

Alternative ABC Connections Using UHPC

By Mohamadreza Shafieifar Mahsa Farzad Dr. Atorod Azizinamini

Florida International University September 2017

Problem Statement

Currently all ABC Connections to connect cap beam to columns uses types of connections that penetrates into the cap beam, creating a very challenging detailing Requirements within the cap beam.

Background Common Connections

Bar Couplers

Background Common Connections

Grouted Ducts

Background Common Connections

Pocket Connections

Details of the Proposed Connection

Advantages

✓ Large Tolerances

Advantages

- ✓ Developing the reinforcement over short length
- ✓ Minimal volume of concrete to be casted in the field

Advantages

✓ Eliminating the potential interferences with reinforcement in the cap beam

Details of the Feasibility Study

Construction of the Specimen

Construction of the Specimen

Construction of the Specimen First Part

Construction of the Specimen Joining Column to the First Part

Construction of the Specimen Joining Column to the First Part

Testing the Specimen Loading and Supports (Axial Load=200 Kip (10% Pu)

Results Moment-Displacement

Numerical Analysis

Numerical Analysis Crack Formation

Numerical Analysis Stress in Rebar

Numerical Analysis Load-Displacement

Numerical Analysis Load-Displacement

Test Specimen Dimension (Parametric Study)

Seismic Detail

None-Seismic Detail

Test Specimens Detail

Specimen ID	Geometry detail	Transverse Reinforcement detail	Axial Load Ratio
S-2.5-2.5-10 (Reference)	seismic detail	#3@2.5 in. in plastic hinge and splice region	10%
S-4-0-10	seismic detail	#3@4 in. in plastic hinge and no strips splice region	10%
S-2.5-4-20	seismic detail	#3@2.5 in. in plastic hinge and one stirrups at splice region	20%
NS-2.5-0-10	non-seismic detail	#3@2.5 in. in plastic hinge and no stirrups at splice region	10%

Construction of the Specimen

Construction of the Specimen

Testing the Specimen Loading and Supports (Axial Load=56 Kip (10% Pu)

Specimen 1 (S-2.5-2.5-10) (Seismic Detail) Reference

Specimen 2 (S-4-0-10) (Seismic Detail)

Specimen 3 (S-2.5-4-20) (Seismic Detail)

Specimen 4 (NS-2.5-0-10) (Non-Seismic Detail)

Results (Mode of failure)

Results (Load-Displacement)

d) S-2.5-0-20

Specimen	Maximum	Displacement
ID	drift	ductility
S-2.5-10	8.5 %	8
S-4-10	5.3 %	5
S-2.5-20	6.4%	6
NS-2.5-10	6.5%	5

Numerical Analysis

Numerical Analysis

Numerical Analysis (Load-Displacement)

Conclusion

- All of the specimens with seismic detail showed ductile behavior and the plastic hinge formed in the desired location.
- The main characteristic of the proposed connection is influenced by transverse rebar ratio. The distance between the stirrups plays a major role in preventing longitudinal bars buckling.
- No major crack was observed in the cap beam for the proposed seismic and non-seismic details. Therefore the non-seismic detail, with a seismic design consideration can be an alternative detail even for seismic regions.
- No significant damage was found in splice region even in the absence of the transverse reinforcement in this region.

Thank You! Questions?