Accelerated Bridge Construction Link Slabs

Material Tailoring and Structural Response

- Michael Dopko
 Graduate Research Assistant
- Shahin Hajilar
 Graduate Research Assistant
- Behrouz Shafei, Ph.D., P.E.
 Assistant Professor
- Brent M. Phares, Ph.D., P.E.

Research Associate Professor Director of Bridge Engineering Center

IOWA STATE UNIVERSITY

Bridge Engineering Center (BEC), Institute for Transportation (InTrans)

Department of Civil, Construction and Environmental Engineering

Outline of Presentation

- Introduction
- Link Slab Materials
 - Conventional Fiber Reinforced Concrete
 - Engineered Cementitious Composite
 - Conclusions + Future Work
- Case Study Link Slab Bridge
 - Details
 - Results
 - Conclusions + Future Work

- Expansion joints leak and cause pre-mature corrosion of the underlying girders and substructure, decreasing the service life of the bridge
- Link Slabs replace intermediate expansion joints over piers with a continuous deck system, while the underlying girders remain discontinuous

- Although most new designs avoid intermediate expansion joints, some designs cannot avoid them for which link slabs may be a strong option
 - Accelerated Bridge Construction pre-cast designs
 - Long bridges where thermal movement cannot be accounted for by integral abutments or expansion joints near abutments alone
 - Existing simple span bridges
- The structural configuration of a link slab places a combination of thermal and live load induced stresses and strains on the link slab
 - ✓ Girder end rotations from live loads
 - Axial deformation from thermal gradient expansion and contraction encountered in the superstructure
 - ❖ No dead load stress/strain since link slab is placed last

- Girder end rotations from live load cause negative flexure in the link slab, causing tensile stress on the exposed deck surface
- AASHTO crack width criteria must be satisfied
 - Large amount of rebar
 - Fiber reinforced concrete material tailoring
- Thermal contraction of superstructure adds to tensile stress in the link slab

- Link slabs fill the free space provided by intermediate expansion joints, but the superstructure will still expand and contract under thermal variation
- Due to the absence of free space for thermal movement and depending on the relative stiffness of the link slab:
 - Additional stress can develop in the superstructure and substructure under thermal and live loads
 - These stresses must be considered in design to avoid damage to the bridge
 - Link slab design with low stiffness and high ductility would minimize these effects

Introduction – Existing Link Slab Design

Full depth link slabs

- De-bonded zone ≈ 5% of adjacent span length
 - Avoid stress concentrations
- Transition Zone ≈ 2.5% of adjacent span length
 - Increased shear stud concentration for anchorage
- Continuous top and bottom link slab reinforcement

Caption from Lepech & Li, 2005

Introduction – Existing Link Slab Design

Partial depth link slabs – low relative stiffness

- De-bonded zone ≈ 5% of adjacent span length
 - Avoid stress concentrations
- Flexible Engineered Cementitious Composite (ECC) material
 - Thin section less intrusive to global structure
 - Install in such manner to avoid compression buckling
- Possible pre-cast applications
- Possible use of Glass Fiber Reinforced Polymer (GFRP) rebar

Caption from Larusson (2013)

Link Slab Materials

- Ongoing research focuses on ABC link slabs
- Desirable Material Properties
 - High early strength for cast-in-place materials
 - Control crack widths (<0.33 mm) at high strains induced by girder end rotations from live loads and axial deformations caused by thermal movement of the superstructure
 - Durability Long term performance and corrosion resistance
 - Material properties that are contractor friendly for consistent material performance
 - Adequate workability
 - Simple concrete mixing regime that is easily reproducible
- Question: Which market available synthetic concrete fiber can provide the highest post crack toughness in FRC without being detrimental to workability?

Link Slab Materials

Conventional FRC – Contractor Friendly Cast-in-place ABC link slab Material

- Most suited for cast-in-place full depth link slabs
- Similar to previous RC link slabs, but fiber is added to the mix in order to control cracking and improve tensile properties
- Small (3/8") maximum size aggregate and increased paste content to maximize workability and fiber reinforcing effectiveness
- Need high early age strength for ABC criteria
- Higher fiber content will increase performance but sacrifice workability and economy
- Find balance between fresh properties, performance, and economy
- Literature review and survey of the concrete fiber market resulted in the flexural testing of 4 synthetic fibers for their contribution to residual strength and toughness of FRC, indicating their relative tensile performance

Investigation 1 - which type of selected synthetic fiber can provide the best ductility and toughness to an FRC mix when subject to tensile stress.

- High Strength Polyethylene (HSPE)
- Polyvinyl Alcohol (PVA)
- Basalt (BSLT)
- Polypropylene (PP)

Cement	Fly Ash		Fine Agg.	Water		Fiber (% Vol.)
593	254	1548	1266	322	Varied	0.5%- 1.5%

Base Mix Design

Paste + water reducer added for each mix to maintain workability

Fiber Parameters

High Strength Polyethylene

Polyvinyl Alcohol

Basalt

Polypropylene

	HSPE	PVA	BSLT	PP
S.G.	0.98	1.30	2.10	0.91
Length (in)	0.75	0.75	1.70	1.5
Tensile Strength (ksi)	377	145	157	83-96
E. Modulus (ksi)	11460	3920	6380	690

- 3 volume percentages (0.5%, 1.0% and 1.5%) were tested for each fiber (except HSPE due to clumping during mixing at lower volumes)
- ASTM C1609 flexural performance of fiber reinforced concrete was utilized to compare the performance of the fibers at different volumes in order to select a "best" fiber type for toughness and residual strength
 - Flexural performance is a good indicator of tensile performance
- Fresh properties were monitored using the Vibrating Kelly Ball (VKelly) test
 - VKelly test indicates static yield stress of fresh concrete similar to slump cone test but additionally measures the response to vibration through the VKelly index

VKelly Test

VKelly Slump

- Measures static yield stress of the concrete (similar to slump cone test)
- Taken by doubling the penetration of the ball into the concrete surface under the weight of the ball.

VKelly Index

- Measures the mixture's response to vibration for consolidation
- Taken by vibrating the Kelly ball at a constant rate and measuring the penetration into the concrete as a function of time. The slope of the penetration vs. time curve is the index.

Kelly Ball Concrete Vibrator

Link Slab Material – FRC Results

VKelly Results

- PVA had no VKelly index reading for 0.5% volume due to the rapid movement of the Kelly ball through the mixture under vibration
- PVA mixtures reaggregated into clumps during mixing at 1.0% and 1.5%

Fresh Properties				
			VK	elly
Mix ID	% Paste Added	HRWR (oz/cwt)	Slump	Index
PP0.5	0.0	0.6	1.5	0.47
PP1.0	0.5	1.8	1.3	0.33
PP1.5	2.0	3.1	1.0	0.13
PVA0.5	2.4	2.9	2.6	N/A
PVA1.0	6.7	2.8	1.3	0.25
PVA1.5	11.5	6.3	2.0	0.19
BSLT0.5	0.0	1.0	2.3	0.55
BSLT1.0	0.0	2.6	1.9	0.43
BSLT1.5	0.0	2.6	1.3	0.30
HSPE0.5	2.8	2.1	0.7	0.28
HSPE1.0	4.0	5.5	1.7	0.33
HSPE1.5				

 HSPE was not mixed at 1.5% volume due to mixing complications at 1.0% volume. HSPE fibers tend to stick to each other during the mixing process forming clumps in the mix making them impractical to mix at high volumes and non-contractor friendly

ASTM C1609 – Flexural Performance of FRC

- 4"x4"x14" beam specimens
- 3rd point bending
- Displacement controlled
- Average mid-span deflection data collected using LVDT sensors
- Load vs. average mid-span deflection plotted and analyzed for flexural performance parameters outlined in ASTM C1609
- Performance parameters include
 - First Peak Strength (Modulus of Rupture)
 - Residual Strengths at L/600 and L/150 deflection
 - Toughness up to L/150 deflection
 - Equivalent Flexural Strength Ratio

Sample of Load Deflection Curve Comparison – 1.0% Fiber

- 3 beam specimens were cast and tested for each mixture and average performance parameters were computed
 - First Peak Strength Flexural strength prior to crack formation
 - Toughness Area under the load vs. mid-span deflection curve, up to L/150 deflection. Indicates the ability of the fibers to carry load after cracking.

Link Slab Material – FRC Results

- First peak strength was not significantly effected by fiber type or volume
 - PP and Basalt showed increasing trend with volume, HSPE and PVA did not
- Toughness (area under load vs deflection curve) increased with increasing volume for all fiber types
 - Basalt > HSPE > PP > PVA for toughness

Link Slab Material – FRC Flexural Testing Conclusions

• After mixing 4 types of concrete fiber at varying volumes:

Rank	Mixing Characteristics	Toughness Characteristics	
1	Basalt	Basalt	
2	Polypropylene	High Strength Polyethylene	
3	Polyvinyl Alcohol	Polypropylene	
4	High Strength Polyethylene	Polyvinyl Alcohol	

- PVA and HSPE both had dispersion issues, but of a different nature
- HSPE showed promising strength results, but is very challenging to work with during mixing
- Basalt Minibars performed the best in all aspects

Now that optimal macro-fiber has been selected for post-crack performance of FRC, high early strength and shrinkage potential are being evaluated through additional studies. Low stiffness, partial depth pre-cast ECC link slabs will be explored once full depth, conventional FRC cast-in-place link slab mix design is optimized.

Substructure Response from Link Slab Presence - Case Study Bridge - Overview

9 Span Bridge near Vinton, Iowa

Geometry

- Continuous supports at piers # 1, 2, 4, 5, 7, & 8
- Bearing pad supports at both abutments and piers # 3 & 6
- Investigate replacement of expansion joints at piers # 3 & 6 with link slabs

Experimental Investigation

- Replace expansion joints over piers 3 & 6 with link slabs and compare with no link slab case
- Consider 2 idealized support conditions (Roller or Pinned) under expansion joints and link slabs (both abutments and piers # 3 & 6)
 - In-situ bearing pads would act somewhere between these two idealized conditions
 - Lateral stiffness of bearing pads increases with age
 - Roller support lower bound for bearing pad stiffness
 - Pinned support upper bound for bearing pad stiffness
- Results focus on deck/girder displacement and pier reactions

Experimental Investigation

- Finite Element Models
 - 4 bridge models created/analyzed
 - Roller without link slab (RwoLS)
 - Roller with link slab (RwLS)
 - Pinned without link slab (PwoLS)
 - Pinned with link slab (PwLS)
 - Analysis software package ABAQUS utilized
 - Link slabs were modeled by filling 6" expansion gap with concrete material analogous to the concrete deck material
 - 3x smaller mesh used for piers to increase accuracy

Experimental Investigation

Loading Conditions

- All 4 models analyzed for 3 loading conditions separately
 - Dead load (DL)
 - Positive temperature load (+TL)
 - Negative temperature load (-TL)
- Total stresses, moments and forces were calculated by combining either (DL+TL) or (DL-TL)
- ±TL was taken as 70°F to produce conservative results
- DL was calculated as the self weight of the bridge material

Results

- +TL and –TL produced results of the same magnitude for all 4 different bridge models
 - Results and conclusions for +TL and –TL are synonymous
- Due to symmetry, results are analyzed for half of the bridge

Results – Displacements at Expansion Joints / Link Slabs

No Link Slab

- Pinned Support Condition
 - 1.4 inches displacement
- Roller Support Condition
 - 1.7 inches displacement

Scale Factor: 1 Before 6 in. After 4.6 in. Scale Factor: 1 Before 6 in. After 4.3 in.

With Link Slab

Lateral Girder / Deck displacements were zero

Results: Substructure Reactions with Link Slabs

- For the RwLS model a build up of stresses, moments and forces was discovered under temperature loading in the outer piers
- The PwLS model had negligible stress, moment or force build up in all piers

Results: Substructure

- Dead loads produced negligible reactions for all cases
- Temperature loads produced substantial reactions in outer piers for RwLS case

Shear Force from TL

Conclusions

- Displacements were relatively small at the expansion gap worst case was 1.7" of movement.
- Link slabs may work well in with older, laterally stiff bearing pad supports that act most like ideal pinned connections.
- Link slabs would not work well with bearing pads that have low lateral stiffness, as a build up of stresses, moments and forces would result in the outer piers between the link slab and abutment.
- Retrofit of link slabs to replace expansion joints in older bridges may be beneficial based on the results of this study.

Final Conclusions

- Material and structural design are closely related for link slab design.
 - Material tailoring should provide 2-3 different link slab options with varying cost and effectiveness for different scenarios.
 - Cast-in-place ABC FRC link slabs should provide a simple option for contractors.
 - Low stiffness, partial depth, pre-cast ECC or Textile Concrete Link slabs should provide a more advanced and technical solution, hopefully feasible and effective for full scale applications.
- As shown in the case study bridge investigation, link slabs can have negative effects on the global structure.
 - Hope to minimize this structural intrusiveness through flexible link slab materials design.

Thank you!

Questions?