Sound Transit East Link and Lynnwood Link Aerial Guideway

Matt Vaggione, HNTB Josh Schettler, Jacobs Kent Ferguson, Jacobs HNTB Jacobs

Western Bridge Engineers' Seminar – Sept. 2017

Overview

- Sound Transit System
- East Link and Lynnwood Link Overview
- Superstructure Span Optimization
- Superstructure Vibration and Deflection Control
- Substructure Displacement vs. Force Based Design for ODE

ST Light Rail System

- First Segment (Central Link) opened in 2009
- 20 miles currently in service
- 52 miles total expected by 2024
- 116 miles total by 2041

Projected Ridership for ST Light Rail

Projected Ridership (Average Weekday Boardings)

Lynnwood Link

- \$2.8B Program
- Length: 8.5 miles total. 4 mi. of Aerial Guideway
- Start of Service: 2024
- 70,000 daily riders by 2035

East Link

- \$3.7B Program
- Length: 14 miles
- Start of Service: 2023
- 50,000 daily riders by 2030
- Connects Seattle to Eastside

E320:

- \$321M Construction Cost
- 2.4 miles total
- 1.1 miles Aerial
- South Bellevue \$135M/mile Station (Aerial)

Image by Sound Transit

E330 & E335:

- \$430M (Approx.)
- 1.9 miles Total
 - 0.5 miles Tunnel
- 0.8 miles Aerial
- East Main, BTC, Hospital, and 120th Stations.
- \$225M/mile

Light Rail Construction Costs

What Drives Const. Cost?

- Tunnel / Trench
- Elevated or Below Grade Stations and Parking Garages
- Aerial Guideway

How to Control Cost?

- Take advantage of existing infrastructure
- At-Grade where possible
- Efficient Structure Types

Superstructure – Cost

Total Project Direct Cost

Aerial Guideway Cost Breakdown

Superstructure – Type Selection

Central Link

East Link

PE Selection: Precast Segmental Concrete Box

- Utilized on Central Link
- Aesthetics

Final Design Proposal: Precast Tub/WF Girders

- Projects Broken Up in Multiple Contracts
- Dual/Single Track w/ Center Platform Station

Superstructure – Span Optimization

Precast Girder Type:

- Tubs
 - Aesthetics
- WF Girders
 - o ~\$400/LF Savings

Optimal Span Length:

- Shipping Limit
- Service Design
- Frequency Requirements

Superstructure – Vibration and Deflection Control

Current Sound Transit Design Requirements:

- 1st Mode of Natural Frequency

 Multiple Spans >= 3.0 Hz
 1 of 3 Consecutive Spans >= 2.5 Hz
- Deflection (LL + Dynamic) <= L/1000

Other Agencies with Similar Frequency Criteria:

• Massachusetts, Utah, Toronto, Los Angeles, Denver, Phoenix

• If frequency is not satisfied, timehistory analysis modeling structure, vehicle truck primary suspension and secondary suspension

> Is a constant frequency limit the best approach?

Superstructure – Rider Comfort

Control Accelerations by Limiting Deflections:

• NCHRP Research Report 851 – Proposed AASHTO LRFD Bridge Design Specifications for Light Rail Transit Loads (2017)

 UIC (International Union of Railways) 776-2R -Deflection Limits for Keep Vertical Acceleration < 0.1g

Fig. 5 - Maximum permissible vertical deflection δ for rail bridges corresponding to a permissible vertical acceleration of $b_v = 1/ms^2$ in the coach

Superstructure – Rider Comfort

Structure Vertical Acceleration Criteria:

- At Deck Level
 - Vert Acceleration < 0.5g
 - Recommended by UIC and FRA for operating safety
- At Passenger Level

UIC 776-2R Table 2: Indicative levels of comfort

Level of Comfort	Vertical	Vertical	
	Acceleration (m/s ²)	Acceleration (g)	
Very Good	1.0	0.10g	
Good	1.3	0.13g	
Acceptable	2.0	0.20g	

Measured Vertical Deck Acceleration in CSI Bridge Model:

Aerial Guideway Vibration Control - WF Girder (Tubs Similar)

Dual Track	Span Length (ft)	Vertical Frequency	Controlling Criteria	Max Deck Acceleration
Girder Type		(Hz)		(g)
WF74G	135	2.5	Frequency	0.04
WF74G	160	1.9	Service	0.08
WF83G	145	2.5	Frequency	0.04
WF83G	170	1.9	Service	0.06
WF100G	160	2.5	Frequency	0.05
WF100G	185	1.9	Service	0.07

Superstructure – Limit Vibrational Amplification

Frequency Limits to Prevent Resonance:

- Loading Frequency:
 - Vehicle Speed = 55 mph = 81 ft/s
 - Span Length = 130 ft

Service Limit Span Length Frequency

Loading Frequency = V/L = 0.6 Hz << 1.9 Hz

Approx. Dynamic Magnification Factor = $1/(1-(0.6Hz/1.9Hz)^2) = 1.10$

• Resonance with Light Rail Vehicle:

Car Body Resonance Frequencies= 1.5 to 2.0 Hz

Truck Related Resonance Frequencies = 4.0 to 5.0 Hz (or higher)

Superstructure – Vibration and Deflection Control

Summary:

- Frequency criteria is controlling span length on Sound Transit projects
- Based on research by Sound Transit and HNTB | Jacobs, a deviation was granted to decreased frequency requirement from 3.0 Hz down to 2.5 Hz
- Still concerns with frequencies < 2.5 Hz resonating with light rail vehicle

Looking back to a path forward

Ballard Bridge Seismic Retrofit Study 1993 City of Seattle

- Changed seismic design approach during project from Force Based Design (FBD) to Displacement Based Design (DBD)
- Seismic Design and Retrofit of Bridges Priestley, Seible and Calvi 1996

Ballard Bridge 2017

Sound Transit Central Link Light Rail

Timeline:

Sound Transit Founded Final Design Opened 1996 2002 2009

Seismic Design Parameters:

- Two Level Earthquake Design Maximum Design Earthquake (MDE) 2500 yr Operating Design Earthquake (ODE) 150 yr
- Force Based Design (FBD)

Column Design:

• Seismic Load Combinations (MDE and ODE) control column and foundation size and strength

Central Link: Seattle to SeaTac Aerial Guideway: 4.2 miles

Sound Transit East Link Extension

Timeline:

ST 2 Approved Final Design Opening 2008 2012 - 2015 2023

2012 Seismic Design Parameters

Two Level Earthquake Design

- MDE Displacement Based Design per AASHTO SGS
- ODE Similar to Central Link

2015 Change to Displacement Based Design (DBD) for ODE

- Results of FBD for ODE discovered during Eastlink Design
- *Performance Based Seismic Bridge Design* NCHRP Synthesis 440, 2013

East Link Extension Aerial Guideway: 1.8 miles

ODE Column Displacement Capacity

ODE Performance Goal: Fully Operational

ODE Column Displacement Capacity is the lesser of: (*Hose and Seible 1999- from NCHRP 440*)

• $D_{U ODE} = D_Y + D_{P ODE}$, $D_{P ODE} < 0.2 D_Y$ use analytical plastic hinge per AASHTO SGS and ODE strain limits:

E S ODE	< 0.005	reinforcing (controls)
E CU ODE	< 0.0032	concrete cover

• 1% Column Drift

MDE Displacement Capacity per AASHTO SGS

Column Cross Section at Base of Column

Seismic Analysis and Demand

Typical Guideway Bent:

- Plastic Hinge at Base of Column
- Capacity Protect Drilled Shaft

Modal Seismic Analysis

• "Equal Displacement Assumption"

Seismic Design ODE Displacement Capacity vs Demand

- Drift limit control capacity for tall columns
- $D_{U ODE} = D_Y + D_{P ODE}$ controls capacity for short columns
- Displacement capacity cannot be adjusted with reinforcing
- Capacity limit useful for sizing columns during preliminary design

ODE Column Displacement Capacity and Demand vs Bent Height

Seismic Design Column Lateral Strength Comparison

 Displacement Based Design reduces lateral design forces in short column

East Link Segment D ODE Redesign

Span Layout11 spans- 1165 ft.FBD 20147 ft. columns, 10 ft. shaftsODE Redesign 20166 ft. columns, 9 ft. shafts

- ODE Column Displacement Capacity is independent of column reinforcing
- Designed for LRV- increased displacement demand about 20%
- ODE Column Displacement demand can be reduced by increasing reinforcement

East Link Segment D ODE Redesign

Seismic Displacement Demand - Change to ODE Displacement Based Design:

- Smaller columns and shafts, similar bent displacement demands
- Similar ductility demand = D_U / D_Y , less foundation movement

Seismic Design Savings and Take Aways

ODE Displacement Based Design Savings:

- 15 to 20% substructure concrete
- 40 to 50% substructure reinforcing
- Estimated savings: \$ 3-5 million/mile for aerial guideway

	Locations	Average Quantities			
Guideway Segment		Column		Shaft	
		Dia.	Rebar	Dia.	Rebar
E320 FBD	46	6.5 ft.	65 -#11	9.5 ft.	110 -#11
E335 DBD	32	6 ft.	40 -#11	9 ft.	80 -#11
E340 FBD	10	7 ft.	60 -#11	10 ft.	120 -#11
E340 DBD	10	6 ft.	35 -#11	9 ft.	70 -#11

Take Aways:

- Change takes time
- More engineering costs less than more construction
- Displacement based design is being used for Lynnwood Link Extension – 4 miles of Aerial Guideway

East Link Quantity Comparisons

Acknowledgements

- Steve Gleaton, Sound Transit Agency Structures Manager
- Jerry Dern, HNTB Structures Discipline Lead
- Tie Zong, HNTB Superstructure Design Lead
- Dina Georgiu, HNTB Global Modeling Lead
- Aaron Olson, KPFF Structural Designer
- Farhad Nourbakhsh, formerly HMM Early Project Structural Guidance
- Schaun Valdovinos, formerly HMM East Link Global Modeling Guidance

Questions?

