

# **Design tools for UHPC Pretensioned Bridge Girders**

Richard Brice, PE Western Bridge Engineers' Seminar, September 2023

# What is UHPC?

- Ultra-High-Performance Concrete
- Composite cementitious matrix (concrete)
- No coarse aggregates
- Steel fibers for tensile strength
- Low water/binder ratio
- Particle packing
- Self consolidating (superplasticizers)









# What does UHPC offer?

- Durability
- High compressive strengths (17.5 36 ksi)
- Tensile strength (0.9 1.8 ksi)
- Primary use has been in connections and overlays
- Worldwide, main structural components from UHPC
- Longer spans, lighter weight, less reinforcement (no stirrups)
- Link slabs
- Piles



#### Why do we need Structural Design Guidance?

- Use of UHPC is increasing in US
- Early adopters need support and guidance for success
- Several states are looking at precast UHPC beam solutions (MN, NE, FL)
  - Iowa, Buchanan County, Pi Girders, ASPIRE Winter 2010
  - Michigan, St. Clair County, August 2023, ABC-UTC presentation
- Behavior of UHPC is different than conventional concrete
  - Strain is the limiting behavior
  - Can't use higher UHPC  $f_c'$  in LRFD equations
  - LRFD BDS does not account for UHPC tension strength
  - UHPC failure modes not accounted for in LRFD BDS



#### **AASHTO UHPC Guide Specification**

- Balloted and passed by AASHTO COBS, May 2023
- Adopts AASHTO LRFD BDS and replaces Section 5 (Concrete)
- Minimum UHPC Properties
  - $f_c' = 17.5 \ ksi, f_{ci}' = 14 \ ksi$
  - Cracking strength,  $f_{t,cr} = 0.75 \ ksi$
  - Crack localization strength,  $f_{t,loc} \ge f_{t,cr}$  (Sustained post-cracking tension strength)
  - Crack localization strain,  $e_{t,loc} = 0.0025$
- Fibers must be steel (secondary fibers of other types permitted)
- Tension properties characterized by direct tension test (AASHTO T 397)



### **Material Models**

Compression



Source: El-Helou, et. al. ACI Materials Journal 2022





Source: El-Helou, et. al. ACI Materials Journal 2022



## **Crack Localization**

- Unique failure mode
- Well distributed cracks coalesce into a single dominate crack
- Fibers are pulling out



WSDOT



Source: El-Helou, et. al. ACI Materials Journal 2022

### **Crack Localization - Flexure**



Source: El-Helou, et. al. ASCE J. Struct. Eng. 2022, 148(4)



### **Crack Localization - Shear**





# **Service Limit State Design**

- Generally, the same as for conventional concrete
- Modulus of elasticity  $E_c = 2,500K_1 f_c'^{0.33}$
- Creep and shrinkage use similar model to LRFD BDS
  - $\Psi(t,t_i) = 1.2k_s k_{hc} k_f k_{td} k_\ell K_3$

$$\varepsilon_{sh} = k_s k_{hs} k_f k_{td} K_4 0.6 \times 10^{-3}$$

- Compression stress limits
  - Same as LRFD BDS
- Tension stress limits
  - Temporary,  $\gamma_u f_{t,cri}$
  - Permanent,  $\gamma_u f_{t,cr}$
  - Cyclic loading,  $0.95\gamma_u f_{t,cr}$  (fatigue of fibers is a concern limited research)
  - Reinforcement fatigue checks apply



### **Transfer and Development**

- Transfer length for prestress
  - $l_t = \xi 24d_b, \xi = 0.75 \text{ or } 1.0$
- Development length for prestress
  - $l_d \ge l_t + 0.30 (f_{ps} f_{pe}) d_b$
- Development length for reinforcement

$$- l_{d} = \begin{cases} 10d_{b} f_{c}' < 75ksi \\ 12d_{b} 75ksi \le f_{c}' \le 100ksi \end{cases}$$



# **Strength Limit States**

- UHPC tensile properties affect the strength limit state
- Crack localization strength typically governs strength of members
- Flexure and shear capacity analysis is considerably different than LRFD BDS
  - Whitney stress block is not valid
  - Concrete crushing strain may not be the limiting value



# **Flexural Capacity**

- Moment curvature response computed using strain compatibility
- Governing failure mode can be
  - Composite concrete crushing (deck)
  - UHPC crushing
  - Reinforcement rupture
  - UHPC crack localization
- Resistance factor accounts for ductility in terms of curvature prior to failure limit,  $\mu = \Psi_L / \Psi_{sl}$ 
  - 0.75 when localization controls
  - 0.90 otherwise ( $\mu_l = 3$ )

SDOT



13

# **Strain Compatibility**

• Must account for initial strains (generally ignored for conventional concrete)





# **Shear Capacity**

- Capacity based on MCFT
- $V_n = V_{UHPC} + V_s + V_p$
- $V_{UHPC} = \gamma_u f_{t,loc} b_v d_v \cot \theta$
- $V_S = \frac{A_v f_{v,\alpha} d_v \cot \theta}{s}$
- $f_{\nu,\alpha}$  = stress in reinforcement at crack localization (may be less than  $f_{\gamma}$ )
- Reduction factor,  $\phi = 0.9$  (Same as LRFD BDS)



# Shear Parameters, $f_{v,\alpha}$ and $\theta$

- Iterate design equations to determining  $f_{\nu,\alpha}$  and  $\theta$
- Guess  $f_{\nu,\alpha} = f_{\gamma}$ , solve for  $\theta$
- Compute  $\varepsilon_2$ ,  $\varepsilon_v$ , and  $f_{v,\alpha}$
- Repeat until convergence
- Simplified method using tables in appendix

- $f_{v,\alpha}$  = stress in reinforcement
- $\theta$  = inclination of shear crack

$$\begin{split} \gamma_{u}\varepsilon_{t,loc} &= \frac{\varepsilon_{s}}{2}(1 + \cot^{2}\theta) + \frac{2f_{t,loc}}{E_{c}}\cot^{4}\theta + \frac{2\rho_{\nu,\alpha}f_{\nu,\alpha}}{E_{c}}\cot^{2}\theta \left(1 + \cot^{2}\theta\right) \\ \varepsilon_{2} &= -\frac{2f_{t,loc}}{E_{c}}\cot^{2}\theta - \frac{2\rho_{\nu,\alpha}f_{\nu,\alpha}}{E_{c}}\left(1 + \cot^{2}\theta\right) \\ \varepsilon_{\nu} &= \gamma_{u}\varepsilon_{t,loc} - 0.5\varepsilon_{s} + \varepsilon_{2} \\ f_{\nu,\alpha} &= \frac{E_{s}\varepsilon_{\nu}}{\sin\alpha} \leq f_{y} \qquad \qquad \rho_{\nu,\alpha} = \frac{A_{\nu}}{b_{\nu}s}\left(1 + \frac{\cot\alpha}{\cot\theta}\right)\sin\alpha \end{split}$$

Table B1.3-1. Values of  $\theta$  (degrees) and upper limit of  $f_{v,\alpha}$  (ksi) for sections with transverse reinforcement with  $\rho_{v,\alpha} \le 1.0$  percent.

| Es          |                        | $\gamma_{u}\varepsilon_{t,loc} 	imes 1,000$ |       |             |             |             |             |       |             |       |             |             |             |
|-------------|------------------------|---------------------------------------------|-------|-------------|-------------|-------------|-------------|-------|-------------|-------|-------------|-------------|-------------|
| × 1,000     | Parameter              | ≥2.5                                        | ≥3.0  | ≥3.5        | ≥4.0        | ≥4.5        | ≥5.0        | ≥5.5  | ≥6.0        | ≥6.5  | ≥7.0        | ≥7.5        | ≥8.0        |
| < 1.0       | $\theta$ (deg.)        | 32.7                                        | 32.3  | 31.9        | 31.6        | 31.3        | 30.8        | 30.2  | 29.8        | 29.3  | 28.9        | 28.6        | 28.2        |
| $\leq -1.0$ | $f_{\nu,\alpha}$ (ksi) | ≤36.7                                       | ≤46.6 | ≤56.5       | ≤66.5       | $\leq 75.0$ | ≤75.0       | ≤75.0 | ≤75.0       | ≤75.0 | $\leq$ 75.0 | ≤75.0       | ≤75.0       |
| < -0.5      | $\theta$ (deg.)        | 34.3                                        | 33.7  | 33.2        | 32.8        | 32.4        | 31.8        | 31.2  | 30.7        | 30.2  | 29.8        | 29.4        | 29.0        |
| $\leq -0.5$ | $f_{\nu,\alpha}$ (ksi) | ≤35.3                                       | ≤45.1 | ≤54.9       | ≤64.8       | ≤74.8       | $\leq 75.0$ | ≤75.0 | ≤75.0       | ≤75.0 | $\leq$ 75.0 | $\leq$ 75.0 | $\leq$ 75.0 |
| <0.0        | $\theta$ (deg.)        | 36.2                                        | 35.3  | 34.6        | 34.1        | 33.6        | 32.9        | 32.3  | 31.7        | 31.2  | 30.7        | 30.2        | 29.8        |
| ≥0.0        | $f_{\nu,\alpha}$ (ksi) | ≤ <b>33.8</b>                               | ≤43.4 | $\leq$ 53.1 | $\leq 63.0$ | $\leq$ 72.9 | $\leq 75.0$ | ≤75.0 | $\leq$ 75.0 | ≤75.0 | $\leq$ 75.0 | $\leq$ 75.0 | $\leq$ 75.0 |

## **Horizontal Interface Shear**

- Similar to conventional concrete, friction and cohesion factors
- UHPC is self consolidating, so surface tends to be smooth
- Roughening of UHPC surface is difficult
- Options for forming flutes or shear keys



Formed Shear Keys



### **Material Testing and Qualification**

- Material conformance guidance is being developed (AASHTO ballot 2024)
- PCI has done significant work in material testing
- Tension properties of UHPC is
   important for structural behavior
- Test Methods Flexural Prism, Direct Tension
- T-10 intends for direct tension for mix qualification with flexural prism as datum for QC testing



Direct Tension AASHTO T 397 Flexural Prism ASTM C 1609



# **UHPC Design with PGSuper**

- PGSuper 8.0 Beta
- Support for UHPC class materials in prestress components
- Evaluates service, fatigue, and strength limit states
- Performs flexural analysis with strain compatibility & moment curvature
- Shear capacity using general method





# **Modeling UHPC**

- Edit Girder
- Press [More Properties...]
- Select concrete UHPC
- Define UHPC parameters

| 😰 Girder Details for Span 1, Girder A                                                                                           |                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| General Strands Debonding Long. Reinforcement<br>Events<br>Construction Event 1: Construct Girders, Erect Pien                  | Trans. Reinforcement Temporary Conditions Bearings Extension Page<br>s  Frection Event 2: Erect Girders |
| Girder This girder type is used in all spans MN54-Modified                                                                      | Girder Modifiers Precamber 0.000 in                                                                     |
| Girder Concrete Properties<br>Ultra High Performance Concrete (UHPC)<br>fci 14.000 KSI Eci 5972.50<br>f'c 22.000 KSI Ec 6933.20 | 84 KSI<br>92 KSI More Properties                                                                        |

| Concrete Details                                      | ×                                                                                                                                                                                |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Modifiers                                     | UHPC PCI-UHPC                                                                                                                                                                    |
| Type<br>Strength -f'c<br>Unit Weight<br>Unit Weight w | UHPC            22.000         KSI           0.155         kip/ft^3           with Reinforcement         0.160           kip/ft^3            , Ec         6933.292           KSI |
|                                                       | Concrete Details       X         General Modifiers       UHPC         PCI-UHPC                                                                                                   |
|                                                       | OK Cancel Help                                                                                                                                                                   |

## **Flexural Strength Analysis**







#### **Shear Resistance Parameters**

Shear Resistance Parameter - Strength I - GS 1.7.3.4

$$\begin{split} \gamma_{u}\varepsilon_{t,loc} &= \frac{\varepsilon_{s}}{2}\left(1 + \cot^{2}\theta\right) + \frac{2f_{t,loc}}{E_{c}}\cot^{4}\theta + \frac{2\rho_{v,\alpha}f_{v,\alpha}}{E_{c}}\cot^{2}\theta \left(1 + \cot^{2}\theta\right) \\ \varepsilon_{2} &= -\frac{2f_{t,loc}}{E_{c}}\cot^{2}\theta - \frac{2\rho_{v,\alpha}f_{v,\alpha}}{E_{c}}\left(1 + \cot^{2}\theta\right) \\ \varepsilon_{v} &= \gamma_{u}\varepsilon_{t,loc} - 0.5\varepsilon_{s} + \varepsilon_{2} \\ f_{v,\alpha} &= \frac{E_{s}\varepsilon_{v}}{\sin\alpha} \leq f_{y} \\ \rho_{v,\alpha} &= \frac{A_{v}}{b_{v}s}\left(1 + \frac{\cot\alpha}{\cot\theta}\right)\sin\alpha \end{split}$$

| Location from<br>Left Support<br>(ft) | ε <sub>s</sub> x 1000 | γ <sub>u</sub> ε <sub>t,loc</sub> x 1000 | f <sub>t,loc</sub><br>(KSI) | E <sub>c</sub><br>(KSI) | α.<br>(deg) | ρ <sub>ν,α</sub> | ε <sub>2</sub> x 1000 | ε <sub>ν</sub> x 1000 | <del>0</del><br>(deg) | f <sub>v, æ</sub><br>(KSI) |
|---------------------------------------|-----------------------|------------------------------------------|-----------------------------|-------------------------|-------------|------------------|-----------------------|-----------------------|-----------------------|----------------------------|
| (CS) 4.939                            | -0.398                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.65                 | 2.55                  | 30.42                 | 60.000                     |
| (H) 5.000                             | -0.402                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.65                 | 2.55                  | 30.41                 | 60.000                     |
| (PSXFR) 5.550                         | -0.436                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.66                 | 2.56                  | 30.31                 | 60.000                     |
| (1.5H) 7.250                          | -0.471                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.67                 | 2.56                  | 30.21                 | 60.000                     |
| (Debond) 9.500                        | -0.444                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.66                 | 2.56                  | 30.29                 | 60.000                     |
| (PSXFR) 10.550                        | -0.451                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.67                 | 2.56                  | 30.27                 | 60.000                     |
| 14.500                                | -0.416                | 4                                        | 1.200                       | 6933.292                | 90.00       | 0.00952          | -1.65                 | 2.56                  | 30.37                 | 60.000                     |
|                                       | -                     |                                          |                             |                         |             |                  |                       |                       |                       |                            |



#### **Questions?**

Download BridgeLink https://wsdot.wa.gov/eesc/bridge/software







