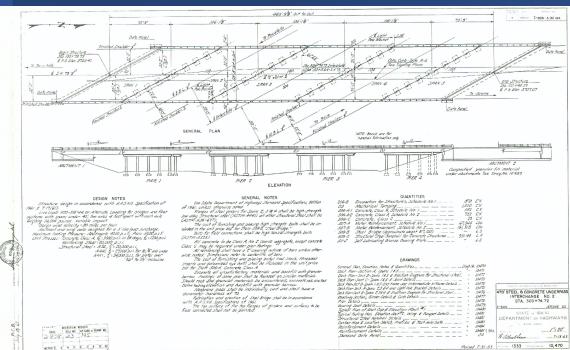
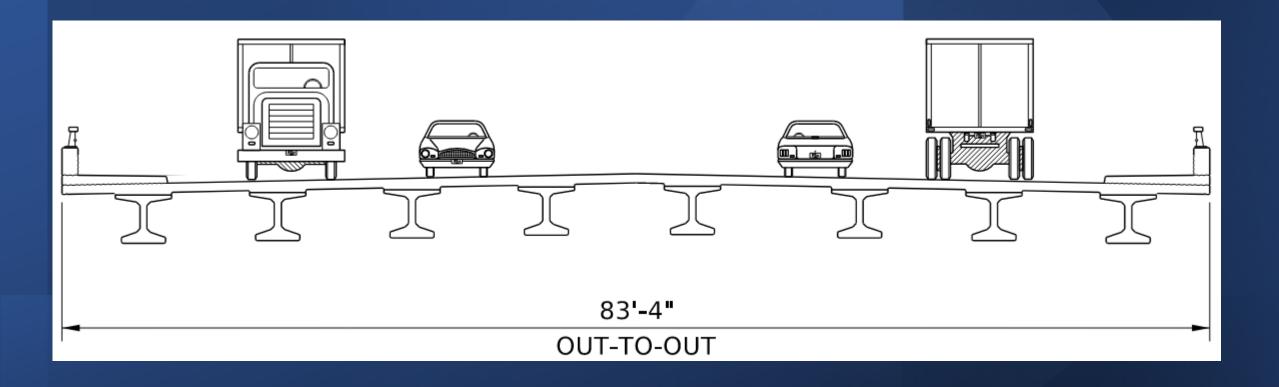


Project Location:



Project Location:

Existing Bridge:



Bridge Replacement Requirements:

- 4 12' Lanes
- 1 Center Turn Lane
- 3' Shoulders
- 2 6.5' Bike/Ped Path
- MASH Rated Pedestrian Rails
- Skew < 45 deg *preferred*

Bridge Typical Section:

VE Study:

IDEA	DESCRIPTION	DESIGN
NO.		OPTION*
1	Realign Bob Barton to the south to align with east frontage road south.	Х
2	Alt. 3 Same alignment, reduce abutment and pier skews	
3	Use Alt. 10 and modify Alt 10 (DPL) to split southbound off-ramp	
4	Take the frontage road north (i.e. towards Walmart)	Х
5	Take eastbound off-ramp exits into frontage road	Х
6	Approach county & city for funding (frontage road realignment)	Х
7	Construct I-84 over Lincoln Avenue (raising the main line)	
8	Take westbound off-ramp into east frontage road	Х
9	A true No-Build Alternative	
10	No bridge rebuild with this project, utilize existing bridge and construct other improvements	
11	Left hand exit on both (westbound & eastbound) with three signals	
12	Alternative 3 plus new idea 1, plus take frontage road behind Walmart.	
13	Add Eastbound & westbound flyovers and put SPUI on north side (Alt 14)	
14	Alternative 14 add west bound fly-over intersect with eastbound off-ramp north of new bridge	
15	Diverging diamond (would require moving frontage roads)	
16	Reduce I-84 median (to shorten span), remove or re-align interstate	
17	Bridge cross section	Х
18	Adjust shoulder s/w widths within standards	Х
19	Use vertical abutments instead of 2:1 slopes	Х
20	Dog-bone interchange	
21	Retaining wall optimization (fill vs wall)	Х
22	Lincoln split diamond	
23	Lincoln square-a-bout	
24	Lincoln rotary with underpass	
25	Lincoln rotary with signals	
26	Yakima/Lincoln split diamond (variation of Alternative 7)	
27	Alternative 9 with City Comp Plan Alt. #2 (partial clover)	
28	Incorporate City Comp Plan Alt #1	
29	Utilize City Comp Plan Alt #2 with replacing bridge and leaving ramps in same location	
30	Flip Alternative 14, with uniform signal spacing	
31	Use One-lane on ramps	Х

IDEA NO.	DESCRIPTION	DESIGN OPTION*
1	Realign Bob Barton to the south to align with east frontage road south.	Х
3	Use Alt. 10 and modify Alt 10 (DPL) to split southbound off-ramp	
10	No bridge rebuild with this project, utilize existing bridge and construct other improvements	
14	Alternative 14 add west bound fly-over intersect with eastbound off-ramp north of new bridge	
25	Lincoln rotary with signals	
25		

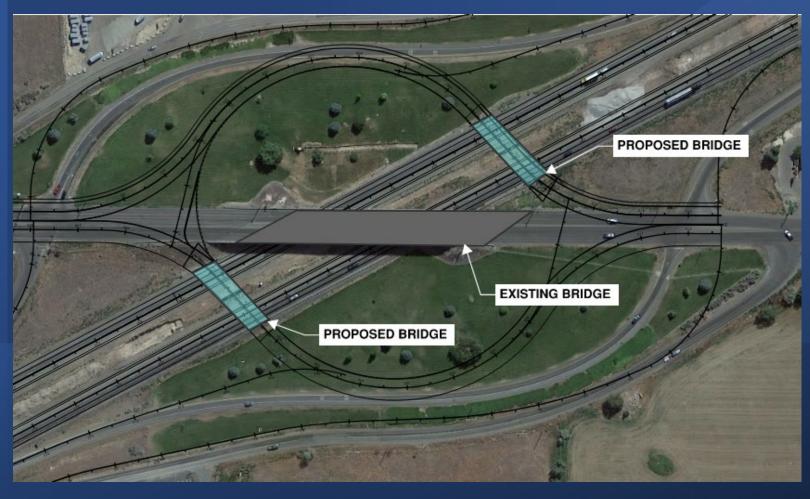
^{*}The team identified some ideas as Design Options that could work with any alternative.

VE Alternatives:

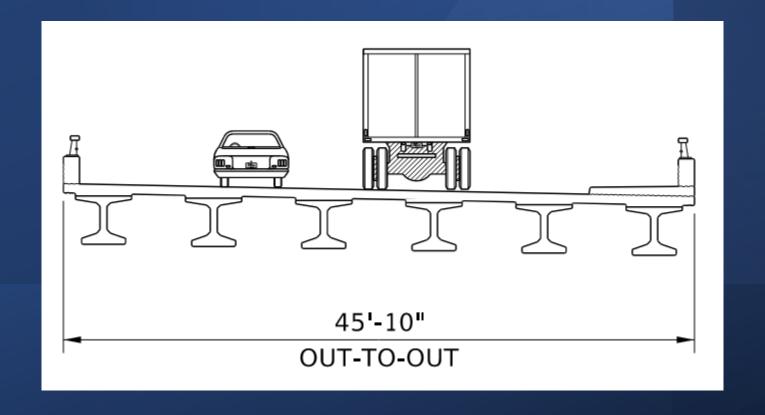
Three Bridge Alternatives:

- 1. Single, 2-Span Bridge on Same Alignment
- 2. Single, 2-Span Bridge with Slight Alignment Adjustment
- 3. Two Twin Bridges, 2-Span Bridges on New Alignment

Bridge Alternative 1:


- 62 deg skew
- 83'-4" wide
- 2 Spans at 240'
- 480' Total Length
- \$17.2M

Bridge Alternative 2:


- 45 deg skew
- 83'-4" wide
- 2 Spans at 160'
- 320' Total Length
- \$11.5M

Bridge Alternative 3:

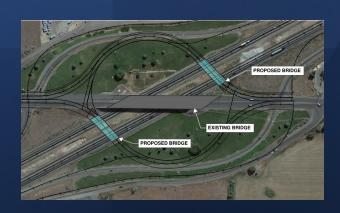
- 15 deg skew
- 2 Twin Bridges
- 45'-10" wide
- 2 Spans at 84'
- 169' Total Length
- \$5.6M

Bridge Alternative 3: Typical Section

		Operations			Construction		Bridge				
	Total Project Cost	Accommodates I-84 Widening	Bike/Pedestrian Facilities	Center Turn Lane	Addresses Traffic Flow Issues	Minimize Const. Staging Impacts	Simplified Construction	Reduces Skew to < 45 deg	Simplified Design	Reduce Maintenance	No Grade Raise
Bridge Only	\$17M	х	х	х							
Alternative 1	\$36M	х	x	х							
Alternative 2	\$32M	х	х	х		х		x			
Alternative 3	\$32M	x	X	N/A	x	х	х	х	х	х	х

Reduced Skew

- Simplify Design Standard ITD bridge design
 - WF42G girders with CIP Deck
 - Integral abutments
 - 3 ~ 4'Dia Column on 6' Dia Drilled Shafts
- Simplify Construction
 - Longer span steel girders
 - High skew construction complications
 - Contractors more familiar with this type of bridge
 - Construction Staging
- Reduced Maintenance
 - Integral abutment
 - Simplify Inspection



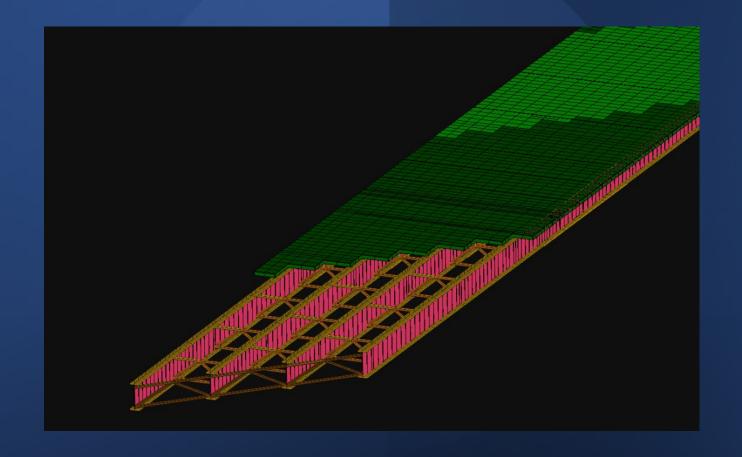
Reduced Skew:

- Bridge Only 62°
- Alternative 1 62°
- Alternative 2 45^o
- Alternative 3 15°

- Steel Girder With High Skew
 - NCHRP 725
 - AASHTO Eq. 4.6.3.3.2-2

$$I_S = \frac{w_g \tan \theta}{L_s}$$

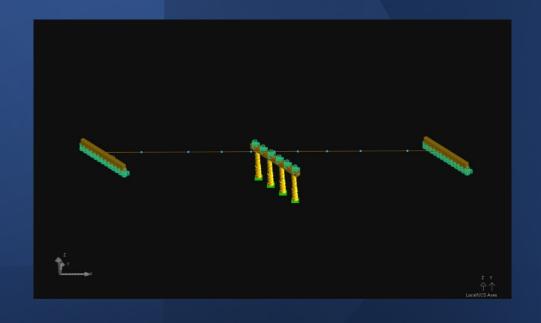
Table 3-1. Matrix for recommended level of analysis—I-girder bridges.


		Worst-Ca	se Scores	Mode of Scores		
Response	Geometry	Traditional 2D-Grid	1D-Line Girder	Traditional 2D-Grid	1D-Line Girder	
	$C(I_C \le 1)$	В	В	A	В	
	$C(I_C > 1)$	D	С	В	C	
Major-Axis Bending	$S(I_S < 0.30)$	В	В	A	A	
Stresses	$S(0.30 \le I_S < 0.65)$	В	С	В	В	
Str esses	$S(I_S \ge 0.65)$	D	D	C	С	
	C&S $(I_C > 0.5 \& I_S > 0.1)$	D	F	В	С	
	$C(I_C \le 1)$	В	С	A	В	
	$C(I_C > 1)$	F	D	F	C	
Vertical	$S(I_S < 0.30)$	В	A	A	A	
Displacements	$S(0.30 \le I_S < 0.65)$	В	В	A	В	
	$S(I_S \ge 0.65)$	D	D	C	С	
	C&S $(I_C > 0.5 \& I_S > 0.1)$	F	F	F	C	
	$C(I_C \le 1)$	С	С	В	В	
	$C(I_C > 1)$	F	D	C	C	
Cross-Frame	$S(I_S < 0.30)$	NA	NA ^a	NA ^a	NA^a	
Forces	$S(0.30 \le I_S < 0.65)$	\mathbf{F}^{b}	\mathbf{F}^{c}	\mathbf{F}^{b}	\mathbf{F}^{c}	
	$S(I_S \ge 0.65)$	\mathbf{F}^{b}	\mathbf{F}^{c}	\mathbf{F}^{b}	\mathbf{F}^{c}	
	C&S $(I_C > 0.5 \& I_S > 0.1)$	\mathbf{F}^{b}	\mathbf{F}^{c}	\mathbf{F}^{b}	\mathbf{F}^c	
	$C(I_C \le 1)$	С	С	В	В	
771 7 1	$C(I_C > 1)$	F	D	C	С	
Flange Lateral Bending	$S(I_S < 0.30)$	NA ^d	NA^d	NA ^d	NA^d	
Stresses	$S(0.30 \le I_S < 0.65)$	\mathbf{F}^{b}	\mathbf{F}^{e}	\mathbf{F}^{b}	\mathbf{F}^{e}	
200000	$S(I_S \ge 0.65)$	\mathbf{F}^{b}	F	\mathbf{F}^{b}	\mathbf{F}^{e}	
	C&S $(I_C > 0.5 \& I_S > 0.1)$	\mathbf{F}^{b}	\mathbf{F}^{e}	\mathbf{F}^{b}	\mathbf{F}^{e}	
	$C(I_C \le 1)$	NA ^f	NA^f	NA ^f	NA ^f	
	$C(I_C > 1)$	NA ^f	NA^f	NA ^f	NA ^f	
Girder Layover	$S(I_S < 0.30)$	В	A	A	A	
at Bearings	$S(0.30 \le I_S < 0.65)$	В	В	A	В	
	$S(I_S \ge 0.65)$	D	D	С	С	
	$C\&S (I_C > 0.5 \& I_S > 0.1)$	F	F	F	С	

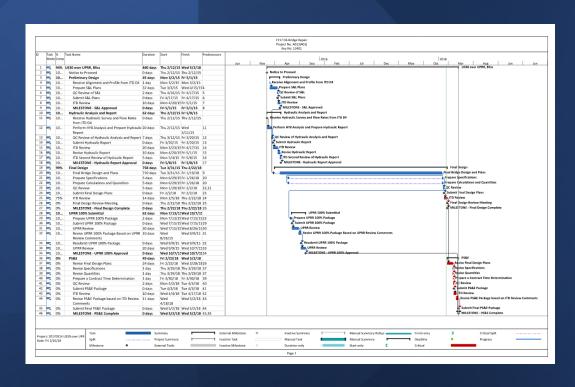
- Steel Girder With High Skew
 - NCHRP 725
 - AASHTO Eq. 4.6.3.3.2-2

$$I_S = \frac{w_g \tan \theta}{L_s}$$

		Worst-Ca	se Scores	Mode of Scores		
Response	Geometry	Traditional 2D-Grid	1D-Line Girder	Traditional 2D-Grid	1D-Line Girder	
	$C(I_C \leq 1)$	В	В	A	В	
	$C(I_C > 1)$	D	С	В	С	
Major-Axis	$S(I_S < 0.30)$	В	В	A	A	
Bending Stresses	5 (0.20 - 1 - 0.65)	D	<u></u>	Ъ	D	
Stresses	$S(I_S \ge 0.65)$	D	D	С	С	
	$C\&S (I_C > 0.5 \& I_S > 0.1)$	D	F	В	С	
	$C(I_C \le 1)$	С	С	В	В	
	$C(I_C > 1)$	F	D	С	С	
Cross-Frame	$S(I_S < 0.30)$	NA ^a	NA ^a	NA ^a	NA ^a	
Forces	\$ (0.30 - 1 - 0.65)	₽b	T ∠C	₽b	™ c	
	$S(I_S \ge 0.65)$	\mathbf{F}^{b}	\mathbf{F}^{c}	\mathbf{F}^{b}	\mathbf{F}^{c}	
	$C\&S (I_C > 0.5 \& I_S > 0.1)$	\mathbf{F}°	F	F	F	


- Steel Girder With High Skew
 - NCHRP 725
 - AASHTO Eq. 4.6.3.3.2-2

- Steel Girder With High Skew
 - NCHRP 725
 - AASHTO Eq. 4.6.3.3.2-2
- Temperature Acting The Skewed Structure



- Steel Girder With High Skew
 - NCHRP 725
 - AASHTO Eq. 4.6.3.3.2-2
- Temperature Acting The Skewed Structure
- Integral Abutments

- Steel Girder With High Skew
 - NCHRP 725
 - AASHTO Eq. 4.6.3.3.2-2
- Temperature Acting The Skewed Structure
- Integral Abutments
- Able To Meet An Accelerated Design Schedule

Simplified Construction:

- Standard Bridge
- Inspection Staff Familiarity
- Local Contractor Experience
- Simplicity Means Lower Cost

Reduced Maintenance:

- Integral Abutments
 - NO JOINTS
- Locked In Stress In Steel Girders
- Serviceability Due To Temperature

Reduced Maintenance:

- Integral Abutments
 - NO JOINTS
- Locked In Stress In Steel Girders
- Serviceability Due To Temperature

Selected Alternative

Selected Alternative

- WF42G PS Girders with CIP Deck
- Integral Abutments
- 3 4' dia. Column on 6' dia. Drilled Shafts

