*

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

OPTICAL READER

AUTOMATED GROUND WATER MONITORING WELL

STANDARD PLAN I-3

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

08-20-99

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

OLYMPIA, WASHINGTON

Grout pad

 $\frac{3}{4}$ " wide drain hole in grout pad

-Pole base plate

Roadway

 $\frac{3}{4}$ " wide drain

holé in grout pad

Pole

base

plate

AUGUS

Anchor bolts

Install pole base plate directly on leveling nuts and washers.

FIXED BASE

ANCHOR BOLT LAYOUT

SLIP BASE

SLIP BASE FIXED BASE
PLAN PLAN

Toward 1" clamping bolts Plate washer (TYP) Pole base plate Keeper plate Hardened washers (TYP) $1\frac{1}{4}$ anchor plate – $1\frac{3}{8}$ " slip plate Top of foundation $\frac{3}{4}$ " chamfer (TYP) MIN Place grout even with top of foundation after 6" hollow in plumbing light standard center of grout pad **SLIP BASE** Three 1" anchor bolts, 4'-6" long (see Notes 3 and 4) **ELEVATION**

ELEVATION

Details similar to slip base except where noted

STEEL LIGHT STANDARD BASE DETAILS STANDARD PLAN J-1b

SHEET 1 OF 3 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 10/08/99

DEPUTY STATE DESIGN ENGINEER DATE

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

CTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

SLIP/ANCHOR PLATES DETAIL

Smooth finish top, bottom, and notched surfaces

1'-3" DIA 11/4" DIA bolt circle

KEEPER PLATE

Place between pole base plate and slip plate on top of middle washers.

STRAP TEMPLATE ASSEMBLY DETAIL

Place over anchor bolts (See Note 4)

APRIL 6, 2003

SHEET 2 OF 3 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 10/08/99

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

AUGUST 5, 2002 TO APRIL 6, 2003

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

SECTION C-C

ELEVATION

LIGHTING BRACKET DETAIL

For light standards with single arm 12' or less and double arms 8' or less mounted on bridges or retaining walls.

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. See Standard Plan C-8b for base plate and foundation requirements when light standards are mounted on concrete barrier.
- 2. Round and smooth all edges along wire-way to protect conductors. See Standard Plan J-1e for wiring details.
- 3. The top of the anchor rod shall be both threaded and galvanized a minimum of 12". The bottom of the anchor rod shall be threaded a minimum of 3". Galvanizing shall be in accordance with AASHTO M111 after threading. Hooked anchor bolts are not allowed.
- 4. Strap templates shall be held in place by nuts 6'' from the top of the foundation, and at bottom of anchor bolts resting on $4'' \times \frac{3}{8}''$ square washers.
- 5. Pole base plate for a slip base design shall be $1^{1}/_{4}{}^{\prime\prime}$ AASHTO M223 Gr. 345. Pole base plate for a fixed base design may be either $1^{1}/_{4}{}^{\prime\prime}$ AASHTO M223 Gr. 345 or $1^{1}/_{2}{}^{\prime\prime}$ AASHTO M183.
- 6. Installation of a 50' pole with double mast arms on a slip base is

STEEL LIGHT STANDARD **BASE DETAILS STANDARD PLAN J-1b**

SHEET 3 OF 3 SHEETS

APPROVED FOR PUBLICATION

Clifford E. Mansfield 10/08/99

DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE

THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

FECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

10-99 REVISED NOTES 1, 2 & 5; ADDED NOTE 6.

PLAN - TOP SLIP PLATE

PLAN - BOTTOM SLIP PLATE

Plate shall conform to AASHTO M183 M (ASTM A36) except as noted. Flat washer shall conform to AASHTO M164 M (ASTM A325).

ANCHOR PLATE

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- (1) Clamping Bolts, $\frac{7}{8}$ " DIA hex head bolt & nut, three plate washers, 50 ft.-lbs. torque. (Three per slip base)
- (2) Threaded Slotted Stud, see SCHEDULE for DIA, hardened washer and heavy hex nut (four per base plate). Insert stud and center punch at bottom periphery to lock tapped stud in place prior to galvanizing.
- (3) Keeper Plate
- (6) Top Slip Plate
- (9) Grout (exist. w/drain)

- (4) Pole Wall (existing)
- (7) Bottom Slip Plate
- (10) New Grout Pad

Finished Ground level.

(5) Base Plate (existing) (8) Anchor Plate

ELEVATION

(11) Foundation (existing)

SECTION A-A Traffic Side

ASSEMBLY DETAILS

After bolting bottom slip plate assembly to foundation, fill slotted bolt holes with mastic.

Grade around foundation to ensure stub height does not exceed 4".

Removal of the franqible base from the existing base plate is required.

placing (10) (TYP)

Misaligned anchor bolts must be removed and replaced.

SCHEDULE					
Adapter Type	Anchor BC^(Bolt Bolt* Circle)*		Existing Base Type	Luminaire Height #	
A-1	1 ′′	11''	Welded Plate	30′	
A-2	1 "	1'-01/4''	Cast Aluminum	30 <i>′</i>	
A-3	1''	1'-03/4''	Steel Transformer	30′	
A-4	11/8''	1'-21/8''	2-Pc. Alum. Clamp	40′	
A-5	11/4''	1'-21/8''	2-Pc. Alum. Clamp	40′	

- * Use matching diameter for threaded studs
- Contractor shall verify BC in field before ordering. If BC or anchor bolt sizes differ from those listed, contact Bridge and Structures Office.
- # Plus or minus 2'-6"

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

SLIP BASE ADAPTOR FOR 4-BOLT LIGHT STANDARD BASE STANDARD PLAN J-1c

APPROVED FOR PUBLICATION

Clifford E. Mansfield

4/24/98 DEPUTY STATE DESIGN ENGINEER WASHINGTON STATE DEPARTMENT OF TRANSPORTATION

OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

MAST ARM WIRING DETAIL

WIRING DETAIL LIGHT STANDARD SLIP BASE*

*Application for fixed base similar except no cable tie is required at junction box.

Alternate locations allowed provided junction box to base distance does not exceed 10'

TYPICAL JUNCTION BOX LOCATION

LIGHT STANDARDS WIRING DETAILS

I-1e 10

APRIL

(29)

60°(TYP)

Shown for 480 VAC power feed. Increase conductor and fuse size as required for 240 VAC power feed.

-See Gusset Detail

PLAN VIEW

- Galvanized steel mast arm configuration varies with manufacturer
- Luminaire see Contract for type and number
- Mounting height roadway to luminaire elevation difference ± 2%, see Contract
- Mast arm length see Contract
- $\frac{5}{8}$ galvanized thimble eyebolt (single or double) with washers and nuts or eyenut
- Bonding jumper
- Pole and bracket cable
- Equipment grounding conductor see Standard Plan J-9a.
- From ground line to 10' above ground, enclose equipment grounding conductor in galvanized steel conduit, code sized. Above 10' from ground, staple equipment grounding conductor to pole. Connect to supplemental ground per Standard Plan J-9a.
- Service wedge clamp
- ACSR triplex or fourplex conductors see Contract
- Copper split bolt connector
- Messenger cable
- Insulating tape for waterproof connection
- Fused quick disconnect use 30 amp fuses for high mast supports
- Weatherhead size as required
- Steel conduit
- $8^{\prime\prime}$ x $8^{\prime\prime}$ x $4^{\prime\prime}$ NEMA 3R junction box with raintight hubs and removable cover
- Grounding lug
- 12 pole terminal block
- Direct burial conductors or galvanized steel conduits with conductors see Contract
- Grounding bushing
- Supplemental ground see Standard Plan J-9a.
- Class 5 timber pole length sufficient for mounting height and burial depth
- Class 2 timber pole length sufficient for mounting height and burial depth.
- $\frac{5}{8}$ " × 9" step bolt
- $\frac{1}{4}$ × 10" plate collar bent to fit pole diameter (8" 10")
- $\frac{3}{8}$ " x 4" machine bolts (four required) with washers and nuts
- $\frac{1}{2}$ lag bolts (six required) drill $\frac{9}{6}$ hole in plate
- $\frac{3}{4}$ wire hole 2" from gusset plate, smooth hole edges
- 1" nonmetallic conduit with $\frac{3}{4}$ " straps at code spacing
- Distance varies, 35' MIN, 50' MAX, depending on line clearance requirements

2 UNITS 4 UNITS PLAN VIEW TYPICAL LUMINAIRE MOUNTING CONFIGURATIONS 1/4" plate

GUSSET DETAIL

LUMINAIRE SUPPORT BRACKET GALVANIZE AFTER FABRICATION 5 5 2002 TO APRIL 6. installations where breakaway or slip bases are not required.

2. When down guys are required, See Standard Plan J-7d.

TIMBER LUMINAIRE SUPPORT

STEP BOLT PLACEMENT

Ш

TIMBER LIGHT **STANDARDS** STANDARD PLAN J-1f

TWS

6/23/00 Clifford E. Mansfield

APPROVED FOR PUBLICATION

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

Conduit to luminaire, size as required

Service cabinet

to mount to pole

use metal standoffs

treated timber pole Photoelectric Current and potential contol transformers furnished and installed by utility Liquid tight flexible conduit, length 2' MIN, 3' MAX - strap to pole Weatherhead l" conduit, three #12 (four #12 if transformers Bend conduit to allow are used) removal of weatherhead, strap below bend Bond Conduit and conductors, size to utility Bend conduit to requirements pole and strap within 18" above meter Bend conduit to pole and strap Meter base within 1' above cabinet Service cabinet use metal standoffs to mount to pole MAN Μ. See Note 5 Conduit to Luminaire, size as required

TYPE C SERVICE. 480 VOLT

Two \$6" x 1/2" galvanized bolts -Timber pole Photoelectric control oriented to north sky Two \%" x 3" galvanized lag screws Two $\frac{1}{4}$ x $\frac{1}{2}$ brass bolts: drill bracket to fit meter base Threadless couplings (TYP) Conduit body -

PHOTOELECTRIC CONTROL DETAILS

TYPE A, B AND C SERVICE LIGHTING DETAILS

30' Class V

J-3

08-01-97

(3)

(11)

(20)

METER BASE PER SERVING UTILITY REQUIREMENTS

PHOTOCELL BREAKER (SPST 15 AMP - 120/240 VOLT)

TEST SWITCH (SPDT SNAP ACTION, POSITIVE CLOSE

PHOTOELECTRIC CONTROL, STD. SPEC. 9 - 29.11(2)

RECEPTACLE BREAKER (SPST 20 AMP - 120/240 VOLT)

RECEPTACLE, GROUNDED (GFCI 20 AMP - 125 VOLT)

PHOTOCELL ENCLOSURE - ENCLOSURE TO BE FABRICATED

FROM 5/8" EXPANDED STEEL MESH WITH WELDED SEAMS

FABRICATION. TYPE 5052 - H32 ALUMINUM WITH 5/8" x 5/8"

MAY BE USED AS ALTERNATIVE MATERIAL. SEE PHOTOCELL

HINGED DEAD FRONT WITH 1/4 TURN FASTENERS OR SLIDE LATCH.

AND MOUNTING FLANGES. HOT DIP GALVANIZED AFTER

OPENINGS EQUIVALENT TO 5/8" EXPANDED STEEL MESH

HINGED FRONT FACING DOOR WITH 4" x 4" MIN. POLISHED

CABINET MAIN BONDING JUMPER. BUSS SHALL BE 4 LUG

TINNED COPPER. SEE CABINET MAIN BONDING JUMPER

SPARE BRANCH BREAKER (DPST 20AMP- 120/240 VOLT)

1/4" DIAMETER DRAIN HOLE. DRILL BEFORE GALVANIZING.

MOUNTING HOLE. SEE SERVICE CABINET MOUNTING DETAILS.

18 CIRCUIT PANEL BOARD - MINIMUM SIZE WITH SEPARATE MAIN BREAKER.

ENCLOSURE MOUNTING DETAIL. SHEET 2 OF 2.

BRANCH BREAKER (SEE BREAKER SCHEDULE)

SIGNAL BREAKER (SEE BREAKER SCHEDULE)

CONTACTOR (SEE BREAKER SCHEDULE)

NEUTRAL BUSS, 14 LUG COPPER

WIRE GLASS WINDOW.

DETAIL ON SHEET 2 OF 2

METAL WIRING DIAGRAM HOLDER

LABEL CABINET WITH BUSSWORK RATING.

MAIN BREAKER (SEE BREAKER SCHEDULE)

15 AMP - 120/277 VOLT - "T" RATED)

AS A MINIMUM, THE METER BASE SHALL BE SAFETY SOCKET

THAT MEETS THE REQUIREMENTS OF EUSERC DRAWING 305.

BOX WITH FACTORY INSTALLED TEST BYPASS FACILITY

200 AMP TYPE 120/240 1ø SERVICE CABINET

- 1. SEE STANDARD SPECIFICATION 9-29.24, SERVICE CABINETS.
- 2. HINGES SHALL HAVE STAINLESS STEEL OR BRASS PINS.
- CABINETS SHALL BE RATED NEMA 3R AND SHALL INCLUDE TWO RAIN TIGHT VENTS.
- 4. METERING EQUIPMENT DOOR SHALL BE PAD LOCKABLE. EACH DOOR SHALL BE GASKETED. INSTALL BEST CX CONSTRUCTION CORE ON RIGHT DOOR. SEE DOOR HINGE DETAIL, SHEET 1 OF 2.
- 5. THE FOLLOWING EQUIPMENT WITHIN THE SERVICE **ENCLOSURE SHALL HAVE AN APPROPRIATELY ENGRAVED** PHENOLIC NAME PLATE ATTACHED WITH SCREWS OR RIVETS: KEY NUMBERS 2, 3, 4, 6, 7, 8, 9 AND 16. KEY NUMBER 4 NAME PLATE SHALL READ: "PHOTOCELL BYPASS TEST ON" AND "PHOTOCELL TEST OFF- AUTOMATIC". SEE SERVICE CABINET DETAIL.
- 6. METERING ARRANGEMENTS VARY WITH DIFFERENT SERVING UTILITIES. THE UTILITY MAY REQUIRE METER BASE MOUNTING IN THE ENCLOSURE, ON THE SIDE OR ON THE BACK OF THE ENCLOSURE. THE UTILITY MAY REQUIRE THE DIMENSION BETWEEN THE DOOR AND THE FRONT OF THE SAFETY SOCKET BOX TO BE LESS THAN THE 11 INCHES SHOWN IN THE LEFT SIDE- SAFETY SOCKET BOX MOUNTING DETAIL. THE CONTRACTOR SHALL VERIFY THE SERVING UTILITY'S REQUIREMENTS PRIOR TO FABRICATION OF AND INSTALLING THE SERVICE EQUIPMENT.
- 7. DIMENSIONS SHOWN ARE MINIMUM AND SHALL BE ADJUSTED TO ACCOMMODATE THE VARIOUS SIZES OF EQUIPMENT INSTALLED.
- 8. ALL BUSSWORK SHALL BE HIGH GRADE COPPER AND SHALL EQUAL OR EXCEED THE MAIN BREAKER RATING. ALL BREAKERS SHALL BOLT ONTO THE BUSSWORK JUMPERING OF BREAKERS SHALL NOT BE ALLOWED **BUSSWORK SHALL ACCOMMODATE ALL FUTURE** EQUIPMENT AS SHOWN IN THE BREAKER SCHEDULE.
- 9. THE PHOTOCELL UNIT SHALL BE CENTERED IN THE PHOTOCELL ENCLOSURE TO PERMIT 360 DEGREE ROTATION OF THE PHOTOCELL WITHOUT REMOVAL OF THE PHOTOCELL UNIT OR THE PHOTOCELL ENCLOSURE.
- 10. ALL INTERNAL WIRE RUNS SHALL BE IDENTIFIED WITH 'TO - FROM" CODED TAGS LABELED WITH THE CODE LETTERS AND/OR NUMBERS SHOWN ON THE SCHEDULES. APPROVED PVC OR POLYOLEFIN WIRE MARKING SLEEVES SHALL BE USED
- 11. ALL NUTS, BOLTS AND WASHERS USED FOR MOUNTING THE PHOTOCELL ENCLOSURE SHALL BE STAINLESS STEEL
- 12. A 1% TOLERANCE IS ALLOWED FOR ALL DIMENSIONS.
- 13. UNISTRUT OR EQUIVALENT CHANNEL AND MOUNTING HARDWARE COMPONENTS SHALL BE STAINLESS STEEL CONDUIT CLAMPS SHALL BE HOT DIPPED, GALVANIZED STEEL OR STAINLESS STEEL.
- 14. INSTALL CONDUIT COUPLINGS ON ALL CONDUITS. PLACE COUPLINGS FLUSH WITH TOP OF CONCRETE FOUNDATION.
- 15. NOTE 15 HAS BEEN DELETED.
- 16. THE METER BASE PORTION OF THIS SERVICE WAS DESIGNED TO MEET METERING PORTION OF EUSERC DRAWING 309 REQUIREMENTS.
- 17. WHEN USING ALTERNATE DOOR HINGE: REMOVE HINGE PIN PRIOR TO WELDING HINGE TO CABINET AND PRIOR TO HOT DIP GALVANIZING CABINET. AFTER GALVANIZING, REPLACE PIN WITH BRASS PIN AND SOLDER IN PLACE.

CABINET

- DOOR

1/4" x 1 1/4" CLOSED CELL

NEOPRENE GASKET

WIRING SCHEMATIC

OF WASHINGTON PEGISTERES 10NAL EXPIRES MAY 5, 2003

SERVICE CABINET TYPE B MODIFIED (0 - 200 AMP TYPE 120/240 SINGLE PHASE) STANDARD PLAN J-3b

SHEET 1 OF 2 SHEETS

APPROVED FOR PUBLICATION

Harold J. Peterfeso

06-24-02 STATE DESIGN ENGINEER

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE LIPON REQUEST

Washington State Department of Transportation

SERVICE CABINET MOUNTING DETAILS

METAL WASHERS

RUBBER WASHER (APPLY SILICONE

WASHER PRIOR TO INSTALLATION)

SEALER TO BOTH SIDES OF RUBBER

POST MOUNT

PHOTOCELL

ENCLOSURE

SERVICE

CABINET

FLANGE

3/8" ø x 1" BOLT, LOCK WASHER AND NUT. (TYP.)

2" x 1/8" HOT DIPPED GALVANIZED STRAP

POST MOUNT STRAP DETAIL

STRUT MOUNT

PLAN VIEW OF SERVICE CABINET

FRONT OF SERVICE CABINET

TWO #4 HOOPS ANCHOR BOLT (TYP.)

> SEE STANDARD PLAN J-6c "CABINET FOUNDATION DETAILS", FOR DETAILS NOT SHOWN.

- DRIVE GROUND RODS BEFORE PLACING CONCRETE. MOVE ROD(S) AND DRAIN TILE(S) WITH COVER(S) AS REQUIRED TO ACHÌEVE FULL GROUND PENETRATION. MAINTAIN A 6' MINIMUM CLEARANCE BETWEEN GROUND RODS AS DETAILED ON STD. PLAN J-9a "TYPICAL GROUNDING DETAILS".
- ALL CONDUITS PENETRATING CABINET SHALL BE TERMINATED WITH GROUNDING END BUSHING AND BONDED TO THE CABINET GROUNDING BUS.
- 4" DIAM. x 1/2" DEEP SUMP. SLOPE FOUNDATION TOWARDS SUMP. 3/8" DIAM. POLYETHYLENE OR COPPER DRAIN PIPE. SLOPE TO DRAIN OUTSIDE FOUNDATION.
- TO SERVICE GROUND PER STD. PLAN J-9a TYPICAL GROUNDING DETAILS'

1/4" x 1" MACHINE BOLT PHOTOCELL ENCLOSURE MOUNTING DETAIL

CABINET MAIN BONDING JUMPER DETAIL

1/4" x 2" STAINLESS STEEL BOLT WITH 2 STAINLESS STEEL NUTS. LIBERALLY COAT THIS ASSEMBLY WITH ANTI OXIDANT COMPOUND. BELLEVILLE STAINLESS STEEL SPRING WASHER **FILLET** WELD STAINLESS STEEL **FLAT WASHER DETAIL A-A**

OF WASHINGTO! EGISTERE? EXPIRES MAY 5, 2003

SERVICE CABINET TYPE B MODIFIED (0 - 200 AMP TYPE 120/240 SINGLE PHASE) **STANDARD PLAN J-3b**

SHEET 2 OF 2 SHEETS

APPROVED FOR PUBLICATION

06-24-02

Harold J. Peterfeso STATE DESIGN ENGINEER

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE

KEY (1) METER BASE PER SERVING UTILITY REQUIREMENTS. AS A

MAIN BREAKER (SEE BREAKER SCHEDULE)

(5) PHOTOELECTRIC CONTROL, STD. SPEC. 9 - 29.11(2)

(10) RECEPTACLE, GROUNDED (GFCI 20 AMP - 125 VOLT)

(2) PHOTOCELL ENCLOSURE - ENCLOSURE TO BE FABRICATED FROM 5/8" EXPANDED STEEL MESH WITH WELDED SEAMS

AND MOUNTING FLANGES. HOT DIP GALVANIZED AFTER

OPENINGS EQUIVALENT TO 5/8" EXPANDED STEEL MESH

ENCLOSURE MOUNTING DETAILS, STANDARD PLAN J-3b.

(14) HINGED DEAD FRONT WITH 1/4 TURN FASTENERS OR SLIDE

(15) CABINET MAIN BONDING JUMPER. BUSS SHALL BE 4 LUG

TINNED COPPER. SEE CABINET MAIN BONDING JUMPER

HINGED FRONT FACING DOOR WITH 4" x 4" MIN. POLISHED

FABRICATION. TYPE 5052 - H32 ALUMINUM WITH 5/8" x 5/8"

MAY BE USED AS ALTERNATIVE MATERIAL. SEE PHOTOCELL

(6) BRANCH BREAKER (SEE BREAKER SCHEDULE)

(7) SIGNAL BREAKER (SEE BREAKER SCHEDULE)

(8) CONTACTOR (SEE BREAKER SCHEDULE)

(11) NEUTRAL BUSS, 14 LUG COPPER

WIRE GLASS WINDOW.

DETAIL, STANDARD PLAN J-3b.

MINIMUM, THE METER BASE SHALL BE SAFETY SOCKET BOX

WITH FACTORY INSTALLED TEST BYPASS FACILITY THAT

MEETS THE REQUIREMENTS OF EUSERC DRAWING 305.

OF WASHINGTON

APPROVED FOR PUBLICATION

Harold J. Peterfeso

06-24-02

INSTALLATION DETAIL

FRONT VIEW

FRONT VIEW

1. SEE STD. SPECIFICATION 9-29.24, SERVICE CABINETS.

- 2. HINGES SHALL HAVE STAINLESS STEEL OR BRASS PINS.
- 3. CABINETS SHALL BE RATED NEMA 3R AND SHALL INCLUDE TWO RAIN TIGHT VENTS.
- METERING EQUIPMENT DOOR SHALL BE PAD LOCKABLE. EACH DOOR SHALL BE GASKETED. INSTALL BEST CX CONSTRUCTION CORE ON BOTTOM DOOR. SEE DOOR HINGE DETAIL, STANDARD PLAN J-3b. CONCEALED HEAVY DUTY STAINLESS STEEL LIFT OFF HINGES ARE ALLOWED AS AN ALTERNATIVE TO DOOR HINGE DETAIL SHOWN ON STANDARD PLAN J-3b. UPPER DOOR SHALL HAVE 2 HINGES AND LOWER DOOR SHALL HAVE 3 HINGES. THE LOWER DOOR SHALL HAVE A TWO POSITION DOOR STOP ASSEMBLY.
- 5. THE FOLLOWING EQUIPMENT WITHIN THE SERVICE **ENCLOSURE SHALL HAVE AN APPROPRIATELY ENGRAVED PHENOLIC NAME PLATE ATTACHED** WITH SCREWS OR RIVETS: KEY NUMBERS 2, 3, 4, 6, 7, 8, 9, 16 AND 21 **KEY NUMBER 4 NAME PLATE SHALL READ:** "PHOTOCELL BYPASS TEST ON" AND "PHOTOCELL TEST OFF- AUTOMATIC". SEE SERVICE CABINET DETAIL.
- 6. METERING ARRANGEMENTS VARY WITH DIFFERENT SERVING UTILITIES. THE UTILITY MAY REQUIRE METER BASE MOUNTING IN THE ENCLOSURE, ON THE SIDE OR ON THE BACK OF THE ENCLOSURE. THE UTILITY MAY REQUIRE THE DIMENSION BETWEEN THE DOOR AND THE FRONT OF THE SAFETY SOCKET BOX TO BE LESS THAN THE 11 INCHES SHOWN IN THE LEFT SIDE- SAFETY SOCKET BOX MOUNTING DETAIL. SEE STANDARD PLAN J-3b FOR SAFETY SOCKET BOX DETAIL. THE CONTRACTOR SHALL VERIFY THE SERVING UTILITY'S REQUIREMENTS PRIOR TO **FABRICATION OF AND INSTALLING THE SERVICE** EQUIPMENT.

ROADWAY

SIDE VIEW

DIMENSIONS SHOWN ARE MINIMUM AND SHALL BE ADJUSTED TO ACCOMMODATE THE VARIOUS SIZES OF EQUIPMENT INSTALLED.

CONDUIT TO FENCE

FENCE POST

POST BONDING POINT

FOUNDATION

SERVICE CABINET

PLAN VIEW

- 8. ALL BUSSWORK SHALL BE HIGH GRADE COPPER AND SHALL EQUAL OR EXCEED THE MAIN BREAKER RATING. ALL BREAKERS SHALL BOLT ONTO THE BUSSWORK. JUMPERING OF BREAKERS SHALL NOT BE ALLOWED. BUSSWORK SHALL ACCOMMODATE ALL FUTURE EQUIPMENT AS SHOWN IN THE BREAKER SCHEDULE.
- THE PHOTOCELL UNIT SHALL BE CENTERED IN THE PHOTOCELL ENCLOSURE TO PERMIT 360 DEGREE ROTATION OF THE PHOTOCELL WITHOUT REMOVAL OF THE PHOTOCELL UNIT OR PHOTOCELL ENCLOSURE.
- ALL INTERNAL WIRE RUNS SHALL BE IDENTIFIED WITH "TO - FROM" CODED TAGS LABELED WITH THE CODE
- 11. ALL NUTS, BOLTS AND WASHERS USED FOR MOUNTING THE PHOTOCELL ENCLOSURE SHALL BE STAINLESS STEEL
- 12. A 1% TOLERANCE IS ALLOWED FOR ALL DIMENSIONS.
- THE PHOTOCELL CIRCUIT SHALL BE INSTALLED IN FLEX CONDUIT WITHIN THE METER COMPARTMENT.
- SEE PLANS FOR BREAKER SCHEDULE.
- THE METER BASE PORTION OF THIS SERVICE WAS **DESIGNED TO MEET METERING PORTION OF EUSERC** DRAWING 309 REQUIREMENTS.

200 AMP TYPE 120/240 1ø SERVICE CABINET

GENERAL NOTES

T (22)

(23)

(11)

- LETTERS AND/OR NUMBERS SHOWN ON THE SCHEDULES. APPROVED PVC OR POLYOLEFIN WIRE MARKING SLEEVES SHALL BE USED.

- INSTALL CONDUIT COUPLINGS ON ALL CONDUITS. PLACE
- COUPLINGS FLUSH WITH TOP OF CONCRETE FOUNDATION.
- 16. SEAL CABINET TO FOUNDATION WITH A 1/2" BEAD OF SILICONE. APPLY SILICONE TO DRY SURFACE ONLY.

泔♯ILL CKT D

Ź∰ILL CKT E

SIZE PER NEC.

MINIMUM SIZE #2

(15)

(8)

(6)

WIRING SCHEMATIC

OZ GEDNEY TYPE GC BRONZE GROUND CLAMP OR EQUIVALENT (TYP.)

CONDUIT

DETAIL A

SHEET 1 OF 1 SHEET

STATE DESIGN ENGINEER

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE

SERVICE CABINET

PLAN VIEW

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- **KEY** (1) METER BASE PER SERVING UTILITY REQUIREMENTS. AS A MINIMUM. THE METER BASE SHALL BE SAFETY SOCKET **BOX WITH FACTORY INSTALLED TEST BYPASS FACILITY** THAT MEETS THE REQUIREMENTS OF EUSERC DRAWING 305.
 - (2) MAIN BREAKER (SEE BREAKER SCHEDULE)
 - (3) PHOTOCELL BREAKER (SPST 15 AMP 120/240 VOLT)
 - (4) TEST SWITCH (SPDT SNAP ACTION, POSITIVE CLOSE 15 AMP - 120/277 VOLT "T" RATED)
 - (5) PHOTOELECTRIC CONTROL, STD. SPEC. 9 29.11(2)
 - (6) BRANCH BREAKER (SEE BREAKER SCHEDULE)
 - SIGNAL TRANSFORMER BREAKER (SEE BREAKER SCHEDULE)
 - (8) CONTACTOR (SEE BREAKER SCHEDULE)
 - (9) RECEPTACLE BREAKER (SPST 20 AMP 120/240 VOLT)
 - (10) RECEPTACLE, GROUNDED (GFCI 20 AMP 125 VOLT)
 - (11) NEUTRAL BUSS, 14 LUG COPPER
 - (12) PHOTOCELL ENCLOSURE ENCLOSURE TO BE FABRICATED FROM 5/8" EXPANDED STEEL MESH WITH WELDED SEAMS AND MOUNTING FLANGES. HOT DIP GALVANIZED AFTER FABRICATION. TYPE 5052 - H32 ALUMINUM WITH 5/8" x 5/8" **OPENINGS EQUIVALENT TO 5/8" EXPANDED STEEL MESH** MAY BE USED AS ALTERNATIVE MATERIAL. SEE PHOTOCELL ENCLOSURE MOUNTING DETAILS, STANDARD PLAN J-3b.
 - (13) HINGED FRONT FACING DOOR WITH 4" x 4" MIN. POLISHED WIRE GLASS WINDOW.
 - (14) HINGED DEAD FRONT WITH 1/4 TURN FASTENERS OR SLIDE
 - (15) CABINET MAIN BONDING JUMPER. BUSS SHALL BE 4 LUG TINNED COPPER. SEE CABINET MAIN BONDING JUMPER DETAIL, STANDARD PLAN J-3b.
 - (16) SPARE BRANCH BREAKER (DPST 20AMP- 120/240 VOLT)
 - (17) METAL WIRING DIAGRAM HOLDER
 - (18) REMOVABLE EQUIPMENT MOUNTING PAN
 - (19) 6" x 6" MIN. UNDERGROUND FEED SERVICE WIREWAY (LEFT REAR CORNER)
 - SCREENED VENTS, 2 REQUIRED, 1 EACH SIDE, LOUVERED
 - (21) HEATER BREAKER (SPST 15 AMP 120/240 VOLT)
 - (22) THERMOSTAT, 40°F CLOSURE 3 DIFFERENTIAL
 - (23) STRIP HEATER (100 WATT NOMINAL), WITH TERMINAL STRIP
 - (24) TRANSFORMER BREAKER (DPST 15 AMP 480 VOLT)
 - (25) DRY TRANSFORMER (480/120 VOLT) 3 KVA COPPER BUSSED AND COPPER WOUND
 - (26) RESERVED FOR METER, CURRENT TRANSFORMER AND/OR DISCONNECT SWITCH AS REQUIRED BY THE UTILITY
 - 24 CIRCUIT PANEL BOARD MINIMUM SIZE WITH SEPARATE MAIN BREAKER.
 - (28) LABEL CABINET WITH BUSSWORK RATING

GENERAL NOTES

200 AMP TYPE 240/480 1ø SERVICE CABINET

- 1. SEE STD. SPECIFICATION 9-29.24, SERVICE CABINETS.
- 2. HINGES SHALL HAVE STAINLESS STEEL OR BRASS PINS.
- CABINETS SHALL BE RATED NEMA 3R AND SHALL INCLUDE TWO RAIN TIGHT VENTS.
- METERING EQUIPMENT DOORS SHALL BE PAD LOCKABLE. EACH DOOR SHALL BE GASKETED. INSTALL BEST CX CONSTRUCTION CORE ON BOTTOM LEFT AND RIGHT DOORS. SEE DOOR HINGE DETAIL, STD. PLAN J-3b; CONCEALED HEAVY DUTY STAINLESS STEEL LIFT OFF HINGES ARE ALLOWED AS AN ALTERNATIVE. UPPER LEFT DOOR SHALL HAVE 3 HINGES. LOWER LEFT DOOR SHALL HAVE 2 HINGES, AND RIGHT DOOR SHALL HAVE 3 HINGES LOWER DOOR SHALL HAVE A TWO POSITION DOOR STOP ASSEMBLY.

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL. SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION. IS KEPT ON FILE

- 5. THE FOLLOWING EQUIPMENT WITHIN THE SERVICE **ENCLOSURE SHALL HAVE AN APPROPRIATELY ENGRAVED** PHENOLIC NAME PLATE ATTACHED WITH SCREWS OR RIVETS: KEY NUMBERS 2, 3, 4, 6, 7, 8, 9, 16, 21 AND 25. **KEY NUMBER 4 NAME PLATE SHALL READ:** "PHOTOCELL BYPASS TEST ON" AND "PHOTOCELL TEST OFF- AUTOMATIC". SEE SERVICE CABINET DETAIL.
- METERING ARRANGEMENTS VARY WITH DIFFERENT SERVING UTILITIES. THE UTILITY MAY REQUIRE METER BASE MOUNTING IN THE ENCLOSURE, ON THE SIDE, OR ON THE BACK OF THE ENCLOSURE. THE UTILITY MAY REQUIRE THE DIMENSION BETWEEN THE DOOR AND THE FRONT OF THE SAFETY SOCKET BOX TO BE LESS THAN THE 11 INCHES SHOWN IN THE LEFT SIDE- SAFETY SOCKET BOX MOUNTING DETAIL, SEE STD. PLAN J-3b THE CONTRACTOR SHALL VERIFY THE SERVING UTILITY'S REQUIREMENTS PRIOR TO FABRICATION OF AND INSTALLING THE SERVICE EQUIPMENT.
- 7. THE DIMENSIONS SHOWN ARE MINIMUM AND SHALL BE ADJUSTED TO ACCOMMODATE THE VARIOUS SIZES OF **EQUIPMENT INSTALLED.**
- 8. ALL BUSSWORK SHALL BE HIGH GRADE COPPER AND SHALL EQUAL OR EXCEED THE MAIN BREAKER RATING. ALL BREAKERS SHALL BOLT ONTO THE BUSSWORK. JUMPERING OF BREAKERS SHALL NOT BE ALLOWED. **BUSSWORK SHALL ACCOMMODATE ALL FUTURE** EQUIPMENT AS SHOWN IN THE BREAKER SCHEDULE.
- THE PHOTOCELL UNIT SHALL BE CENTERED IN THE PHOTOCELL ENCLOSURE TO PERMIT 360 DEGREE ROTATION OF THE PHOTOCELL WITHOUT REMOVAL OF THE PHOTOCELL UNIT OR THE PHOTOCELL ENCLOSURE.
- 10. ALL INTERNAL WIRE RUNS SHALL BE IDENTIFIED WITH "TO - FROM" CODED TAGS LABELED WITH THE CODE LETTERS AND/OR NUMBERS SHOWN ON THE SCHEDULES. APPROVED PVC OR POLYOLEFIN WIRE MARKING SLEEVES SHALL BE USED.
- 11. ALL NUTS, BOLTS, AND WASHERS USED FOR MOUNTING PHOTOCELL ENCLOSURE SHALL BE STAINLESS STEEL.
- 12. A 1% TOLERANCE IS ALLOWED FOR ALL DIMENSIONS.
- 13. SEE PLANS FOR BREAKER SCHEDULE.
- INSTALL CONDUIT COUPLINGS ON ALL CONDUITS. PLACE COUPLINGS FLUSH WITH TOP OF CONCRETE FOUNDATION.
- SEAL CABINET TO FOUNDATION WITH A 1/2" BEAD OF SILICONE. APPLY SILICONE TO DRY SURFACE ONLY.
 - THE METER BASE PORTION OF THIS SERVICE WAS DESIGNED TO MEET METERING PORTION OF EUSERC DRAWING 309 REQUIREMENTS.

SERVICE CABINET TYPE E (0 - 200 AMP TYPE 240/480 SINGLE PHASE) STANDARD PLAN J-3d

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

Harold J. Peterfeso

06-24-02

STATE DESIGN ENGINEER

APRIL 6, 2003 2002 TO

∠6′′ MIN

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

NOTES

- 1. Where pad or pedestal mounts are located in a sidewalk, construct mount top flush with sidewalk grade, omitting chamfer where top and sidewalk abut.
- 2. Pad mount design is typical.
- 3. Place a silicone seal between the cabinet foundation and the cabinet for the pad mount design.

PEDESTAL MOUNT

pipe flange $-7\frac{1}{2}$ DIA bolt circle for at least 4 bolt holes $\frac{3}{4}$ " DIA each

PAD MOUNT

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Anchor bolts and data for spacing

-Shim to plumb

-#4 bar each corner

1" to 2"—

 $\frac{3}{4}$ diameter plastic drain

///ミ///ミ🋕

-See Note 3 -#4 hoops

to be supplied by cabinet manufacturer.

APPROVED FOR PUBLICATION

EXPIRES JUNE 4, 1999

CABINET

FOUNDATION DETAILS

STANDARD PLAN J-6c

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

4/24/98 WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6,

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICAT THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILI

AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

SIDE MOUNT TYPE A - PED. TYPE H - VEHICLE

SIDE MOUNT TYPE E

(NEON GRID OR SIMILAR SIZE INCANDESCENT PEDESTRIAN HEAD)

SIDE MOUNT TYPE B - PED. TYPE K - VEHICLE

KEY

- (1) CENTER PIPE
- (2) LOCKNIPPLE
- (3) NIPPLE
- SERRATED ELBOW
- SERRATED OR FLANGED ELBOW
- (6) REAMED TEE WITH SET SCREW
- (7) REAMED ELBOW WITH SET SCREW
- (8) BRONZE TERMINAL COMPARTMENT WITH:
 - GASKETED COVER
 - FASTENERS
 - WIRE LEADS
 - MOUNTING SADDLE FOR SIDE MOUNTS

BRONZE COLLAR, $4\frac{1}{4}$ ' I.D. WITH SET SCREWS

- 1/4" DIA DRAIN HOLE
- 12 POSITION TERMINAL STRIP
- WIREWAY FOR SIDE MOUNTS
- ORNAMENT CAP
- (1) GASKET AND WASHER
- CONDUIT LOCKNUT
- (13) TYPE E HINGE MOUNTING
- FASTENER WITH SPACER
- $-\frac{1}{2}$ LAG SCREWS ON WOOD POLE
- $-\frac{1}{2}$ " BOLTS TAPPED TO METAL POLE
- (15) FLATHEAD SOCKET BOLT
- (16) $\frac{1}{2}$ INSERT HOLE FOR EXTERNAL WIRE ENTRANCE REQUIRED ON TIMBER POLE MOUNTINGS ONLY.

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. SEE CONTRACT FOR HEAD TYPE, MOUNTING HEIGHT AND ORIENTATION.
- 2. ALL NIPPLES, FITTINGS AND CENTER PIPES SHALL BE $1\frac{1}{2}$ " DIA NOMINAL TRADE SIZE (NEC).
- 3. INSTALL NEOPRENE GASKET OUTSIDE HEAD WHEN FLANGED ELBOWS ARE SUPPLIED.

TOP MOUNT TYPE C - PED. TYPE F - VEHICLE

SIGNAL HEAD MOUNTING DETAILS POLE & POST TOP MOUNTINGS

STANDARD PLAN J-6f

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield

4/24/98

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

6,

APRIL

2002

ů

AUGUS

INTERNALLY ILLUMINATED SIGN DETAILS

ELEVATION

CABINET MOUNTING DETAIL

KEY:

- 1 METAL OR TIMBER POLE
- ② 2" \times $\frac{3}{16}$ " S.S. BAND WITH 2 EACH, $\frac{3}{8}$ -16NC \times $\frac{3}{4}$ " STAINLESS STEEL HEX HEAD BOLT,
- LOCK WASHERS AND NUTS 5/6", EYE AND EYE, TURNBUCKLE
- S HOOK, $\frac{3}{8}$ " MILD STEEL
- $\frac{1}{8}$ " WIRE ROPE CLAMP (U BOLT TYPE)
- 1/8" STAINLESS STEEL TETHER WIRE
- (7) WIRE CLAMP WITH LEAD WIRE WRAP
- 8 SIGNAL HEAD
- 9 6 X 8.2 LB/FT CHANNEL
- (0) 2 EACH, $\frac{1}{2}$ -20 NF X $\frac{2}{2}$ HEX HEAD BOLT, LOCK WASHER (DRILL AND TAP POLE TO ACCEPT)
- (11) WIREWAY (SEE DETAIL THIS SHEET)
- 12 METAL POLE
- (13) CABINET (14) END BUSHING
- (15) CONDUIT LOCKNUT
- (16) STEEL WASHER
- (17) WEATHERPROOF SEAL
- (18) 2" DIA × 4" NIPPLE
- UNLESS OTHERWISE NOTED
- (19) CABINET WALL DRILLED 1/8" OVERSIZE OF NIPPLE
- ② CHANNEL DRILLED 1/8" OVERSIZE OF NIPPLE
- 2) POLE DRILLED 1/8" OVERSIZE OF NIPPLE
- (2) 6063 EXTRUDED ALUMINUM FRAME
- (3) 4 EACH, F24T12/CW FLOURESCENT TUBES
- 24 TRANSLUCENT PLEXIGLASS SIGN FACE
- (25) 11/2" CAST IRON HUB WITH 5/6" PIN AND COTTER KEY
- 26 SEE KEY 2,9,17, AND 18, STANDARD PLAN "SIGNAL HEAD MOUNTING DETAILS MAST ARM AND SPAN WIRE MOUNTINGS" .
- ② SEE KEY 2,6,9 AND 22, STANDARD PLAN "SIGNAL HEAD MOUNTING DETAILS MAST ARM AND SPAN WIRE MOUNTINGS" .
- (8) SEE KEY 2,9 AND 22, STANDARD PLAN "SIGNAL HEAD MOUNTING DETAILS MAST ARM AND SPAN WIRE MOUNTINGS" .
- ② SERRATED 11/2" ELBOW
 ③ 11/2" DIA NIPPLE (DRILL AND TAP POLE
- 31 2 EACH, $\frac{1}{2}$ -20NF \times $\frac{3}{4}$ " STAINLESS STEEL HEX HEAD BOLT AND LOCK WASHERS (DRILL AND TAP POLE TO ACCEPT
- 32 MOUNTING BRACKET

NOTES:

1. BACKPLATES SHALL BE INSTALLED WITH 6 STAINLESS STEEL SCREWS AND WASHERS.

MISCELLANEOUS SIGNAL DETAILS STANDARD PLAN J-6h

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

APPROVED FOR PUBLICATION

Clifford E. Mansfield DEPUTY STATE DESIGN ENGINEER

4/24/98

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

SIDE POLE MOUNT

8" OR 12" SECTIONS 8" SECTION X = 8" $\pm \frac{1}{2}$ " 12" SECTION X = $5\frac{1}{2}$ " ± $\frac{1}{2}$

BACKPLATE DETAIL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

H2 (ROUND)

Harold J. Peterfeso

09-12-01

head mounting,

Standard Plan J-6f

(drill slipfitter

See "FOUNDATION DETAIL" →

SLIP/ANCHOR PLATES DETAIL

KEEPER PLATE Place between pole base plate and slip plate on top of middle washers.

RAMP METER DETAIL

Shaft, slipfitter, welds and handhole are

the same as shown for Type 1 Standards.

VIEW A-A

See Slip Anchor Plate Detail for dimensions

FLASHING BEACON AND RAMP METER BASE ELEVATION See "FOUNDATION DETAIL" for other requirements.

Traffic signal head

(three 12" Lenses)

FLASHING BEACON DETAIL

Shaft, slipfitter, welds and handhole are the same as shown for Type 1 Standards, except shaft length is 14'.

ANCHOR BOLT LAYOUT

EXPIRES OCTOBER 26, 2002

SIGNAL STANDARD TYPE **DESIGNATIONS AND TYPE** PPB, PS, I, RM, & FB DETAILS

STANDARD PLAN J-7a

SHEET 2 OF 2 SHEETS

09-12-01

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST.

APPROVED FOR PUBLICATION

Harold J. Peterfeso

Vashington State Department of Transportation

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

Secure conductors with

cable ties. See Std.

Strain insulator

2000

9

APRIL 15'-0" MAX

02 T 10′-0″

5

AUGI

FFECTIVE:

(See Detail)

 $\mathcal{M}_{\mathcal{M}}$

Timber Strain Pole details not shown

See

standoff

//XY/XY/XY/XY/XY/XY/XY/XY/XY/XY/XY/

Power installed helical

ALTERNATE DOWN GUY DETAIL

screw anchor (See Notes)

-Saddle casting

8'-0" yellow reflective

plastic

guy guard

Galvanized steel bar

6'-0"

2" DIA, 12 gauge

- 2. If anchor hole diameter is greater than nominal diameter of folded anchors, a 5 cover of 6" to 12" size rock shall be tamped in to replace the disturbed soil immediately above the anchor.
- 3. See "Strain Clamp Detail" on Standard Plan 'Strain Pole Standards: Type IV and Type V''.

RAKE TABLE

POLE CLASS RAKE

THE OF WASHINGTON EXPIRES JUNE 4, 1999

SPAN WIRE INSTALLATION

STANDARD PLAN J-7d

STRAIN INSULATOR DETAIL

Elevation Side View

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

APPROVED FOR PUBLICATION

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

4/98 Delete bury depth of pole. A REVISION 5 BY APPR'D DATE

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

4/24/98

2" Deep sawout

top course

Sand

Conduit

ΝÏΝ

18′′

APPLICABLE FOR OFF-ROAD PAVED AREAS ONLY

SECTION C-C

Match existing paving material. 3" min. depth

3" Crushed surfacing

W = Conduit diameter

TYPICAL CONDUIT PLACEMENT FOR LOOP LEAD-IN WIRES

Loop lead pairs	1-2	3	4-5	6-8	9-12
Conduit size (MIN)	1"	11/4"	11/2"	2"	3′′

TABLE A

SPLICE DETAIL

LEAD - IN SAWCUTS AND CONDUIT PLACEMENT DETAIL

DETAIL A

INDUCTION LOOP DETAILS

J-8a

08-01-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

TYPICAL CORNER SAWCUT

LOOP SAWCUT DETAILS

2002

LOOP WINDING DETAILS

- (1) Sealant
- 2 Twisted polypropylene rope (Sized for snug fit)
- 3 Loop wire number varies (See Loop Winding Details)
- 4 Lead-in wires: One pair for each loop served, three pairs maximum per sawcut (See installation notes)
- (5) Extend sawcut sufficient length to provide full sawcut depth around corners

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

LOOP INSTALLATION NOTES

- 1. Install junction box and lead-in conduit.
- 2. Saw loop slots and lead-in slots.
- 3. Lay out loop wire begining at junction box, allowing 5' minimum slack.
- 4. Install wire in loop slot. See Loop Winding Detail.
- 5. Return to junction box and identify leads with plan detector number and "S" for start and "F" for finish.
- Twist each pair of lead-in wires two turns per foot from loop to junction box and install in lead-in slot and conduit. Reverse direction of twist for each successive pair installed.
- 7. Construct supplemental splice containing any series or parallel loop connections required in plans. Supplemental splices are subject to the same requirements shown for the loop lead and shielded cable splice.
- 8. Splice loop leads or supplemental splice leads to shielded cable as noted.
- 9. Complete installation and test loop circuits or combination loop circuits.
- Front of loop should be measured from back of stop bar, or back of crosswalk where no stop bar is installed.
- 11. Seal ends of conduit.

INDUCTION LOOP
DETAILS

J-8a

08-01-97

EFFECTIVE: AUGUST 5. 2002 TO APRIL 6. 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003

EFFE COMBINATION GALVANIZED STEEL CONDUIT (GSC) A PR 6 2003 AND NON-METALLIC CONDUIT (NMC) APPLICATION

Service Neutral

2003

9

APRIL

- Service Ground
- Grounding Electrode Conductor
- Bonding Jumper
- Grounding Bushing (typ. all conduit terminations)
- Service Neutral Bus (Copper)
- Service Enclosure
- Equipment Grounding Conductor
- Junction Box
- Electrical Load Support (luminaire pole)
- Copper Split Bolt Clamp
- Galvanized Steel Conduit (GSC)
- Non-metallic Conduit (NMC)
 - Option A 10' GSC with Field Bend
 - Approved Adapter Fitting
 - Grounding Bushing
 - Option B 10' GSC
 - GS Factory Elbows
 - Approved Adapter Fitting
 - GS Coupling
 - Grounding Bushing
- (15) Ground Rod
- (16) Edge of Foundation, Pole or Service Support
- $oxed{18}$) Junction Box or $8^{\prime\prime}$ Drain Tile with Approved Cover
- (19) Code Sized GSC
- (20) To Service Neutral Bus
- 21) To Grounding Terminal or Connection to Equipment Grounding System IVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTNOTES: AUGUST 5, 2002 TO APRIL 6, 2003

- 1. If parallel circuits of different sizes are contained in one conduit, the size of the grounding conductor shall be determined on the basis of the largest conductor. Only one grounding conductor is required for each conduit regardless of the number of circuits contained.
- 2. Service ground per serving utility requirement. If the utility uses aluminum service conductors, an approved Al-Cu pressure type ground connector shall be used to secure the service neutral to the copper neutral bar in the service enclosure. Except for the above, all grounding conductors shall be copper.
- 3. Equipment grounding conductors and grounding electrode conductors shall be sized in accordance with the National Electric Code (No. 8 minimum) .

SERVICE GROUND

Required to supplement equipment grounding for luminaire standards with direct burial, aerial feeds, or where required in plans.

SUPPLEMENTAL GROUND

Required at all services and separately derived systems.

GROUND ROD DETAILS

TYPICAL GROUNDING DETAILS

STANDARD PLAN J-9a

APPROVED FOR PUBLICATION

IOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

Clifford E. Mansfield

DEPUTY STATE DESIGN ENGINEER

4/24/98

Note 3, change "connectors" to "conductors". ABN

REVISION

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003 18-97

	JUNCTION BOX DIM	ENSION TAB	LE		
MARK	ITEM	BOX TYPE			
≨	I I LIVI	TYPE 1	TYPE 2	TYPE 3	
Α	OUTSIDE LENGTH OF JUNCTION BOX	22"	33"	42"	
В	OUTSIDE WIDTH OF JUNCTION BOX	17"	22 1/2"	30"	
C	INSIDE LENGTH OF JUNCTION BOX	18"-19"	28"	36"	
D	INSIDE WIDTH OF JUNCTION BOX	13"-14"	17"	24"	
Е	LID LENGTH	18"	26 1/2"	38"	
F	LID WIDTH	13"	17"	26"	
G	DEPTH OF JUNCTION BOX	12"	12"	12"	
Н	LID AND FRAME DEPTH	5/16"	5/16"	1/2"	
J	MINIMUM WALL THICKNESS	1 1/2"	1 1/2"	3"	
K	WELDED WIRE HOOP - SIZE NUMBER (SEE NOTE 6)	W 2.9 (6 GAGE)	W 2.9 (6 GAGE)	W 5 (3 GAGE)	
L	WELDED WIRE FABRIC - SIZE (SEE NOTE 6)	4 X 4 W 2.9 X W 2.9 (6 GAGE)			
М	HANDLE	N/A	N/A	SEE DETAIL	
N	FRAME SLOT MARK	N/A	N/A	SEE DETAIL	
0	HOOK	SEE DETAIL	SEE DETAIL	SEE DETAIL	
Р	LID HOOD MARK	N/A	N/A	SEE DETAIL	
Q	OUTSIDE LENGTH OF FOUNDATION	N/A	N/A	48"	
R	OUTSIDE WIDTH OF FOUNDATION	N/A	N/A	36"	
S	INSIDE LENGTH OF FOUNDATION	N/A	N/A	36"	
Т	INSIDE WIDTH OF FOUNDATION	N/A	N/A	20"	
U	MINIMUM FOUNDATION DEPTH	N/A	N/A	3"	
٧	WELDED WIRE HOOP -SIZE NUMBER	N/A	N/A	W 5 (3 GAGE)	
	CAPACITY - CONDUIT DIAMETERS	6"	12"	24"	
	NOTE: A 1% TOLERANCE IS ALLOWED				

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE.
THE ORIGINAL, SIGNED BY THE ENGINEER AND APPROVED FOR PUBLICATION, IS KEPT ON FILE
AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED UPON REQUEST

NOTES:

- 1. All box dimensions are nominal. Exact configurations vary among different manufacturers.
- 2. The noted lid thicknesses are overall minimums. The diamond pattern for Type 1 or 2 boxes shall be 28% minimum of overall thickness. The diamond pattern for Type 3 boxes shall have a minimum thickness of 3/32 ".
- 3. Lid support members shall be 3/16 " min. thick steel C, L or T shape welded to the frame.
- 4. When specified in the Contract, Type 2 and Type 3 boxes shall be provided with 12" deep extension boxes.
- 5. A 1/4" NC x 3/4" Stainless Steel Ground Stud with S.S. Nut shall be welded to the bottom of the lid.
- 6. See the Standard Specifications for alternate use of reinforcement.

STANDARD JUNCTION BOX STANDARD PLAN J-11a

APPROVED FOR PUBLICATION

Harold J. Peterfeso 09-12-01

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-07-97

APRIL 6, 2003

AUGUS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

- Regulatory traffic control devices to be modified as needed for the duration of the detour.
 - Flashing warning lights (Type A, MUTCD) shall be used to mark barricades at night as needed.
- 3. Detour trailblazers shall be installed as necessary throughout detour route.

FOR LOCAL AGENCY USE

TRAFFIC CONTROL PLAN

5, 2002 TO APRIL 6, 2003

AUGUST

W20-I

LEFT LANE CLOSED AHEAD

WI - 4b(R)

W4 - 2(R)

W20 - 5(L)

ROAD WORK AHEAD

EFFECTIVE: AUGUSTNotes 2002 TO APRIL 6, 2003

444

END

ROAD WORK

G20 - 2a

Interim Yellow Edge Stripe

Interim White Edge Stripe

	or obliterated as soon as practicable. Temporary markings shall be used as necessary.			
2.	See Buffer Data Table. Use of buffer vehicle is recommended. It may be a work vehicle. If Buffer Vehicle is used, minimum distance from end of taper to work area shall be a total			

	vehicle, plus "B" (buffer space). If buffer vehicle is not used, minimum distance shall be "B".	
3.	This application may be used during peak traffic periods. Lane distribution may be reversed (signing chapped accordingly) when	63

BUFFER DATA						
Buffer Space						
Speed (MPH)	25	30	35	40	45	50
B (FT) =	55	85	120	170	220	280
Buf-	I Ahead	Distanc	e	•		
4 Yard Dump Truck 24,000 LBS				Stati Opera	onary ation	
R (FT) =				10	0	

AUGUS

	or obliterated as soon as practicable. Temporary markings shall be used as necessary.
2.	See Buffer Data Table. Use of buffer vehicle is recommended. It may be a work vehicle. If Buffer Vehicle is used, minimum distance from end of taper to work area shall be a total of "R" (rall ahead distance) plus length of

De D •		
	ication may be used during peak eriods. Lane distribution may be	
reversed	(signing changed accordingly) when traffic flow changes direction.	-
when pear	maine now enanges arrection.	- (

4.	substituted	or turn warning for sign W1-4b(l adway allignmen	

BUFFER DATA						
Buffer Space						
Speed (MPH)	25	30	35	40	45	50
B (FT) =	55	85	120	170	220	280
Buf-	fer Vehi	cle Roi	I Ahead	Distanc	e	•
4 Yard Dump Truck 24,000 LBS				Stati Opera		
R (FT) =				10	0	

TRAFFIC CONTROL PLAN

	E	
٠	For long-term projects, conflicting	
	markings no longer applicable shall	be removed
	or obliterated as soon as practicab	le.
	Temporary markings shall be used as	necessary.

CHANNELIZING DEVICE SPACING (FT)				
MPH	Taper	Tangent		
35/50	30	60		
25/30	20	40		

MII	MUMI	TAPER	LENGTH	4 = L	IN FEE	Т
Lane Width		Pos	ted Sp	eed (M	IPH)	
(feet)	25	30	35	40	45	50
10	105	150	205	270	450	500
11	115	165	225	295	495	550
12	125	180	245	320	540	600

SIGN SPACE	NG TABLE
Speed	x
45/50 MPH	500'±
35/40 MPH	350′±
25/30 MPH	200'±

	_
LEGEND	
000	Channelizing Devices
	Obliterated Markings (see notes:
444	Sequential Arrow Sign

, WORK

Typical application of traffic control devices where directional traffic volumes are uneven.

NOTES

- 1. Flashing warning lights and/or flags shall be used to call attention to early warning signs when specified in contract.
- 2. See Buffer Data Table. Use of buffer vehicle is recommended. It may be a work vehicle. If buffer vehicle is used, minimum from end of taper to work area shall be total of "R" (roll ahead distance) plus length of vehicle, plus "B" (buffer space). If buffer vehicle is not used, minimum distance shall be "B".

CHANNELIZING DEVICE SPACING (FT)							
MPH	Taper	Tangent					
35/50	30	60					
25/30	20	40					

SIGN SPACI	ING TABLE
Speed	Χ
45/50 MPH	500′±
35/40 MPH	350′±
25/30 MPH	200′±

BUFFER DATA							
		Buff∈	er Space				
Speed (MPH) 25 30 35 40 45 50							
B (FT) =	55	85	120	170	220	280	
E	Buffer V	'ehicle	Roll Ah	ead Dist	ance		
4 Yard 24,0		Stationary Operation					
R (1	= T) =			1	00		

FOR LOCAL	
AGENCY USE	

TRAFFIC CONTROL PLAN

STANDARD PLAN K-7

LEGEND p p Devices ≪ Sequential Arrow Sign

5, 2002 TO APRIL 6, 2003

AUGUST

Typical application - daytime operation of short duration on a four-lane divided roadway where one lane is closed.

MINIMUM TAPER LENGTH = L IN FEET									
Lane Width	Posted Speed (MPH)								
(feet)	25	30	35	40	45	50			
10	105	150	205	270	450	500			
11	115	165	225	295	495	550			
12	125	180	245	320	540	600			

NOTE: THIS PLAN IS NOT A LEGAL ENGINEERING DOCUMENT BUT AN ELECTRONIC DUPLICATE. APPROVED FOR PUBLICATION AT THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION. A COPY MAY BE OBTAINED

Clifford E. Mansfield

STATE DESIGN ENGINEER

WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OLYMPIA, WASHINGTON

3/07/97

AUGUST 5, 2002 TO APRIL 6, 2003

G20-2a

SIGN SPACING TABLE					
Speed	Х				
45/50 MPH	500'±				
35/40 MPH	350'±				
25/30 MPH	200'±				

CHANNELIZING DEVICE SPACING (FT)								
MPH Taper Tangen								
35/50	30	60						
25/30	20	40						

Buffer Vehicle with beacon (optional) (See Note 2)

> W20 - 5(R) (See Note 1)

> > W20-1 (See Note 1)

TWO LANES CLOSED

WORK

MINIMUM TAPER LENGTH = L IN FEET									
ane idth									
eet)	25	30	35	40	45	50			
10	105	150	205	270	450	500			
11	115	165	225	295	495	550			
12	125	180	245	320	540	600			

1.	Flash	ning	warr	ning	lights	s ar	nd/or	flags	sho	ווכ	Ьe
	used	10	call	atte	ention	10	early	warn	ing	si	gns
	when	spe	cifie	ed in	n contr	ac-	t.				

2. See Buffer Data Table. Use of buffer vehicle is recommended. It may be a work vehicle. If buffer vehicle is used, minimum distance from end of taper to work area shall be total of "R" (roll ahead distance) plus length of vehicle, plus "B" (buffer space). If buffer vehicle is not used, minimum distance shall be "B".

BUFFER DATA								
		Bu-	ffer Spo	ice				
Speed (MPH) 25 30 35 40 45 50						50		
B (FT) =	55	85	120	170	220	280		
Buf	fer Veh	icle Rol	I Aheac	Distan	ce			
4 Yard 24,0		Stati Opera	onary ition					
R		10	00					

FOR LOCAL AGENCY USE

AUGUST

TRAFFIC CONTROL PLAN

LEGEND

□ □ □ Channelizing Devices

▷ ▷ Sequential Arrow Sign

Typical Application - Closing two lanes of a multi-lane highway

-8

8 1 of

EFFECTIVE: AUGOLIST 5, 2002 TO APRIL 6, 2003

- 1. Flashing warning lights (TYPE A, MUTCD) should be used to mark barricades at night, as needed.
- 2. Conflicting pavement markings and those no longer applicable shall be removed or obliterated.
- 3. Prohibit turns as necessary for traffic conditions.

BUFFER DATA							
Buffer Space							
Speed (MPH)	25	30	35	40	45	50	
B (FT) =	55	85	120	170	220	280	

MINIMUM TAPER LENGTH = L IN FEET								
Lane Width		Posted Speed (MPH)						
(feet)	25	30	35	40	45	50		
10	105	150	205	270	450	500		
11	115	165	225	295	495	550		
12	125	180	245	320	540	600		

CHANNELIZING DEVICE SPACING (FT)							
MPH	Taper	Tangent					
35/50	30	60					
25/30	20	40					

FOR LOCAL AGENCY USE

TRAFFIC CONTROL PLAN

SIGN SPACE	ING TABLE
Speed	Х
45/50 MPH	500′±
35/40 MPH	350′±
25/30 MPH	200′±

Typical application - Work area near an intersection, allowing right turns.

03-07-97 **EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2**

EFFECTIVE: AUGIJEST 5, 2002 TO APRIL 6, 2003

- Flashing warning lights (Type A, MUTCD) should be used to mark barricades at night as needed.
- Steady burning warning lights (Type C, MUTCD) should be used to mark channelizing devices at night as needed.
- Conflicting pavement markings and those no longer appicable shall be removed or obliterated.
- Prohibit turns as necessary for traffic conditions.

MI	MINIMUM TAPER LENGTH = L IN FEET						
Lane Width		Posted Speed (MPH)					
(feet)	25	30	35	40	45	50	
10	105	150	205	270	450	500	
11	115	165	225	295	495	550	
12	125	180	245	320	540	600	

| SIGN SPACING TABLE | Speed | X | | 45/50 MPH | 500'± | | 35/40 MPH | 350'± | 25/30 MPH | 200'± |

FOR LOCAL AGENCY USE

TRAFFIC CONTROL PLAN

CHANNELIZING DEVICE SPACING (FT)						
MPH	Taper	Tangent				
35/50	30	60				
25/30	20	40				

Typical application - Work area near an intersection providing access to left-turn lane.

(-11

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003-07-97

Temporary Edge StripeFND

ROAD WORK

Or reverse cone taper to

W4-2(L) See Note 3

RIGHT LANE CLOSED

AHEAD

W20-1 See Note 3

ROAD WORK AHEAD W20-5(R) See Note 3

show end of work area

W12-401R

W20-1

ROAD

WORK

AHE AD

G20-2a FND

ROAD WORK

- 1. Conflicting pavement markings and those no longer applicable shall be removed or obliterated.
- 2. Exposed ends of concrete barriers must be maintained outside the clear zone and adequately flared or fitted with impact attenuators.

Flare formula: 50 MPH --- 12:1 45 MPH --- 11:1 40 MPH --- 10:1

- 3. The advance warning sign series W20-1, W20-5(R) and W4-2(L) shall be repeated in median where sufficient width exists.
- 4. Steady burning warning lights (TYPE C, MUTCD) shall be used to mark channelizing devices at night.

CHANNELIZING DEVICE SPACING (FT)						
MPH	Taper	Tangent				
35/50	30	60				
25/30	20	40				

		ı ır
SIGN SPACE	ING TABLE	1
Speed	Х	7
45/50 MPH	500′±	
35/40 MPH	350′±	7
25/30 MPH	200′±	

FOR LOCAL AGENCY

TRAFFIC CONTROL PLAN

MIN	I MUM 1	TAPER I	LENGTH	= L]	N FEE	Т
Lane Width		Post	ed Spe	ed (Mf	PH)	
(feet)	25	30	35	40	45	50
10	105	150	205	270	450	500
11	115	165	225	295	495	550
12	125	180	245	320	540	600

IMPACT ATTENUATORS (see notes)

Typical application - Portable barrier around a work area.

LEGEND

*151 74.5

□ □ □ CHANNELIZING DEVICES

CONCRETE BARRIER SEQUENTIAL ARROW SIGN

OBLITERATED MARKINGS (see notes)

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003-07-97

- Other warning signs, such as LOOSE GRAVEL, TRUCK CROSSING, BUMP, ABRUPT LANE EDGE, etc. may be used as necessary along with advisory speed signs. Advisory speeds are determined by the Engineer.
- 2. Floodlights shall be provided to mark flagger stations at night.
- 3. See Buffer Data Table. Use of buffer vehicle is recommended. It may be a work vehicle. If buffer vehicle is used, minimum distance from end of taper to work area shall be total of "R" (roll ahead distance) plus length of vehicle, plus B" buffer space. If vehicle is not used, minimum distance shall be "B".

SIGN SPACE	ING TABLE
Speed	X
45/50 MPH	500'±
35/40 MPH	350′±
25/30 MPH	200′±
	Speed 45/50 MPH 35/40 MPH

CHANNELIZING DEVICE SPACING (FT)					
MPH	Taper	Tangent			
35/50	30	60			
25/30	20	40			

FOR LOCAL AGENCY USE

TRAFFIC CONTROL PLAN

	BUFFER DATA					
Buffer Space						
Speed (MPH)	25	30	35	40	45	50
B (FT) =	55	85	120	170	220	280
Buffer Vehicle Roll Ahead Distance						
4 Yard Dump 24,000 L	Truck BS	Stationary Operation			Movin Operati	
R (FT)	=		100		175	

PILOT CAR CONTROLLED ONE WAY TRAFFIC

(See Note 3)

LEGEND	1	
000	Channelizing	Devices
	Flagger	

2002 TO APRIL 6, 2003

AUGUST

EFFECTIVE:

Typical application - Paving/Chip Seal operations on a two-lane roadway.

(optional)

25/30

	000010,		LIUAI	1711	0, 200
No	encroachment	on	travelled	lane.	Ιf

- encroachment is necessary, lane must be closed. 2. See Buffer Data Table. Use of buffer vehicle
- is recommended, it may be a work vehicle. If buffer vehicle is used, minimum distance from end of taper to work area shall be total of "R" (roll ahead distance) plus length of vehicle, plus "B" (buffer space). If buffer vehicle is not used, minimum distance shall be "B".

BUFFER DATA										
Buffer Space										
Speed (MPH) 25 30 35 40 45 50										
B (FT) =	55	85	120	170		220	280			
[Buffer \	/ehicle	Roll Ah	ead D	isto	ance				
4 Yard Dump Truck Stationary Moving 24,000 LBS Operation Operation										
R (FT) :		1		175						

FOR LOCAL AGENCY USE

TRAFFIC CONTROL PLAN

MINIMUM TAPER LENGTH = L IN FEET											
ane idth		Pos	ted Sp	oeed (MPH)						
feet)	25	30	35	40	45	50					
10	105	150	205	270	450	500					
1 1	115	165	225	295	495	550					
12	125	180	245	320	540	600					

20

Typical application - Shoulder work on four Táne highway.

■ ■ ■ Channelizing Devices

Χ

500'±

350'±

200'±

2003

6

APRIL (

AUGUST 5, 2002

EFFECTIVE:

Speed

45/50 MPH

35/40 MPH

25/30 MPH

LEGEND

40

G20-2a

show end of work area

CHANNELIZING DEVICE SPACING (FT)							
MPH	Taper	Tangent					
35	30	60					
25/30	20	40					

W21-5

SIGN SPACE	ING TABLE
Speed	х
35 MPH	350′±
25/30 MPH	200'±

MINIMUM TAPER LENGTH = L IN FEET									
Lane Width	Posted Speed (MPH)								
(feet)	25	30	35						
10	105	150	205						
11	115	165	225						
12	125	180	245						

BUFFER DATA										
Buffer Space										
Speed (MPH)	25	30	35							
B (FT) =	55	85	120							
Buffe	er Vehicle Ro	oll Ahead Dis	tance							
4 Yard Du 24,000	mp Truck LBS	Stationary Operation								
R (FT) =	10	0							

FOR LOCAL AGENCY

TRAFFIC CONTROL PLAN

LEGEND

W20-1

AUGUST 5, 2002 TO APRIL 6, 2003

DDD Channelizing Devices

Typical application - shoulder work on urban street with minor encroachment on traveled lane.

'E: AUGUST 5. 2002 TO APRIL 6. 2003

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6. 2003-07-97

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

WIRE FENCE - TYPE 2

STEEL POST DETAILS
Details for Type 2 Fence identical
as shown for Type 1 Fence

WIRE FENCE

APRIL

5, 2002

L-1

07-18-97

Concrete Class

3000

NOTES:

- 1. Details for Type 2 Fence, sme as Type 1.
- Wood anchors shall be 2x4 lumber, 12" long MIN, fastened with three 16d galvanized nails.
- Four wire clamps per post required for mesh wire. Three additional clamps per post required in sag section.

SINGLE WIRE GATE, 14' WIDE

3/4" Steel rod-

Brace post

Wood brace

Wire brace

INTERSECTING FENCE BRACE

DOUBLE WIRE GATE, 20' WIDE

WIRE FENCE

L-1

07-18-97

WOOD POST DETAILS

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

EFFECTIVE: AUGUST 5. 2002 TO APRIL Sheet 2 of 2 Sheets

EFFECTIVE: AUGUST 5. 2002 TO APRIL

EFFECTIVE: AUGUST 5, 2002 TO APRIL 1 of 3 Sheets

Fabric loops

END. CORNER AND PULL POST

NOTES:

All concrete post bases shall be 10" minimum diameter.

All posts shall be spaced at 10' maximum intervals unless otherwise directed by the Engineer.

Top or bottom tension wires shall be placed within the limits of the first full fabric weave.

Details are illustrative and shall not limit hardware design or post selection of any particular fence type.

ROLL FORMED SECTIONS

RAIL AND

BRACE

_																			
2,6	MEMBER																		
		BR	ACE RAIL 8	k TOP RA	IL		LINE & BRACE POST				END	, CORNEF	R, & PULL	POST	GATE	E POST	ALL		
TYPI		ROUND H-COLUMN ROLL FORMED			DUND H-COLUMN ROLL FORMED ROUND H-COLUMN ROLL FORMED		RMED	ROUND		ROLL FORMED		ROUND		POSTS					
5	I.D. Pipe (Inches)	Weight Per Foot (Pounds)		Weight Per Foot (Pounds)	Size (Inches)	Weight Per Foot (Pounds)		Weight Per Foot (Pounds)	Size (Inches)	Weight Per Foot (Pounds)	Size (Inches)	Weight Per Foot (Pounds)	I.D. Pipe (Inches)	Weight Per Foot (Pounds)	Size (Inches)	Weight Per Foot (Pounds)	I.D. Pipe (Inches)	Weight Per Foot (Pounds)	LENGTH
1	11/4	2.27	11/4 × 15/8	1.35	1 1 × 1 1/4	1.35	2	3.65	21/4	4.0	15/8 × 17/8	2.34	21/2	5.79	31/2 × 31/2	5.14	31/2	9.1	8'-8''
3	11/4	2.27	11/4 × 15/8	1.35	1 1 × 1 1/4	1.35	11/2	2.72	1 7/8	2.72	1 1 × 1 1/8	1.85	2	3.65	31/2 × 31/2	5.14	31/2	9.1	8'-8''
= 4 =	1 1/4	2.27	11/4 × 15/8	1.35	1 5/8 × 1 1/4	1.35	11/2	2.72	1 ½	2.72	1 1 1 × 1 1/8	1.85	2	3.65	31/2 × 31/2	5.14	31/2	9.1	5'-6"
Ш																			
6	11/4	2.27	11/4 × 15/8	1.35	1 1 × 1 1/4	1.35	2	3.65	21/4	4.0	1 1 1 × 1 1/8	2.34	21/2	5.79	$3\frac{1}{2} \times 3\frac{1}{2}$	5.14	31/2	9.1	5'-6"

Fence Line

LINE POST

- 1/4"

Radius

(TYP)

CHAIN LINK FENCE

L-2

07-18-97

APRIL

NOTES:

- 1. Fence fabric shall be secured to gate frames with knuckled selvage along top edge for Types 4 & 6 chain link fence installations.
- 2. Minimum post length: Types 1 & 3 8'- 8" Types 4 & 6 5'- 6"

CHAIN LINK GATES

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2073-18-97

6'-0"

EFFECTIVE: AUGUST 5, 2002 TO APRIL 6, 2003

PLAN

NOTES

- Posts shall be 6 x 8 wood or W6 x 9 steel. See Standard Plan "Beam Guardrail Posts and Blocks".
- Padlocked end shall be determined by the Project Engineer. Lock shall not be provided.

ACCESS CONTROL GATE

I -6