

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

2017 Western Bridge Engineers' Seminar September 7, 2017 Kuan Go, PE, SE and Alan Marchman, PE

Project Overview

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

Kiewit HNTB

First 10 miles of Design Build – Project Overview

- West O'ahu/Farrington Highway Guideway (WOFH)
 - Contract Start Date: December 2009
 - Contract Substantial Completion: March 2017
 - Current Contract Value \$669M
 - 6.8 Miles of Rail Alignment (0.6 Miles At-Grade)
 - Operational in Late 2020 (East Kapolei to Aloha Stadium Station)

- Kamehameha Hwy Guideway (KHG)
 - Contract Start Date: June 2011
 - Contract Substantial Completion: Sept 2017
 - Current Contract Value \$392M
 - 3.9 Miles of Rail Alignment
 - Operation in Late 2020 (East Kapolei to Aloha Stadium Station)

Design-Build Team (WOFH & KHG)

- Design-Build Contractor & Precaster
 - Kiewit Infrastructure West Co.
- Bridge Design Engineers
 - HNTB (Prime & Substructure)
 - FIGG (Segmental Superstructure)
 - Shannon Wilson (Geotechnical)

Constraints

- Subsurface Conditions
- Guideway Profile
- Environmental Constraints
- Schedule

Photo Source: HART Flickr account.

https://www.flickr.com/photos/honolulurail/albums/with/72157663300219845

Guideway Structures Design Packages

Guideway Team Work Flow

- Interactions Between
 - Superstructure (FIGG)
 - Substructure (HNTB)
 - Geotech (SWI)
- 3D FEM
- Soil Springs Sensitivity Analyses
- Design Presented in Tables

Design & Construction "Standard" Features

- Precast Segmental Construction
 - Erected By Span-by-Span Method
- Round Columns
- Single Drilled Shafts

Precast Segmental Construction

- 7 ft 2 in. Deep Box Girders
 - 30 ft Wide for Double Track
 - 17 ft 3 in Wide for Single Track

- Longitudinally Post-Tensioned
- Top Slab Transversely Post-Tensioned

Precast Segmental Construction

- Erected By Span-by-Span
- Typical 11' Segments
- 125' Spans

Round Columns & Single Drilled Shafts

- Minimize Excavation Footprint
- Mitigates Risk of Encountering Hazardous Materials or Culturally Sensitive Burial Sites
- Minimized Noise / Vibration
- Standardized Column and Shaft Sizes

Round Columns & Single Drilled Shafts

8'-2¾"ø Drilled Shaft 6" asina Clr. Type A Bor 11DS01 (See Note 3) Type B Bar 11DS02 (See Note 3) Column Bars (Typ.) (See Note 2) 6P01dia CSL Tube Sizing Ring -(Typ., see Note 5) SECTION * See Note 10

- Standardized Column and Shaft Sizes
 - 5'-9", 6', 7' Columns,
 - 7' & 8' Shafts (w & w/o Casings)
 - Transition Zones

Construction Photos

Casting Yard

Casting Yard – 13 Casting Beds

Casting Yard – 3000 Segments Stored

Erection Truss

Erection Truss

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

19

Erection Truss

"Non-Standard" Construction

- C & L Piers
- Station Piers
- Cast-in-Place Balanced
 Cantilever Construction Over H-1

C & L Piers

C & L Piers Design Considerations

- Pier / Superstructure Deflections
- Shear Key Offset
- Creep
- Deflection Variables
 - Soil Springs
 - Concrete Strength
 - Construction Tolerance
- Adjust Deflection Values on Future Piers

C & L Piers (PT Cap & Column)

Station Pier (Ho'Opili Station)

Station Pier (Ho'Opili Station)

Source: HART Flickr account: https://www.flickr.com/photos/honolulurail/35737898252/in/album-72157631052041034/

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

26

Station Piers (Aloha Stadium)

Balanced Cantilever Structures Over H-1

Photo Source: HART Flickr account.

https://www.flickr.com/photos/honolulurail/albums/with/72157663300219845

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

28

CIP BCS - March 2015

CIP BCS - May 2015

CIP BCS - August 2015

CIP BCS – Oct 2016

CIP Balanced Cantilever Structures at KHG

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

33

CIP Balanced Cantilever Structures at KHG

First 10 miles of Design Build

	WOFH	КНС	TOTAL
Shafts	309	186	495
Columns	283	169	452
Segment Casting	3209	2029	5238
Spans Stressed	274	163	437
Avg Segments per Span	11.7	12.4	12.0
Avg Span Length	120 feet	126 feet	122 feet
Avg Segment Length	10.3 feet	10.2 feet	10.2 feet

Honolulu Rail Transit Project - By the Numbers First 10 Miles

- 10 Miles of Elevated Guideway
- 9 Stations (8 Aerial + 1 At Grade)
- 80 ksi Max Rebar Used on Project
- 72,000 lb Weight of Each Car
- 64 ft Long Car Trains (2-Car Trains)
- **5**,238 Segments on First 10 Miles, 55 mph Train Speed
- No. 4 on Roads & Bridges 2016 Top 10 Bridges list
- 3 Superstructure Erection Trusses
- 2020 Planned Opening of East Kapolei to Aloha Stadium
- 1st Phase, 1st Driverless Rail Transit System in the US

Lessons Learned

- Value of IPO (Integrated Project Office)
- Interface Challenges With DB & DBB Contracts
- Complexities of Large Cantilever C Piers

Acknowledgements

Design-Build of the First 10 Miles of Honolulu Rail Transit Project

And... Many Other Subcontractors / Subconsultants

For More Info:

http://www.honolulutransit.org/

https://www.flickr.com/photos/honolulurai l/albums/with/72157646789537243

Thank You 2017 WBES

