Western Bridge Engineers' Seminar 2023

Pedestrian Land Bridge – Blending Nature and City

Presented by:

Brad Wilton, PE

Senior Bridge Engineer - TYLin

Project Location Map

PLB Location Map

- 5395 ft West Approach Bridge South (WABS)
- 3 Acre Lid
- 318 ft Pedestrian Land Bridge (PLB)

- -DESIGN CRITERIA
- PROJECT COMPONENTS
- -BRIDGE LAYOUT ITERATIONS
- -ARCHITECTURAL COMPONENTS
- DESIGN CHALLENGES
- CONSTRUCTION CHALLENGES & PHOTOS

Design Criteria

- -Seismic Design Criteria For Lid Bridges
- –WSDOT Bridge Design Manual (LRFD)
- -AASHTO LRFD Seismic Guide 2nd Edition
- -AASHTO LRFD 8th Edition
- AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges (AASHTO Ped)

Plan & Elevation

Bridge Layout Iteration

2018 RFP Section

2018 WSDOT RFP Plan

Response to RFP Plan (11/2018)

Final Section

- Design team worked closely with Seattle Design Commission (SDC) to ensure the "nature meets city" was achieved
- -PLB is intended to be a gateway to the city

Landscape Berms

- Vary in height from 3.5ft to 5ft
- DW 240psf loading achieved with Geofoam blocks
- Drainage mat and waterproof membrane
- 0% cross slope
- No deck penetrations through membrane

Floating Deck

- Sealers are used to reinforce the appearance of a floating deck/berms

Nosing and Walls

- Edge of deck nosing is continuous off bridge into adjacent walls
- All walls battered at 10V:1H with architectural pattern
- Exterior columns flared to match pier cap
- Integral pier caps

Varying Soil Conditions - Mixed Foundations

- Abutment 1 (3' Dia. Shafts)
- Pier 2 (7' Dia. Shafts)
- Pier 3 & Abutment 4 (Spread Footings)
- Soil improvement at Abutment 4 and Piers (5ft)
 - Controlled density fill (CDF) reduced seismic demands

- -Balance stiffness requirements (Shafts vs Spread FTG)
- Derived p-y springs for shafts in LPile
- -BDM provides stiffness derivation for spread footing

Stiffness of Foundation at Surface Table 7.2.7-1 Correction Factor for Embedment Table 7.2.7-2

- Balance stiffness requirements
- -Hand Calcs

k _i ^e	649	kip/in
k _j ^e	857	kip/in
ratio	0.76	
Check?	OK	

-From Model

k ^e	703	kip/in
k _j ^e	795	kip/ir
ratio	0.88	
Check?	OK	

smaller effective stiffness

smaller effective stiffness

Larger effective stiffness

Larger effective stiffness

>= 0.75 Adjacent bents within a frame or adjacent col

>= 0.75 Adjacent bents within a frame or adjacent col

- Deck Loading Criteria
- -Snow Loads

-Seismic Design Criteria For Lid Bridges Load combination

1.0 DC + 1.0 DW + 0.5 LL ± 1.0 EQH ± 1.0 EQV

- -EQH = Seismic overstrength forces (Mo,Vo)
- -EQV = Site-specific vertical response spectrum 0.47(DC+DW)
- -EQV had 30% increase to the longitudinal pushover case

- -Integral girders
 - Interface shear capacity governed
 - Lid load combination governed shear design
 - Additional bars needed with roughened construction joint
 - Provided twice the STD Plan extensions
 - Interface Shear Capacity

 $\phi_{\mathbf{V}} \cdot \mathbf{V}_{\mathbf{n}} = 575 \cdot kip$

– Girder Shear Capacity $\phi V_n = 735 \text{ kip}$

- Deck rebar
 - Top mat continuous, bent at pier
 - Additional #9 bars custom bends to avoid hat bars (stirrups)

Construction Challenges

Bid-Well

- -Curved runners at kinks avoids a crane lift
- -Wider/flat wheels with lip used
 - Allows lateral movement around kink

-Abutment 1

TYLin

– Embankment Near Abutment 1

– Embankment Near Abutment 1

– Pier 2

-1st Girder place in span 3

-Last girder place in span 1

– Span 3 deck pour

Timeline Summary

- -Fall 2018 WSDOT awards DB team \$455 million contract
- -Summer 2019 construction begins
- -April 2020 RFC plans for PLB completed
- Early 2024 anticipated construction completion date

TYLin