Balancing Innovation, Constructability, and Maintenance to Cross the San Diego River

Nathan Johnson, PhD, PE, Project Manager Kelly Burnell, PE, Structure Lead

Outline

- Project Background
- Constraints and Technical Challenges
- Stakeholders and Delivery Method
- CInnovative Approach and Solutions
- **Construction**
- C Lessons Learned

Location Map

Vicinity Map

- Carries Commuter, Amtrak, and Freight
- Construct 1-mile of second main track
 - 1000-foot SD River crossing
 - Parallel to Mid-Coast LRT
 - Major design components

CMGC Delivery & Stakeholders

C CMGC Delivery

- Optimize \$2.0B Overlapping Projects
- Cost/Constructability Input

Schedule Challenges

- C Utility Improvements and Relocations
- **ROW Execution**
- C Design approvals
- © Environmental Permit Conditions
- C Timing of GMPs
- © Seasonal Restrictions
 - Approved Work Windows to construct
 - Wet season in the San Diego River
 - Nesting birds

- C Location
- C Age
- Seismic Stability
- Retrofit Life Cycle Cost
- → Replace the bridge

Regional Faulting and Seismicity

Geologic Plan & Profile

Ground Motion Development

- © Rock response spectra developed using PSHA for 100, 500, 2400 year events
- © Select recorded time histories & match rock
- © Develop geodynamic models of site soils
- Propagate rock time histories through site soils
- C Interpret design spectrum from results

Design Motions & Liquefaction

Slope Stability

Design Earthquake	Seismic Slope Displacement (feet)		
	No Ground Improvement	With Ground Improvement	
Level 1 – 100 year RP	1	Negligible	
Level 2 – 500 year RP	3	Negligible	
Level 3 – 2400 year RP	3.7	0.1	

Foundation Construction

- © Foundations often highest cost / risk
- C How did the team mitigate this risk?

Pier Construction & Stability

- Coriginal Approach Ground Improvement
 - 90 feet deep with challenges

Innovative Pier Approach

- **C** Constructability
- C Stiffness/Strength
- © 5% Cost Savings

Approach Embankment Challenges

© Settlement of buildings, track, and utilities

Approach Embankment Solutions

C Bridge

- C Cut-off wall C Lightweight Fill
- C Lower Profile
 C Surcharge
- © Ground Improvement

Lightweight Concrete Fill

- Site mixed with foaming agent
- 2-3 foot lifts
- Approx. \$40-50/cuyd (typical)
- Demonstrated for freeway, LRT, Heavy Rail

Cellular Concrete Class	Cast Density Pcf	Minimum Compressive Strength at 28 days*
		psi
I	24-29	10
II	30-35	40
III	36-41	80
IV	42-49	120
V	50-79	160
VI	80-90	300

Approval Process

- Not a conventional solution
- What are the stakeholder concerns?
- C How can we alleviate concerns?
- Is this really the right solution?

Solution

- Targeted Ground Improvement
- C Less Surcharge + More Resistance
- C Approx. 10% Project Cost Savings

CMGC Design Input / Optimization

0	20 123
	######################################
V/ KEGIAL XIII JAOO TWE V	MTZ CL - RIGID INCLUSIONS .
COMPACTION GROUT	+1 -506
COLUMN 7 1 3.92 1 4/6.5	
3.67	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	338
TO BE REMOVED BEFORE GROUND IMPROVEMENT	
17. 11. 11. 12. 12. 12. 12. 12. 12. 12. 12	28.222.25.25.25.25.25.25.25.25.25.25.25.25
LOCATIONS MAY BE 2	4 215 6

Construction

Summary

- CMGC River Crossing Case Study
- Costs and Risks Biased toward Structures
- © Design and CMGC Team Interaction
- C Use of Innovative Design Methods
- © Team Engagement in a CMGC Project

