King County Roads Division Seattle Washington

Proof Load Testing

Short Span Precast Channel Beam Bridges

- Jason Lee, SE
- Senior Bridge Engineer
	- MSCE, University of Washington
		- Research assistant on CFST bridge piers
	- 10 years of bridge design as a consultant
	- 2 years at King County

King County

- **185 Bridges**
	- 136 NBI Bridge
	- 45 short span bridges
	- 4 Pedestrian Bridges
	- Average bridge age = 52 years

King County

- **185 Bridges**
	- 136 NBI Bridge
	- 45 short span bridges
	- 4 Pedestrian Bridges
- Average age 52 years

King County Bridge Distribution

Girder Section

KONG PAGEMBANG PADA KALENDARYA DI SEBAGAI PADA SER

King County

 \subset

BRIDGE RATING SUMMARY

Note: Inventory and Operating tonnages are based on the rating factors multiply 36 tons (HS-20 Truck)

Load Rating Toolbox

Analytical Load Ratings

(MBE § 6, Part A/Part B)

- Analysis using design values and conventional assumptions.
- Can be enhanced with material testing

Diagnostic Load Testing

(MBE § 8.8.2)

- Nondestructive testing to improve the engineers understanding of the bridge behavior.
- Typically uses gauges and other measuring devices to measure the behavior of the bridge.
- Analytical model used for final load rating built off the data created during testing.

Proof Load Testing

(MBE § 8.8.3)

 Field load testing and observation used to determine if the bridge can carry specific loads without damage.

SAMPLE NAME GIRDER NAME SAMPLE ORDER **NOMINAL DIAMETER SAMPLE LOCATION DIST FROM END** A'' X_E $\n ¹\n ^{DIST FROM}\n ^{BOTTOM}$

Material Testing

Concrete Strength Testing

- 2.75" Ø core through girder flange
- 8 cores from 16ft channel beams
- 8 cores from 20ft channel beams

Reinforcing Steel Material Testing

- 6" coupons from flange and web
- 3 samples from16ft channel beams
- 3 samples from 20ft channel beams

Material Testing

Concrete Strength Testing

- 2.75" Ø core through girder flange
- 8 cores from 16ft channel beams
- 8 cores from 20ft channel beams

Reinforcing Steel Material Testing

- 6" coupons from flange and web
- 3 samples from16ft channel beams
- 3 samples from 20ft channel beams

Results

- Resulting Concrete Strength = • $F'c = 4.5$ ksi
- Resulting Steel Strength =
	- Fy = 55 ksi
	- \cdot Fu = 86 ksi

 \blacktriangleright

Why Proof Load
Testing??

- The results of analytical methods and material testing did not show sufficient capacity.
- Diagnostic load testing was cost prohibitive.
- Routine inspections indicated the channel girders were in fair to satisfactory condition.
- Access to beams from decommissioned bridges we could test in our maintenance yard.

Selecting a Test Method

Selecting a Testing Method

Truck/Axle Loads

Selecting a
Testing Method

Why Self Perform?

Pros

- **Lowest cost**
- **Most control over schedule and process**

Cons

- **Fewer data collection opportunities**
- **Limited monitoring**
- **Limited load capacity**

Determine the Proof Load

Proof Load Tests (MBE §8.8.3)

- Approach
	- Determine critical load demands on structure
	- Select a Target Proof Load
	- Apply Target Proof Load
		- Apply load in stages
		- Closely monitor structure at each stage of loading.
		- Incremental loading should continue until desired load is reached or bridge exhibits visible signs of distress.

Selecting a Target Proof Load

Proof Load Tests (MBE §8.8.3)

- Example Target Proof Load
- Shear near support from NRL
	- L_R = 20 Kip
	- $\bm{X}_{\rm p} = 1.4$
	- $X_{pA} = X_p(1 + \frac{\sum \%}{100}) = 1.4 (1 + \frac{15\%}{100}) = 1.61$
	- $L_T=X_{pA}L_R(1+IM) =1.61*20*(1.33) =43$ Kip
	- Capacity and Rating

$$
OP = \frac{k_o L_p}{X_{pA}}
$$

- Selecting a Target Proof Load
- **Example Target Proof Load**
- Shear near support from NRL
- L_R = 20 Kip $X_p = 1.4$
- $X_{pA} = X_p(1 + \frac{\sum \%}{100}) = 1.4 (1 + \frac{15\%}{100}) = 1.61$
- $L_T = X_{pA}L_R(1+IM) = 1.61*20*(1.33) = 43$ Kip
- Capacity and Rating

 $OP = \frac{k_o L_p}{X_{pA}}$

Develop a Protocol

Developing a Protocol

Flexure Proof Load

Shear Proof Load

Cameras set for high resolution photos

Rulers and reference line set for deflection measurements

Beam set in loading area with access behind wall for adding loading blocks

Staffing Test Manager Recorder 1 Recorder 1 Operator 1 Safety Officer

Mn = 2868 k-ir Specimen #: 20-B $Vn = 53.6$ kip Span Length: $20^{\circ}\text{-}0^{\circ}$ $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 1 (25% of Flexure Proof Load) blocks: 4 blocks Applied Weight: $\,$ 17 $\rm k$ Total Weight 24 k Max Moment: 711.3 k-in Approx shear @ dv: 9.3k

Specimen #: 20-B Vn = 53.6 kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 2 (50% of Flexure Proof Load) blocks: 8 blocks Applied Weight: 34 k Total Weight 40 k Max Moment: 1414.3 k-in Approx shear @ dv: 18.6k

Mn = 2868 k-ir

Mn = 2868 k-in Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 3 (75% of Flexure Proof Load) blocks: 13 blocks Applied Weight: 44 k Total Weight 50 k Max Moment: 1860.7 k-in Approx shear $@$ dv: $23.\mathrm{k}$

Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 4 (87.5% of Flexure Proof Load) blocks: 15 blocks Applied Weight: 50 k Total Weight 57 k Max Moment: 2107.8 k-in Approx shear $@$ dv: $27.8\mathrm{k}$

Mn = 2868 k-in

Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42 \text{ kip}$ Stage: 5 (100% of Flexure Proof Load) blocks: 17 blocks Applied Weight: 57 k Total Weight 64 k Max Moment: 2419.5 k-in Approx shear $@$ dv: $30.9\mathrm{k}$

Mn = 2868 k-in

Specimen #: 20-B Vn = 53.6 kip Span Length: 20'-0" $M_{\text{proof}} = 2495$ k-in Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 6 (110% of Flexure Proof Load) blocks: 19 blocks Applied Weight: 64 k Total Weight 71 k Max Moment: 2677.9 k-in Approx shear $@$ dv: $35.\mathrm{k}$

Test and Stage Detail Mn = 2868 k-in Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42 \text{ kip}$ Stage: 7 (120% of Flexure Proof Load) blocks: 21 blocks Applied Weight: 71 k Total Weight 77 k Max Moment: 2963.3 k-in Approx shear $@$ dv: $39.3\mathrm{k}$

Mn = 2868 k-ir Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 8 (130% of Flexure Proof Load) blocks: 23 blocks Applied Weight: 77 k Total Weight 84 k Max Moment: 3273.9 k-in Approx shear @ dv: 42.4k

Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{\text{proof}} = 2495 \text{ k-in}$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip Stage: 9 (140% of Flexure Proof Load) blocks: 25 blocks Applied Weight: 82 k Total Weight 89 k Max Moment: 3477. k-in Approx shear @ dv: 45.2k

Mn = 2868 k-ir

Mn = 2868 k-in Specimen #: 20-B $Vn = 53.6$ kip Span Length: 20'-0" $M_{proof} = 2495 k-in$ Protocol: Flexure Proof Load $V_{\text{proof}} = 42$ kip $\textbf{Stage: } 10~\scriptstyle{(140\%~of~\text{Flexure Proof~}\text{Load})}$ blocks: 30 blocks Applied Weight: $\,$ 82 $\rm k$ Total Weight 89 k Max Moment: 3610.6 k-in Approx shear $@$ dv: $52.2\mathrm{k}$

Unloaded Specimen

- Notes:
	- Smalls vertical cracks near midspan during high loads
	- Small diagonal cracks near end of applied loads
	- All crack closed upon uploading.
	- Minor residual deformation (within measurement precision)

Results Summary

- All 4 tests exceeded the proof load four flexure and shear
- No test resulted in a failed beam
- No test was terminated due to distress in the beam.
- The resulting load factors for the tested beams area above 1.0

Table 6 Maximum Applied Proof Loads

Capacity and Rating $OP =$ k_0 L p $X_{\mathcal{P}}A$ $=\frac{(1.0)(52.17)}{1.61}$ = 32.40kip

$$
RF_0 = \frac{OP}{L_R(1+IM)} = \frac{k_0L_p}{X_{pA}(1+IM)} = \frac{32.40}{20*(1.33)} = 1.22
$$

Table 8.8.3.3.1-1-Adjustments to X_p

- Application to wider bridge inventory?
	- Channel bridges were all built within a 20 month window
	- Performance of these bridges over their lifespan has been adequate and bridges remain in fair to satisfactory condition.
	- Rating factors for in-service bridges were adjusted from proof load tests based on the following factors.
		- 0.9 proof load uncertainty factor
		- Variations in HMA overlay depth (field measured vs design)
		- Superstructure condition

Why???

**Compression Strut vs
Sectional Analysis**

Why???

**Compression Strut vs
Sectional Analysis**

25 degree strut angle for STM

