

WELCOME TO THE 2017 Western Bridge Engineers' Seminar

DESIGN AND CONSTRUCTION OF THE TILIKUM CROSSING IN PORTLAND OREGON

Kevin Almer PhD PE SE

- ☐ Project Overview
- **□** Design
- ☐ Seismic Time-History Analyses
- **□**Construction

Project Overview

- **□7.3-mile** light rail extension
- □~ **25,500** weekday rides by 2030
- □ Two Park & Ride lots
- ☐ Up to **460 bike spaces**
- ☐ New multi-modal bridges
- ☐ Up to **14,500 jobs**
- ☐ Improved light rail, bus, streetcar, bike/pedestrian and freight service

Tilikum Crossing Transit Bridge

Program Requirements

- ☐ Prescriptive vs. Performance Requirements
 - ☐ Prescriptive "Fixed" elements of PE Design
 - ☐Bridge Type
 - □Shape
 - **□** Dimensions
 - ☐ Architectural Features
 - ☐ Performance Opportunity for Innovation
 - ☐ Means & Methods
 - ☐Pile Caps
 - **□**Ground
 - ☐ Work Bridges and access

Structure Geometry

Main Span Framing

Program Options

- ☐ Deep foundations at main pier
- □ Approach foundations
- ☐ Soil liquefaction / ground improvement

Main Footings

Bridge Design

- □Operating Loads
 - ☐ Dead Load (permanent loads)
 - ☐ Live Loads (moving loads: trains, buses, bikes/pedestrians)

LRV LOADING DIAGRAM

Bridge Design

- ☐Other Loads
 - ☐ Seismic Loads (earthquake)
 - ☐Wind Loads
 - ☐Ship/Vessel Impact
 - ☐ Cable Loss (rupture of one stay cable)

Wind Tunnel Analysis

- ☐ Deck Cross Section
- ☐Completed Bridge
- □ During Construction

-Max 4-Car LL and IM ——Min 4-Car LL and IM ——Bent 2 ——Bent 5

Component Design Summary

• Edge girders controlled by Cable Loss

Component Design Summary

• Cables controlled by Live Load

Component Design Summary

• Foundations generally controlled by Seismic in the NW

Seismic Time-History Analyses

Complete Model with Main Span and Approaches

- Cables single element with equivalent catenary stiffness through E-modules
- Monitor slack cables: 10% GUTS (anchorage wedge retainers)
- Discretized cables for cable loss analyses (10 elements per cable)
- **ADINA Software**

Seismic Time-History Analyses

Ground Motions

- 2 performance levels
 - 475 yr return period (SEE): Serviceable Earthquake Evaluation
 - 975 yr return period (NCE): No Collapse Event
- 3 time histories for each ground motion return period, 50% scour and no scour, lateral spreading

Motion #	Description	Ground Motion	
1	50% scour, 475, 1st motion	1985 Central Chile Valparaiso (Subduction Zone EQ)	
2	50% scour, 975, 1st motion	1985 Central Chile Valparaiso (Subduction Zone EQ)	
3	No scour, 475, 1st motion	1985 Central Chile Valparaiso (Subduction Zone EQ)	
4	No scour, 975, 1st motion	1985 Central Chile Valparaiso (Subduction Zone EQ)	
Liquefaction	Lateral Spreading Displacements		
5	50% scour, 475, 2nd motion	1985 Central Chile Endessa (Subduction Zone EQ)	
6	50% scour, 475, 3rd motion	1986 Palm Springs Sunnymead (Crustal EQ)	
7	No scour, 975, 2nd motion	1985 Michoacan La Union (Subduction Zone EQ)	
8	50% scour, 975, 2nd motion	985 Michoacan La Union (Subduction Zone EQ)	
9	No scour, 975, 3rd motion	1989 Loma Prieta Capitola (Crustal EQ)	
10	No scour, 475, 2nd motion	1985 Central Chile Endessa (Subduction Zone EQ)	
11	No scour, 475, 3rd motion	6 Palm Springs Sunnymead (Crustal EQ)	
12	50% scour, 975, 3rd motion	1989 Loma Prieta Capitola (Crustal EQ)	

• Typical Structural Strain Limits

• Component Specific Strain Limits:

Seismic Time-History Analyses

Willamette Ri	ver Transit Bridge			
Criteria Strain	n Limits			
Event	Component	Concrete	Rebar	Steel Shell
	·	(1/1)	(1/1)	(1/1)
0475	Towers	0.0050	0.0100	NA
	Piers	0.0050	0.0150	NA
	Drilled Shafts	0.0050	0.0100	0.0100
0975	Towers	0.0110	0.0500	NA
	Piers	0.0075	0.0500	NA
	Drilled Shafts	0.0110	0.0200	0.0200

HL1 Hans Lund, 9/8/2016

• Summery of Process

- Non-linear Moment-Curvature Input for all substructure elements from Xtract runs (including tower except in saddle region).
- Ground Motions varied with depth (every 2m) and location
- Soil stiffness varied with depth (every 2m) and location
- Non-scour, 50% scour and lateral spreading in separate runs
- (P,M) demands post-processed for all element and all time steps (0.02s) and feed back into Xtract to back-calculate concrete and rebar strains
- Strains evaluated against Criteria limits
- Structural solution to lateral spreading more economical to upsize shafts in lieu of ground improvement.

Seismic Time-History Analyses

Construction Means and Methods Analysis

- ☐ Superstructure erected using Balanced Cantilever Construction
- ☐ Tower checked for out-of-balance forces
- ☐ Cables installed and adjusted to elevation
- ☐Geometry controlled at each stage to achieve final profile

Erection Controls

- Intermediate stiffness allows modest grade adjustment
- CIP target settings and adjustments primary control with form traveler setting

Construction Cycle – Segment 07

☐ Adv. Traveler

- ☐ Install Temp Stay
- ☐ Build Segments
- ☐ Adjust Trailing Perm. Stay

Construction Cycle – Segment 08

- ☐ Adv. Traveler
- ☐ Install Perm. Stay

- ☐ Remove Temp. Stay
- ☐ Adjust Leading Perm. Stay
- ☐ Build Segments

Geometry Tracking

Erection Manual Stage Plot

Closure Scheme with Travelers

- Original scheme called for precast MS closure
- Modification to use travelers and CIP

MS Closure Frame

Tower Cofferdams

Drill Shaft Platform

Stay Cable Saddles

Pylon Pour

Overhead Form Traveler

Temp Stay Anchor

Temporary Stay Precast Anchor

Temporary Stay Stressing Rams

Permanent Stays

Strand Continuous thru Pylon

Temp stays slacked. Permanent stays support the leading edge.

Form Travelers

Form Travelers

Placing Concrete at Segment 9

Placing Concrete at Segment 9

Placing Concrete at Segment 9

Lower & Launch Traveler

Traveler in Launched Position

Edge Girder Reinforcing

East Cantilever – 5 Segments Behind

Thank you

Design Team

Bridge - TY Lin International
Geotechnical - EMI, Northwest Geotechnical
Electrical - Reyes
Main Foundations - BSE
Wind Analysis – West Wind Laboratories
Track – STV
Owners Engineer – HNTB