

2022 Fish Passage and Stream Restoration Design Training

Module 11: Large Woody Material and other Habitat Features

Garrett Jackson December 20, 2022

Garrett Jackson, L.G.

Hydrology Program Manager Headquarters Hydraulics WSDOT

Current duties: Oversees hydrology program support of Chronic

Environmental Deficiencies and Fish Passage Programs. Develops

Large Wood policy and reviews implementation. Provides technical support to emergency

actions. Designs nature-based shoreline stabilization in marine and freshwater. NCHRP panel support.

Background & Experience: Garrett's experience includes 30 years of theoretical and applied hydrology and geomorphology throughout the western United States and overseas. His work includes stream restoration, geomorphic reach assessments, streambank stabilization, wetland mitigation, geologic hazard evaluation, sediment transport studies, erosion control, hydrologic and hydraulic modeling. He has designed numerous streambank stabilization and stream restoration projects. Garrett worked in consulting for 16 years before joining WSDOT. During the last 12 years, Garrett has been conducting reach assessments, designing emergency streambank stabilization, designing large wood structures, hydraulic modeling, fluvial geomorphic studies, channel migration analysis, and project management.

Education: B.S., University of Arizona, 1986, Geosciences; M.S., 1990, University of Arizona, Geomorphology; Certificate in Stream Restoration, Portland State University, 2007.

Personal interests: Garrett is married and has a large cat, lives in Seattle, and loves backcountry skiing, mountaineering, kayaking, and sport climbing, playing Brazilian music, and singing sea shanties.

Learning Objectives

- Understand the basic design process of habitat complexity features
- Become familiar with use of large woody material, including constraints
- Become aware of other types of complexity features

Large Woody Material

What is it?

- ➢ 6 feet length
- 4 inches diameter

Why are we discussing it?

- Bank protection
- Channel resilience
- Aquatic habitat benefits
- Required by partnering entities

LWM habitat benefits

- Creates scour pools
- Provides hydraulic diversity
- Cover from predators
- Contributes to hyporheic flow
- Attenuates stream power
- Cooler water
- Macroinvertebrate habitat
- Gravel retention

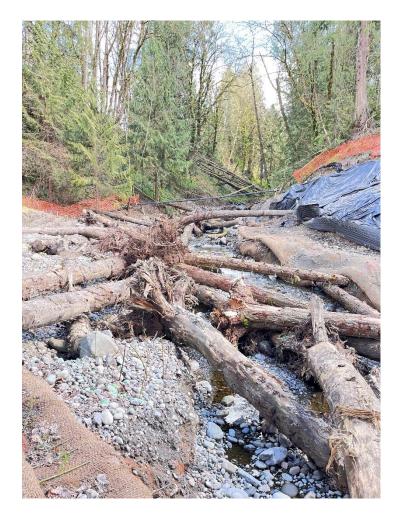
LWM in fish passage program

- LWM concept developed in PHD
 - Determine LWM targets
 - Plan view depiction of concept
 - Description of each structure type & function
 - Any constraints discussed with HQ Hydraulics
- Stability, final sizing and layout in FHD
 - Develop anchor concepts
 - Log orientation and elevation finalized based on stability calculations.
- May need "as directed" notes in design drawings

Steps in the LWM design process

- 1. Determine project objectives
- 2. Conduct a Site and Reach Assessment (PHD)
- 3. Conduct a Water Safety Assessment (if needed)
- 4. Determine LWM targets
- 5. Determine LWM structure designs and locations
- 6. Address any constraints
- 7. Incorporate LWM structures in hydraulic model
- 8. FHD conduct stability analysis and finalize design

Determine Project Objectives



- Habitat functions (cover, shade, refuge
 typical)
- Bank stabilization (less common)
- Flow Re-direction
- All of the above

Use a Site and Reach Assessment Approach

- Is it an alluvial or bedrock channel? Till?
- Evaluate riparian conditions
 - Contribution of LWM to stream function, stability
 - Is the stream lacking wood? If so, why?
- How confined is the stream?
- What is the channel gradient?
 - Generally, we place wood in channels up to 4%
 - Up to 12% if part of step-pool design
- What tendency for degradation? Aggradation?

Water Safety Assessment

needed

Determine LWM Targets

- Use LWM metrics calculator
- Enter project-specific information:
 - Length of regraded channel section
 - Includes length of crossing structure (even if we can't place wood)
 - Bankfull Width
 - Habitat zone
- Use lookup tables to determine target values
- Enter log dimensions and number
 - Meet key piece volume and number first
- Iteratively add and adjust log numbers and volumes
- Until targets are met

What is a key piece?

- Fox and Bolton (2007)/WFPB:
 - A log and/or rootwad that is

 (1) independently stable in the stream bank-full width (not functionally held...by another log, buried, trapped against a rock or bed form) and (2)
 retaining or having the potential to retain other pieces of organic debris.
- In fish passage/stream restoration projects:
 - A log with rootwad that meets the 75th percentile of the key piece volume for the appropriate bankfull width and habitat zone

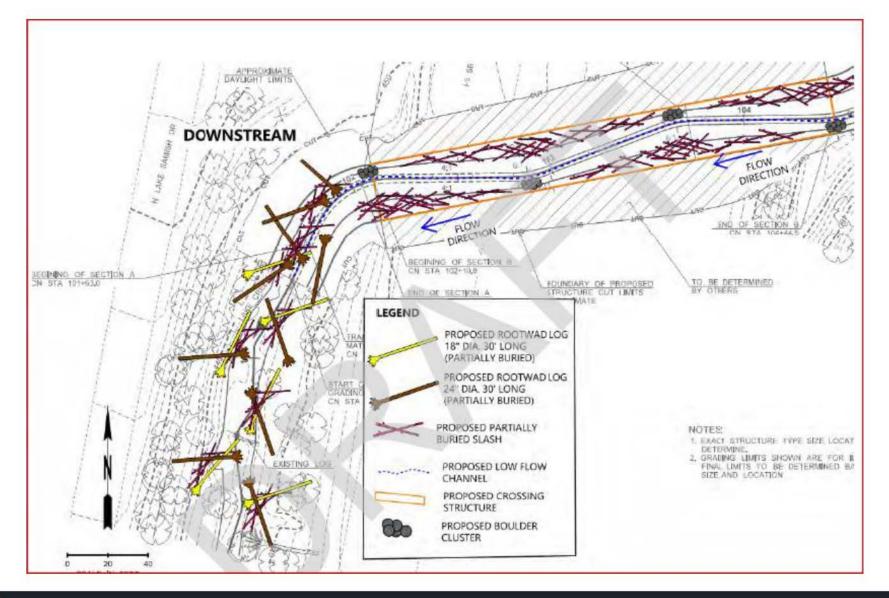
LWM metrics calculator

State Route	# & MP		if applicable											
Stream name					Key Piece density lookup table				Key piece volum	e lookup table		Total Woo	d Volume looku	ıp table
ength of re	grade ^a	360	ft		Habitat zone	BFW class (feet)	75 th percentile (yd3/ft stream)		BFW class (ft)	volume (yd3)		Habitat zone	BFW class (feet)	75 th percenti (yd3/ft strear
Bankfull width Habitat zone ^b		26 Western WA			Western WA	0-33	0.0335 0.0122		0-16 17-33	1.31 3.28		Western WA	0-98 99-328	0.3948
						34-328								
(ey piece/ft		0.034	per ft stream		Alpine	0 49	0.0122		34 49	7.86		Alpine	0-10	0.0399
Key piece volume		3.28	; 13		-	50-164	0.0030		50-66	11.79		Alpine	11-164	0.1196
Total LWM ^c pieces/ft stream		0.1921	per ft stream		Douglas Fir/Pond. Pine (much of eastern WA)	0-98	0.0061		67-98	12.77		Douglas Fir/Pond. Pine	0-98	0.0598
otal wood vol./ft		0.3948	3/ft stream		adapted from Fox and Be	olton (2007), Table 4			99-164	13.76		adapted from Fox a	nd Bolton (2007), Table 4
									165-328	14.08				
									adapted from Fox and Bolton (20		07), Table 5			
									Number of	LWM pieces loo	okup table			
							Total wood		Habitat zone	BFW class (feet)	75 th percentile (per/ft stream)			
Log type	Diam	Length ^d	Volume/log ^d	rootwad?	Key piece?	No. LWM pieces	volume ^e					·		
	rt	ft	yd3				yd3			0-20	0.1159	_		
A /	2.6	40	7.87	yes	yes	2	21.05		Western WA	21-98	0.1921	_		
B	2	30 25	3.49	yes	yes	10	47.01			99-328	0.6341			
C D	1.5 1.2	25 20	1.64 0.84	yes	no no	20 21	42.94 23.08		Alpine	0-10 11-98	0.0854			
E	1.2	20 15	0.63	yes yes	no	16	14.24		Alpine	99-164	0.1921	-		
F	1.5	20	1.31	no	no	10	1.31		Douglas	0-20	0.0884			
G	1.5	20	1.31	yes	no	1	1.82		Fir/Pond. Pine	21-98	0.1067			
н			0.00		no		0.00		adapted from Fox and Bolton		007), Table 4			
1			0.00		no		0.00							
J			0.00		no		0.00							
-			Design	12 12	71 69	151.4 142.1								
_			Targets	12	69	142.1								
					Ī				1	1	1	1	1	1
							4		_					
1	₩ K€	ey pie	eces	01	tal # piec	es	otal vol	um	е					

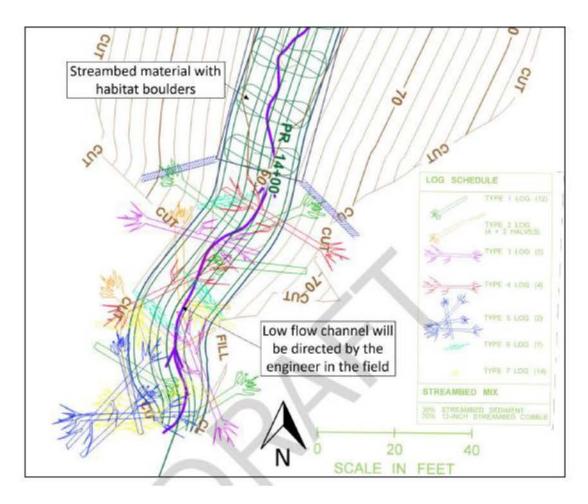
Determine LWM structure designs and locations

Determine LWM structure designs and locations

- Design for the identified objectives (usually habitat)
- Incorporate diversity of structure


LWM diversity

- LWM sizes (don't rely on key pieces only)
- Orientation
- Elevation
- Angle (0-360 degrees)
- With/without rootwads (non-key pieces)
- Groupings of logs
- Degree of flow deflection
 - OK to be farther out than centerline!



Examples

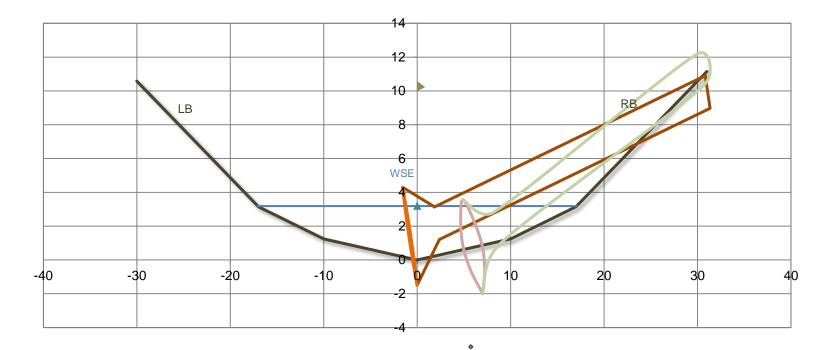
Examples

Determine LWM structure designs and locations

- Design for the identified objectives (usually habitat)
- Incorporate diversity of structure
- Minimize anchors

Avoiding anchors

- Use topography to our advantage
 - Steep slopes easier to use for self-ballasting
- Use existing features (trees, mostly) and lashings
- Factor of Safety flexibility?
 - Downstream of crossing
 - What is downstream of the reach?
 - Possible to design for less than 100-year flow
 - 'Mobile wood'

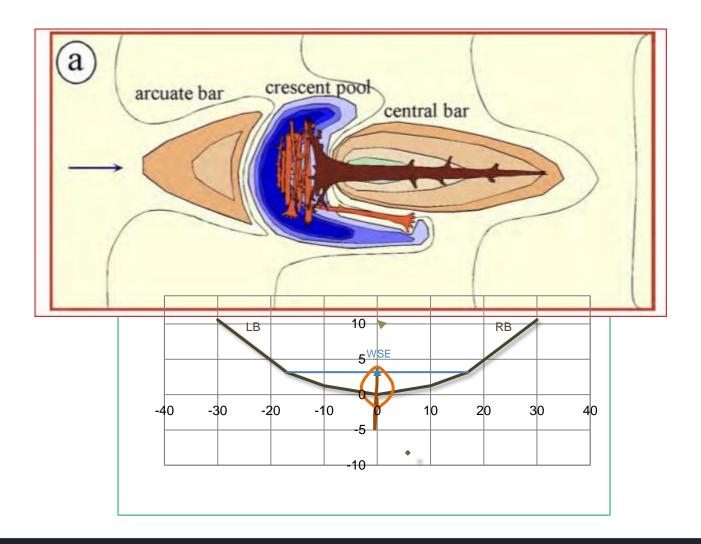

Self-ballasting LWM

Example – Pussyfoot Creek

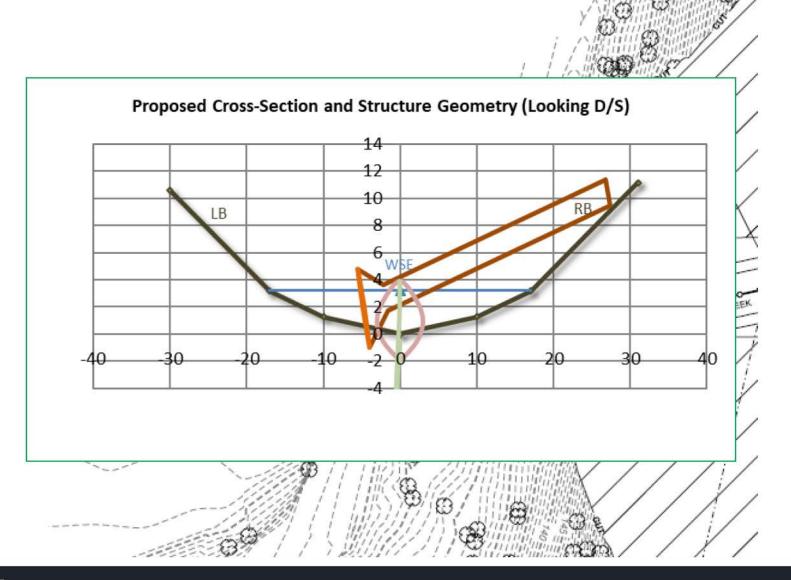
Proposed Cross-Section and Structure Geometry (Looking D/S)

.

Existing Features as Anchors


Determine LWM structure designs and locations

- Design for the identified objectives (usually habitat)
- Incorporate diversity of structure
- Minimize anchors
- Key pieces engaged with all flows
- Non-key pieces engaged with flow as much as possible
- Create sinuous flow pathways

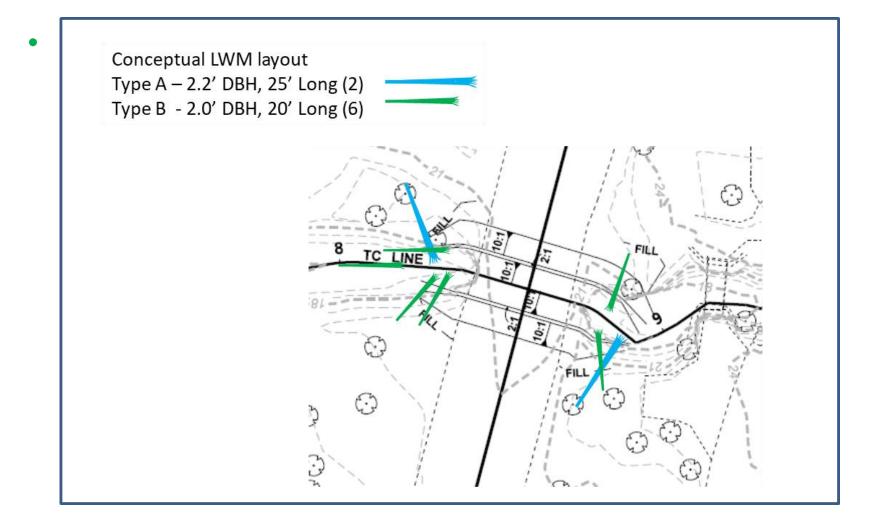



Center of stream

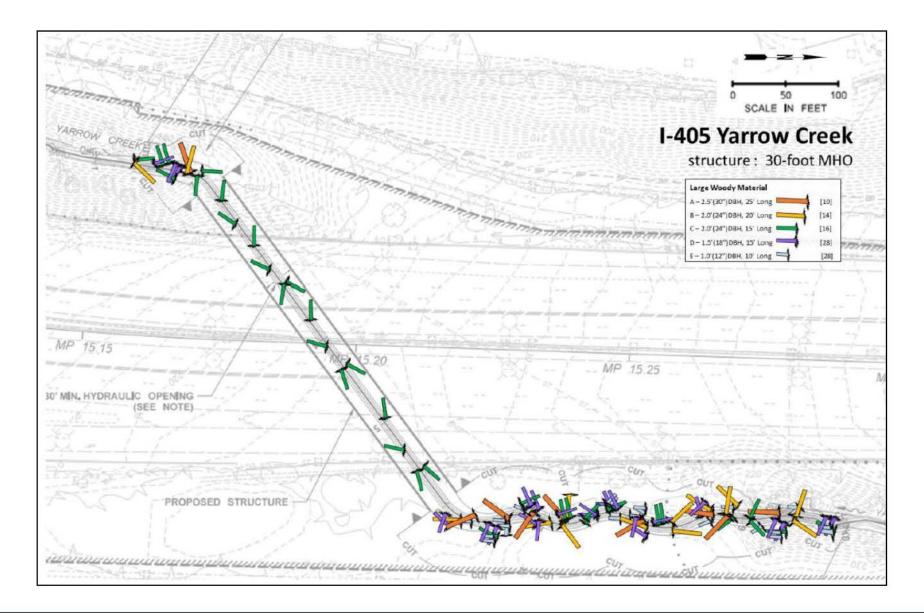
🕏 wsdot

Channel spanning

- Higher risk to structures, property
- Potential barriers
- Can span above the design flow


Determine LWM structure designs and locations

- Design for the identified objectives (usually habitat)
- Incorporate diversity of structure
- Minimize anchors
- Key pieces engaged with all flows
- Non-key pieces engaged with flow as much as possible
- Key pieces engaged with all flows
- Non-key pieces engaged with flow as much as possible
- Create engagement at all flow levels
- Create sinuous flow pathways
- Working with Constraints

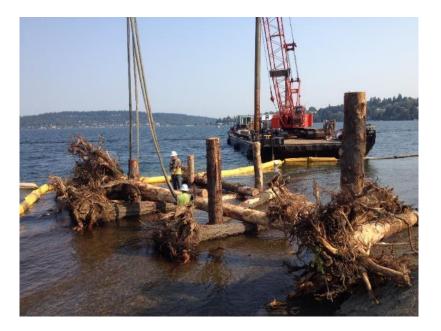


Working with constraints

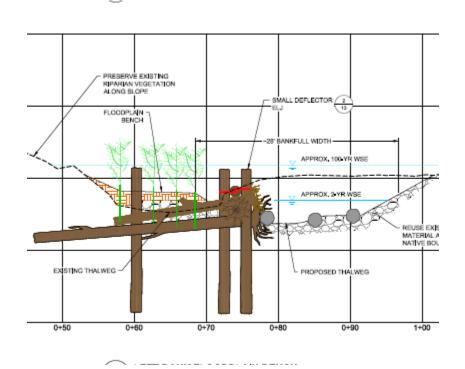
Working with constraints

LWM in or near crossing structures

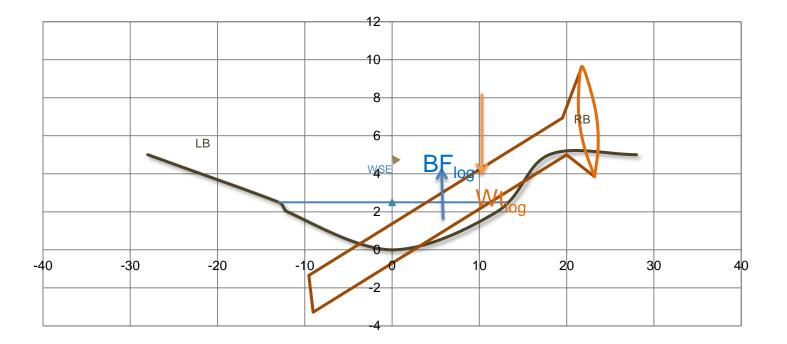
Must consider:


- 1) Is there wracking potential? If so, consider design that would limit it (no rootwads, orientation parallel to flow, limited protrusion)
- 2) Potential for undermining abutments (including wracking)
- 3) Backwater effects on highway, other property if present
- 4) Maintain freeboard 6 feet for equipment, up to 10 feet (HM section 7-4.5.2)
- 5) Bed scour would wracking create excess scour that would affect bridge?

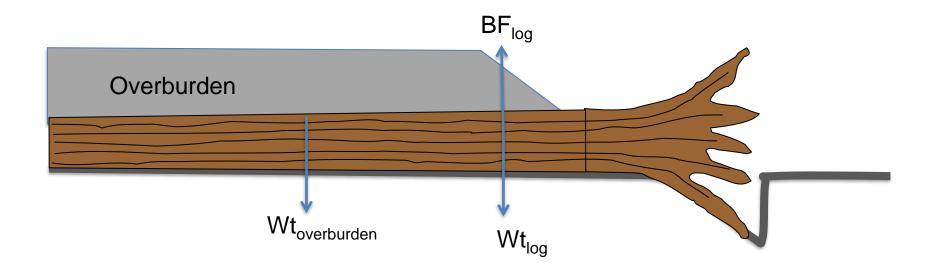
If placing LWM near or under bridges, Factor of safety of 2 for buoyant and drag forces. (or consider mobile wood)


FHD – finalize LWM design

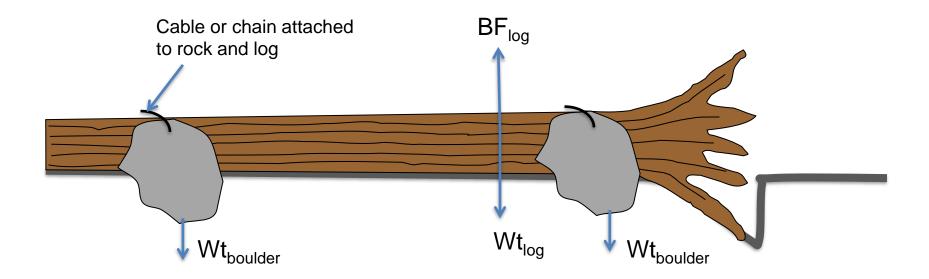
- Conduct stability calculations
- Factor of Safety
 - >1.5 generally, for buoyant force, shear force, moment
- Adjust elevation, orientation, angles to minimize anchors while meeting factor of safety
- Determine anchor style based on site conditions


Anchoring preferences

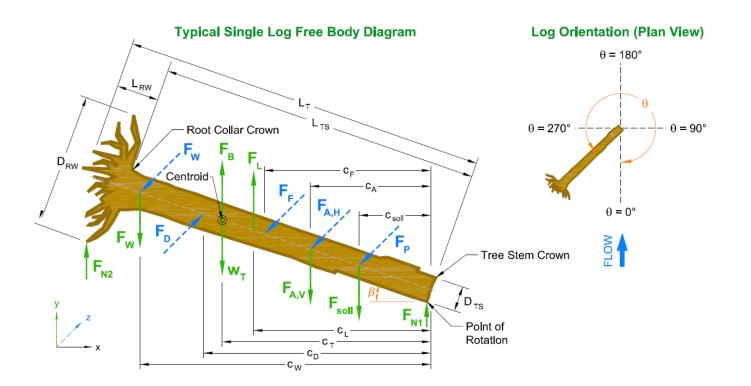
- Natural existing vegetation
- Self-ballasted
- Soil ballasted
- Wood ballasted
- Wood piles/racking
- Boulder anchors
- Earth anchors
- Dollosse
- Deadman anchors


Proposed Cross-Section and Structure Geometry (Looking D/S)

Anchoring by Burial

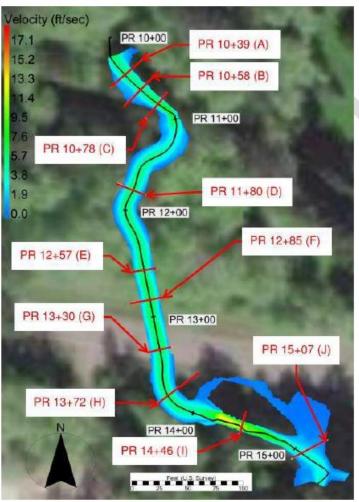

- Buoyant forces resisted by weight of overburden (rocks, soil, slash)
- <u>Risks</u>: insufficient overburden, flanking by bank erosion.

Anchoring with Boulders


- Buoyancy and drag resisted by weight of boulders
- Attach boulders with chains or cable
- <u>Risks</u>: failure of cable attachments (slack in cable)
- Benefits: as scour happens, structure can settle as a unit

Stability Calculations

- FHD stage (typically)
- Use tool such as Rafferty (2016)
 - Gather inputs
- If cannot be stable to a reasonable Fs, using weight of LWM and/or soil
 - Turn to artificial anchors



Incorporate LWM structures in hydraulic model

- Obstruction?
- Porous?

🕏 WSDOT

- Roughness?
- Sensitivity analysis

When is LWM not appropriate?

- $\circ\,$ Under a low bridge
- Where debris flows might be expected
- \circ Backwatering
- Excessive scour as other LWM racks (think fire)

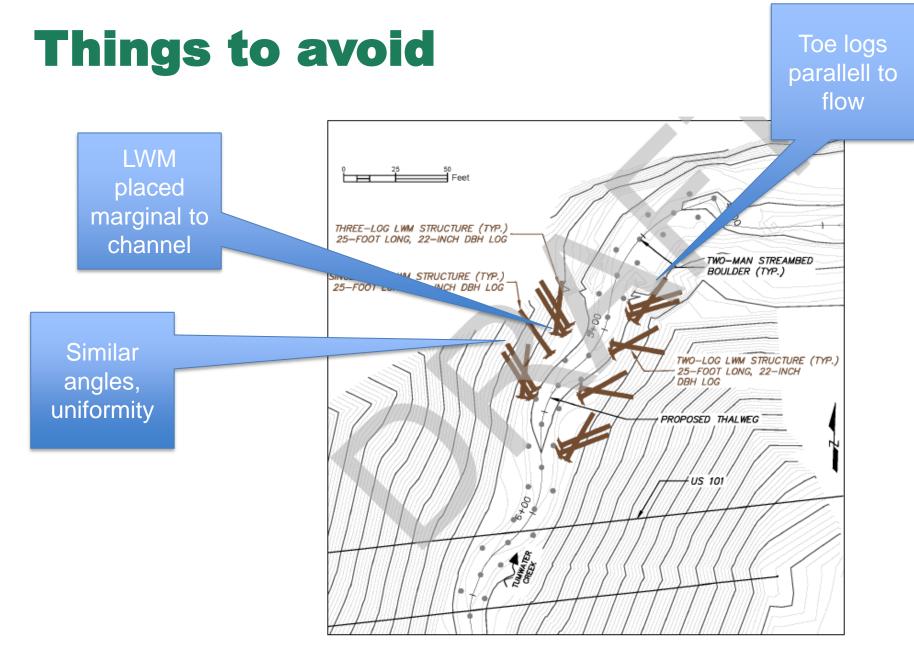
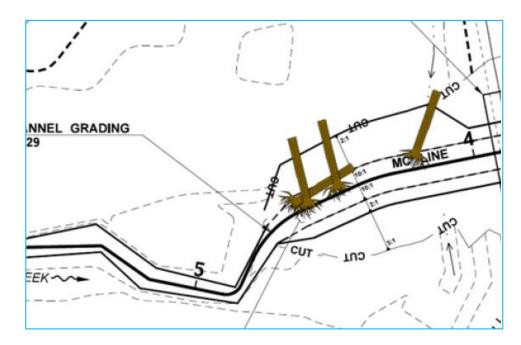


Figure 9.3 Conceptual Large Woody Material Layout

LWM for habitat example

LWM for habitat example

LWM Examples – Flow re-direction

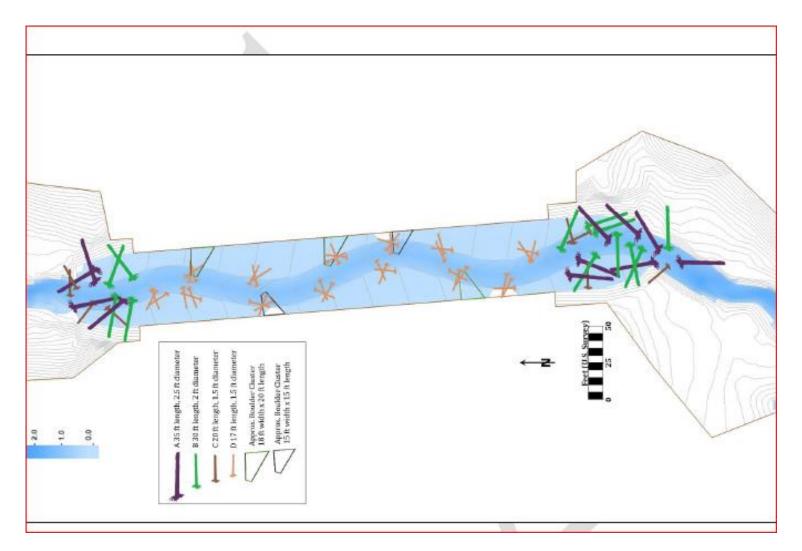

LWM Examples – Multi-log

LWM for bank protection

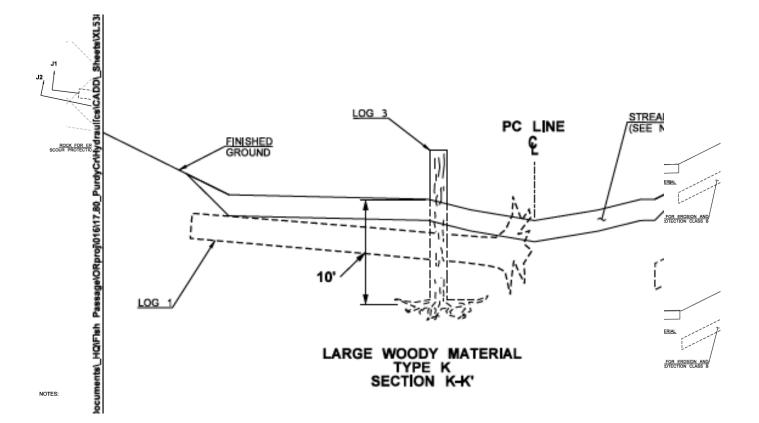
- Many *recent* designs reflect legacy of using this style
- This uses wood to provide flow re-direction, lateral support, without rock
- Not best for habitat

Other channel habitat features

- Mobile Wood
- Buried Wood
- Boulders
- Beaver Dam Analogs
- Step Pools
- Bioengineering banks


Mobile Wood

- Design flow less than 100 year
- Stability is project-specific
 - Mobile with as little as 2year flow
- Consider downstream constraints carefully
- Can meet LWM volume targets
 - Not for key piece targets

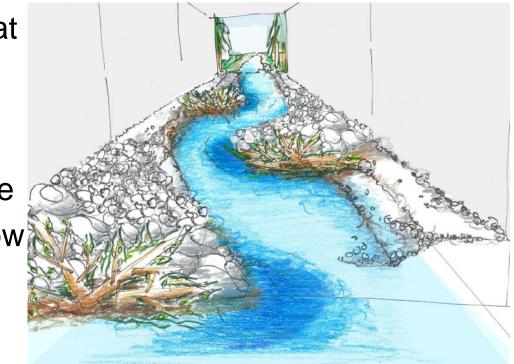

Mobile wood example

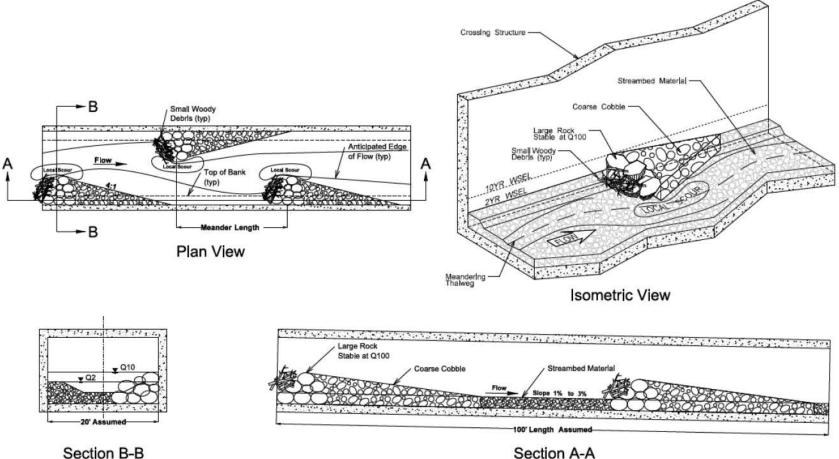
Buried Wood

- Used as tool against degradation uncertainty
- Designed carefully avoid barrier potential

Boulders and other features

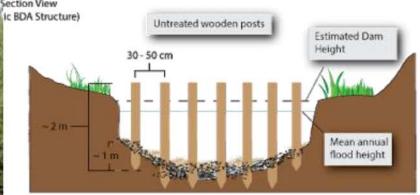
- Boulders
 - When present in reference reach
 - Added for hydraulic diversity
 - May consider for increasing roughness
- Meander bars
 - Meant to maintain low flow channel
 - Sinuosity
 - Scour



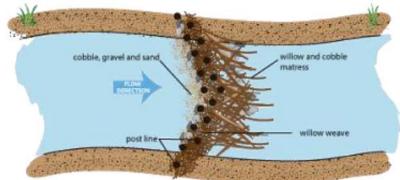

Meander Bars

- A way of creating habitat diversity within a buried structure
- Can't simulate root strength of riparian zone
- Want to maintain low flow channel
- Keep flow off structure walls

Meander Bars



Section A-A

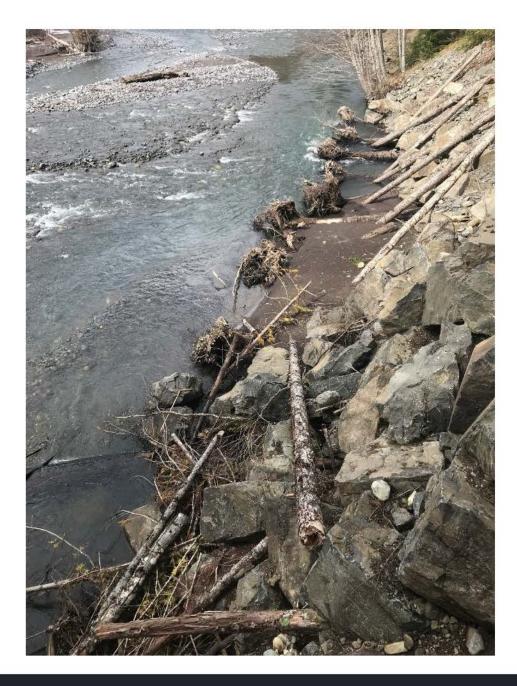


Beaver dam analogs

Bioengineering streambanks

Resources

- National Academies of Sciences, Engineering, and Medicine. 2017. Guidance for Design Hydrology for Stream Restoration and Channel Stability. Washington, DC: The National Academies Press. <u>https://doi.org/10.17226/24879</u>.
- Curran, J., 2010, Mobility of large woody debris (LWD) jams in a low gradient channel; Geomorphology, v.116, 3–4, pp.320-329.
- Bandrowski, D., 2016, National Large Wood Manual: Assessment, Planning, Design, and Maintenance of Large Wood in Fluvial Ecosystems: Restoring Process, Function, and Structure Large Woody Material – Risk Based Design Guidelines, Bureau of Reclamation, Denver, CO.
- Rosgen, D., 1998, The Reference Reach: A Blueprint for Natural Channel Design, Proceedings, Wetlands Engineering and River Restoration Conference, Denver, CO
- WDFW, 2013, Stream Habitat Restoration Guidelines
- <u>https://www.calsalmon.org/node/810</u> (Large Wood Technical Field School)



Summary

- Definition of LWM and why we use it
- Steps in the LWM design process
- Using the log metric calculator
- Adjusting log design to work with site constraints
- When and how log stability is calculated
- Alternative habitat complexity features
- Things to avoid in LWM placement and meander bar placement

Questions?

