

We Make a Difference

SteelI-GirderBridge Fit Research

Western Bridge Engineers'Sem inar, Septem ber 7, 2017

Research Team

- Georgia Tech:
 - Dr.DonWhite
 - Dr.Thanh Nguyen
- HDR Engineering
 - Domenic Coletti
 - Dr.Brandon Chavel
- MAGrubb & Associates:
 - Mike Grubb
- Braym an Construction
 - Calvin Boring

- FitCondition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

FitCondition

- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

W hat is 'Fit?"

CommonFitConditions							
Condition	Alternate Name	Description					
No-Load Fit (NLF)	Fully-Cambered Fit	The cross-fram es are detailed to fit to the girders in the fabricated, fully-cam bered and plum b position of the girders under zero load.					
SteelDead Load Fit (SDLF)	Erected Fit	The cross-fram es are detailed to fit to the girders in an idealplum b position where the girders are assum ed deflected vertically under the self-weight of the structural steelat the completion of the steelerection.					
TotalDead Load Fit (IDLF)	FinalFit	The cross-fram es are detailed to fit to the girders in an ideal plum b position where the girders are assum ed deflected vertically under the total as-constructed dead bads.					

Webs can only be plum b under one condition

• W hy should you care?

- Choice of fit condition affects ease of fit-up during construction
- Choice of fit condition affects locked in stresses

FitCondition

- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

Fit Condition

- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

Research Goals

- Provide design guidance to facilitate reliable fit-up
- Provide clearer understanding of implications of:
 - Erection procedures
 - Fram ing arrangem ents
 - Choice of fit condition

Research Scope

- 21bridges studied
- Curved and/orskewed
- Param etric 3D FEA studies
 - Range of erection schemes
 - Range of fram ing arrangem ents
 - Range of fit conditions

$$L_{max}$$
= 326 ft

We Make a Difference

- Estim ated Fit-Up Forces
 - Force applied by erector to connect steel
 - Analytically calculated as forces induced at cross-fram e top and bottom connections
 - Practicals in plifying assum ptions:
 - Noyielding
 - No incidental restraint
 - Geometry built as specified
 - Negligible "play" in connections

Estim ated Fit-Up Forces

- Factors that influence the actual bridge erection but cannot be accounted for in practical erection analysis:
 - Tolerances and play at connections,
 - Adjustments of crane and support elevations
 - Tolerances on support elevations
 - Changes in geom etry due to therm alm ovem ents, etc.
- Sensitivity studies showed:
 - The effects of these factors were lim ited
 - Results were generally reliable for predicting trends in behavior

Fit Condition

- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Fit Condition
- Research Basis

Erection Considerations

- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Lifting cranes, hold cranes, tem porary shoring, tiedowns allaffect fit-up
- Erection sequence affects fit-up
 - Curved girderbridges
 - Erect girders from outside-in
 - Cross-frameshelp controlgeometry
 - Straight skew ed bridges
 - Orderofgirders less in portant
 - Installm in in alcross-fram es until all girders erected
 - Curved and skew ed bridges
 - Must evaluate case by case

Example Simple Span Erection Sequence

2-4

Example Simple Span Erection Sequence

Example Simple Span Erection Sequence

- Fit Condition
- Research Basis

Erection Considerations

- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Recommendations for skewed bridges
 - Offset first cross-fram e 4 b_f or 0 4 L_b from skewed supports to avoid excessively large forces

- Recommendations for skewed bridges
 - Avoid framing cross-fram esdirectly into intermediate bearing locations

- Recommendations for skewed bridges
 - Stagger interm ediate cross-fram esparallelto the skew
 - Om it select cross-fram es

- Recommendations for curved and skewed bridges
 - Generally use continuous cross-fram es
 - Considerom itting select cross-fram es nearskewed supports
 - Balance goals → Cross-fram e forces, flange lateral bending, uplift, etc.

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Forallstudied bridges, all parametric variations
 - All3 Fit Conditions investigated form ost bridges
 - NLF not investigated for straight skew ed bridges

• Fit-up forces for curved, radially-supported bridges

Bridge	dge L _s (ft) w _g (ft) R (ft) n _g L _s /R	w (ft)	R (ft)	n	L/R	1 /14/	Max Fit-Up Forces (kip)		
Diluge		L _S / N	L _S / Wg	NLF	SDLF	TDLF			
(A) EISCR1	90	17.5	200	3	0.45	5.1	3.3	7.4	22.3
(B) NISCR2, Scheme 1	150	24.0	438	4	0.34	6.2	16.6	28.7	54.0
(B) NISCR2, Scheme 2A	"	п	11	п	н	11	84.4	82.5	80.2
(B) NISCR2, Scheme 2B	11	п	11	п	н	11	40.4	19.4	50.5
(C) NISCR7	150	74.0	280	9	0.54	2.0	21.3	35.9	75.3
(D) NISCR10	225	74.0	705	9	0.32	3.0	18.6	20.4	21.8
(E) EICCR11	322/417/329	40.4	∞/∞/411	4	0/0/ 0.80	8.0/ 10.3 /8.1	37.5	86.3	130.0
(F) NICCR12	350/350/280	74.0	909	9	0.39/0.39/ 0.31	4.7/4.7/3.8	28.4	38.6	57.4
(G) EICCR4	219/260/211/ 162/256/190	36.7	968/3@1108 /968/∞	4	0.198/0.235/0.190/ 0.146/ 0.264 /0	6.0/ 7.1 /5.7/ 4.4/7.0/5.2	12.3	12.6	16.0

• Fit-up forces for straight, skewed bridges

Bridge	L _{max} (ft)	L _{min} (ft)	w, (ft)	θ (deg)	n _ø	l,	L _{max} /W _g	L _{min} /w _g	Max Fit-Up Forces (kip)	
			6		δ	, , , , , , , , , , , , , , , , , , ,			SDLF	TDLF
(H1) EISSS57	211	63	61.0	69.5/-4.4	7	0.77	3.5	1.0	5.0	15.0
(H2) EISSS57	II	"	=	II	=	11		"	5.0	14.2
(I1) NISSS14	150	150	74.0	70	9	1.36	2.0	2.0	3.6	15.3
(I2) NISSS14	II	"	=	II	=	11		"	2.5	7.5
(J1) NISSS54	300	300	74.0	70	9	0.68	4.1	4.1	9.2	73.5
(J2) NISSS54	п	"	п	"	"	11	"	"	8.4	47.9
(K1) EICSS12	150/139	150/139	41.0	59.6	6	0.47/ 0.50	3.7/3.4	3.7/3.4	0.6	6.3
(K2) EICSS12	п	"	п	"	"	11	"	"	0.4	7.7
(K3) EICSS12	"	п	п	"	"	11	"	"	1.2	17.0
(L) NICSS16	120/ 150/150	120/150/150	74.0	70	9	1.69 /1.36/1.36	1.6/2.0/2.0	1.6/2.0/2.0	0.8	36.9
(M1) EICSS2	259 /255/220	241/183/220	66.6	58/61.8/38/38	8	0.48/ 0.49 /0.23	3.9/3.8/3.3	3.6/2.7/3.3	4.9	46.9
(M2) EICSS2	II	"	П	"		11	II	"	0.8	2.8

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- SDLF,TDLF → Lack-of-Fit (LOF)
- LOF → 'Force fit" → 'Locked in" forces
- LaterDL Forces
 - Straight skew ed bridges
 → Generally relieving
- Engineers rarely consider these effects...

- Rigorous approach to LOF analysis
 - Calculate initial strains

Engineering strain

Rotated engineering strain

Log strain

- Rigorous approach to LOF analysis
 - Fundam entally not difficult, but...
 - Challenging in practical term s
 - Tim e consum ing by hand
 - Considerable efforts via analysis software
- Alternatives:
 - Sim plified bad factor approach for straight, skewed bridges with TDLF AASHTO LRFD BDS C6.7.4.2

$$\left(\gamma_{\rm p}\right)_{\rm red} = \left(\gamma_{\rm p} - 0.4\right)$$

• Georgia Tech software tool

- Georgia Tech LOF analysis tool
 - Developed as part of research project
 - Procedures and exam ples in research report
- Required input
 - Framing layout
 - Girder, cross-fram e sizes
 - Boundary conditions
- Output
 - Fixed end forces (for 2D grid analysis)
 - Initial strains (for 3D FEA)

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Bridge behavior is reasonably predictable
- Construction inspectors should:
 - Know and understand the Fit Condition
 - Assess constructed geom etry:
 - Atend of erection
 - Afterdeck placem ent
 - Know when to do som ething
 - Know when to do nothing
 - Know when to call the engineer

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

NSBA Fit PaperRecom m endations

Straight Bridges

Square Bridges and Skewed Bridges up to 20 deg +/- Skew							
	Recommended	Acceptable	Avoid				
Any span length	Any		None				
Skewed Bridges with Skew > 20 deg +/- and $I_s \leq 0.30$ +/-							
	Recommended	Acceptable	Avoid				
Any span length	TDLF or SDLF		NLF				
Skewed Bridges with Skew > 20 deg +/- and I_s > 0.30 +/-							
	Recommended	Acceptable	Avoid				
Span lengths up to 200' +/-	SDLF	TDLF	NLF				
Span lengths greater than 200' +/-	SDLF		TDLF & NLF				

Skew Index,
$$I_s = \frac{w_g tan\theta}{L}$$

NSBA Fit PaperRecom m endations

Curved Bridges

Curved Bridges with Radial or Skewed Supports							
Recommended Acceptable							
Span lengths greater than 250' +/- and <i>L/R</i> > 0.1 +/-	NLF	SDLF	TDLF				
All other cases	SDLF	NLF	TDLF				

• AASHTO LRFD BDS 8th Ed.Revisions

- 6.7.2 : M ore explicit language about specifying the Fit Condition, with recommendations
- C6.7.2:Extensive revisions
 - Substantial discussion about the Fit Condition
 - Modified bad factor approach for reducing design forces when TDLF is used in straight skew ed bridges

$$\left(\gamma_{\rm p}\right)_{\rm red} = \left(\gamma_{\rm p} - 0.4\right)$$

- AASHTO LRFD BDS 8th Ed.Revisions
 - C6.7.4.2:Extensive revisions, presenting suggestions for efficient framing arrangem ents in skewed bridges
 - Offset first cross-fram $e 4 b_f \text{ or } 0.4 L_b$ from skewed supports (skew > 20 deg)
 - Suggested m in in um staggerd in ension
 - Recommendations for om itting select cross-frames

- Fit Condition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

- FitCondition
- Research Basis
- Erection Considerations
- Influence of Fram ing Arrangem ents
- Effects of Fit Condition
- Lack-of-FitForces
- Construction Inspection
- Form alRecom m endations

Recomm ended Reading

- NSBA Fit Paper (executive sum m ary)
 - <u>www.steelbridges.org/bridgefit</u>
- NSBA Fit Paper (fulllength)
 - Link provided in the executive sum m ary paper
- NCHRP 20-07 Task 355 FinalReport
 - http://apps.trb.org/cm.sfeed/TRBNetProjectDisplayas
 <u>p?ProjectD=3735</u>

We Make a Difference

Questions?

