STANDARDS TO CONTROL FRACTURE IN STEEL BRIDGES THROUGH THE USE OF HIGH-TOUGHNESS STEEL AND RATIONAL INSPECTION INTERVALS

Ryan J. Sherman, PhD

Western Bridge Engineers Seminar September 7, 2017

Research Team Ryan J. Sherman, PhD University of Nevada, Las Vegas Robert J. Connor, PhD Purdue University William N. Collins, PhD, PE University of Kansas

Project Partners

- Federal Highway Administration
- US Army Corps of Engineers
- Idaho DOT
- Indiana DOT
- Iowa DOT
- Minnesota DOT
- North Carolina DOT
- Oregon DOT
- Virginia DOT
- Wisconsin DOT

Project Contributors

Fabricators

- Hirschfeld Industries
- High Steel Structures

Steel mills

- Steel Dynamics, Inc.
- Nucor Corporation
- SSAB

History

Point Pleasant Bridge

- Collapsed Dec. 1967
- 46 fatalities
- Result: Fracture control plan
- Mianus River Bridge
 - Collapsed June 1983
 - 3 fatalities
 - Result: Hands-on inspection
- O 2005 NBIS updated
 - Result: 24-month interval

Improved Bridge Steel

• High-performance steel (HPS)

- High-strength
- Improved weldability
- Corrosion resistance
- Increased fracture resistance
- Achieved through
 - Chemical composition
 - Processing

Motivation

- Advances in past 40 years
 - Material
 - Design
 - Fabrication
 - Inspection
- 24 month hands-on inspection
 - Cost
 - Time
 - Safety

Integrated fracture control plan

Rational inspection intervals

Overview of Process

• Experimental testing

- Small-scale
- Large-scale

• FE modeling

- Fracture toughness
- Framework
 - Material toughness
 - Inspection interval

Parametric study

Experimental Testing Material Requirement

• CVN energy: 125 ft.-lbf

Experimental Testing Test Matrix

Plate	Creatimer	Turne	Fy	t _f	b f	h _w	L
Designation	specimen	туре	(ksi)	(in.)	(in.)	(in.)	(ft.)
	50_2-5_1B	Bending	50	2.5	14	33	46
E	50_2-5_2B	Bending	50	2.5	14	33	46
	50_2-5_1A	Axial	50	2.5	14	N/A	16
	70_1-5_1B	Bending	70	1.5	18	33	50
Ц	70_1-5_2B	Bending	70	1.5	18	33	50
п	70_1-5_1A	Axial	70	1.5	18	N/A	16
	70_1-5_2A	Axial	70	1.5	18	N/A	16
-	50_2-0_1B	Bending	50	2.0	14	33	40
I	50_2-0_2B	Bending	50	2.0	14	33	40
	50_1-5_1A	Axial	50	1.5	22	N/A	16
J	50_1-5_2A	Axial	50	1.5	22	N/A	16

Experimental Testing Test process

- Incremental growth
 - Notch specimen
 - Crack growth through fatigue
 - Cool to desired behavior
 - Load to induce fracture
 - Repeat until fracture achieved
- Grow to fracture length

Experimental Testing Bending Test Setup

Experimental Testing Temperature Chamber

Experimental Testing Bending Fracture Test

Experimental Testing Axial Test Setup

Experimental Testing Temperature Chamber

Experimental Testing Axial Fracture Test

Experimental Testing Test Results

Plate	Specimen	Tuno	Final Crack	Fracture Load	Fracture Stress	Deflection
Designation Specimen		туре	(in.)	(kip)	(ksi)	(in.)
	50_2-5_1B	Bending	5.00	104.6	18.7	0.96
E	50_2-5_2B	Bending	4.38	163.3	29.2	1.52
	50_2-5_1A	Axial	4.94	581.7	16.6	N/A
	70_1-5_1B	Bending	5.06	160.4	40.4	2.52
Ц	70_1-5_2B	Bending	7.50	164.6	41.5	2.66
п	70_1-5_1A	Axial	4.88	859.1	26.0	N/A
	70_1-5_2A	Axial	6.94	728.3	22.1	N/A
I	50_2-0_1B	Bending	1.69	149.2	26.3	1.09
	50_2-0_2B	Bending	1.06	128.6	22.6	0.94
	50_1-5_1A	Axial	6.00	424.4	15.7	N/A
J	50_1-5_2A	Axial	4.63	871.0	32.3	N/A

Finite Element Analysis General Parameters

- Load at failure
- Crack length at failure
- Material model
 - Grade 50 and 70
 - Elastic properties
 - Plastic properties
- Solid (continuum) elements

Finite Element Analysis Bending vs Axial Specimens

Bending

- Point load
- Pin and roller
- LTB bracing
- Submodel

Axial

- Surface traction
- Simplified geometry
- ¹/₂ symmetry

Finite Element Analysis Representative Results

Finite Element Analysis Representative Results

Finite Element Modeling Results

Plate	Specimen	FEA Model J	FEA Model Kı	FEA Kuar
Designation	-6	(ksi*in.)	(ksi√in.)	(ksivin.)
	50_2-5_1B	0.52	128.3	156.6
E	50_2-5_2B	1.28	200.1	246.9
	50_2-5_1A	0.64	142.7	174.8
	70_1-5_1B	2.76*	295.8*	325.4*
Ц	70_1-5_2B	6.63*	458.2*	505.1*
П	70_1-5_1A	0.58	135.5	148.0
	70_1-5_2A	1.88	244.0	268.1
I	50_2-0_1B	0.17*	74.2*	84.8*
	50_2-0_2B	0.08	49.0	54.8
J	50_1-5_1A	1.27	200.2	219.6
	50_1-5_2A	2.29	269.4	296.2

OCVN→K

- Correlation from BS7910
 - Lower bound
- Size correction
- o K→a_c

- Signal Fitness-for-Service (FFS)
 - Option 1 Failure Assessment Diagram (FAD)
- 0.75F_y

CURRENT SPECIFICATION					
	Thicknoss	Minimum Test	Minimum Average Energy (ftlbf)		
Grade	(in.)	Value Energy (ftlbf)	Zone 1	Zone 2	Zone 3
HPS 50 WF	≤ 4	24	30 @ 10 °F	30 @ 10 °F	30 @ 10 °F
HPS 70 WF	≤ 4	28	35 @ -10 °F	35 @ -10 °F	35 @ -10 °F
	≤ 2.5	28	35 @ -30 °F	35 @ -30 °F	35 @ -30 °F
HP3 100 WF	2.5 ≤ 4	N/A	N/A	N/A	N/A
	POTENTIAL SPECIFICATION				
	Thickness	Minimum Test	st Minimum Average Energy (ftlbf)		
Grade	(in.)	Value Energy (ftlbf)	Zone 1	Zone 2	Zone 3
Damage Tolerant Steel	TBD	TBD	125 @ 0 °F	125 @ -30 °F	125 @ -60 °F

Tolerable Crack Sizes				
Grade	Applied Stress	K _{new}	а	
(ksi)	(ksi)	(ksi√in.)	(in.)	
50	37.5	122		
70	52.5	122		
100	75	122		

Tolerable Crack Sizes					
Grade	Applied Stress		a		
(ksi)	(ksi)	(ksi√in.)	(in.)		
50	37.5	122	1.3		
70	52.5	122	0.8		
100	75	122	0.5		

Rational Inspection Interval Fatigue Life

Initial flaw (0.125")
In-service stresses
Live load stress range (3 ksi)
R-ratio > 0.5
Overload to 0.75F_y
Same crack growth rate

	Edge Crack		
Grade	Initial a	Cycles	
(ksi)	(in.)	(millions)	
50		30.6	
70	0.125	28.9	
100		26.0	

Rational Inspection Interval Calculate Interval

Set interval based on fatigue crack growth
 Assumed ADTT = 1,000

 Represents >75% of bridges (in Indiana)

 "Raw" years of life presented

 Actual inspection interval to be less

Rational Inspection Interval Calculate Interval

Grade	Initial a	Years	Final Crack
(ksi)	(in.)		(in.)
50		83.9	
70	0.125	79.2	
100		71.2	

Rational Inspection Interval Summary

Grade	Initial a	Years	Final Crack
(ksi)	(in.)		(in.)
50		83.9	1.3
70	0.125	79.2	0.8
100		71.2	0.5

Parametric Study

Parameters
CVN impact energy

100 ft.-lbf to 200 ft.-lbf

Plate thickness

1", 2", and 3"

Plate width

18" and 24"

Parametric Study Results

Grade 50 and 70

- 75+ year interval for all analyses
- Critical flaw > 0.7"
- Grade 100
 - 75+ year interval for 1" thickness
 - 70+ year interval for 2" thickness
 - 65+ year interval for 3" thickness

Conclusions

• Fatigue life can be calculated

- Rational interval can be established
- Multiple opportunities to detect a defect

Oritical flaw size can be calculated

Match inspection technique to flaw with POD

Integrated fracture control plan

- Lead to safer structures
- Provide a better allocation of owner resources

Questions?

