

Marine Cofferdam

COLLINS ENGINEERS 2

Marine Cofferdams

- Loads
 - Water
 - Soil
 - Current and waves
 - Vertical
- Barges
- Vessel impact
- Scour

Construction Sequence

- Set Template
- Drive Sheeting
- (Drill Shafts)
- Excavate
- Lower/Install Bracing (if required)
- (Drive Piles)
- Install Seal
- Dewater (Install Bracing)
- Construct Foundation
- Flood/Remove Bracing
- Pull Sheeting

COLLINS ENGINEERS 2

Lateral Loads

Types

- Barge
- Waves
- Ice
- Collision
- Unbalanced Soil

Current Loads

$$P_{CURRENT} = C_D v^2 (psf)$$

- $C_D = 1.4$ (Square)
- $C_D = 0.7$ (round nose)

v = current velocity (fps)

(Reference: AASHTO 2012)

Water Control

- Water elevation vs. risk
- Seal
- Sheet pile interlocks

Minimum Toe

- Lateral load capacity
- Flownet
- Basal heave
- Vertical capacity

Unbalanced Water Pressure

(Reference: Anchored Bulkheads, Terzaghi, 1953)

Basal Heave

Seals

- Driving force = γ_{ω} H $_{\omega}$
- Resisting forces
 - Seal weight
 - Cofferdam weight
 - Sheeting pullout
 - Pile/shaft pullout

Seals

- Self weight
- Bond
 - Piles/shafts
 - Sheets
 - Cleaning
 - Shear lugs
- Bond stresses
- Concrete placement
- SF ≥ 1.2

Seal Bond

TRADITIONAL	10-15 psi	Piles
	7-10 psi	Sheets
FDOT	36 psi	Steel Piles
	75 psi	Concrete Piles

Seal Bending: $f_b = 0.55(5\sqrt{f'_c})$ (ACI)

Tremie Mix

- Slump 8 to 10 inches
- 600 pcy cement
- Fine aggregate, 45 to 55 percent
- W/C ratio .45 max
- Pozzolans and admixtures
- Mass concrete → thermal control
 - DEF
 - Cracking

Sealing

- On Rock
 - Double Walls
 - Grout Seal
- Adjacent Structures

Titanic Dock

Steel Sheet Piling Permeability

- Rule-of-thumb
 - 0.1 GPM per foot of wall per 10' head (NAVFAC DM-7)
- Bare hot-rolled interlocks (Starr)
 Bulk hyd. conductivity = .01 gpd/ft²
 (5 x 10⁻⁹ m/sec)
- Proprietary cold-formed sheets with sealer (Smyth, Jowett and Gamble)

```
Bulk hyd. conductivity = 10^{-4} - 10^{-5} gpd/ft<sup>2</sup> (10^{-10} m/sec)
```


Scour

Sheet Piling Design

- Bending
- Transverse Bending
- Vertical Loads
- Combined Loading

Bending

- $F_b \le 0.65 F_y (ASD)$
- Continuous over wales
- No "arching" in water

Transverse Bending

Transverse Bending

Transverse bending is accounted for by utilizing a reduced yield strength:

$$F_{y \text{ red}} = (\rho_P)(F_y)$$

where:

 ρ_P = strength reduction factor based on the crosssectional properties of the sheet pile

Reduction Factor, ρ_P

D _P	$(b/t_{min})*f = 20.0$	$(b/t_{min})*f = 30.0$	$(b/t_{min})*f = 40.0$	$(b/t_{min})*f = 50.0$
1000	1.00	1.00	1.00	1.00
2000	0.99	0.97	0.95	0.87
3000	0.98	0.96	0.92	0.76
4000	0.98	0.94	0.88	0.60

Where:

b = flange width (should not be not less than $c/\sqrt{2}$)

 $e = \sqrt{\frac{34 \, ksi}{F_y \, ksi}}$

 F_v = yield strength (ksi)

c = slant height of web

 t_{min} = minimum of t_f and t_w

t_f = flange thickness

t_w = web thickness

COLLINS ENGINEERS 2

Vertical Load Capacity

- Embedment Depth =
 Vertical Load Required + Lateral Load Required
- Load transfer may include contributions from skin friction and end bearing.
- Similar Theory to Driven Bearing Pile Design
- Perform Load Test (ASTM D1143)

COLLINS ENGINEERS 2

Vertical Load Capacity

Vertical Load Capacity

- The contact area for skin friction—vertical surface extending along the outside face of the steel sheet pile.
- The end bearing area may be calculated based on a contact area equal to E_f times the section depth

$$-h_{eff}=(E_f)h$$

A value of 0.55h may be used as a typical value.

Combined Loading

 Steel sheet pile subject to axial compression and bending shall satisfy the applicable AISC interaction equations.

$$\frac{P_r}{P_a} + \frac{M_r}{M_a} \le 1.0$$

$$P_r$$
, M_r = applied
 $P_a M_a$ = available

Bracing Design

- Materials
 - -New
 - Used
- Connections
 - Bolted
 - Welded
- Local effects
- Installation methods

Bracing Plan

w = soil loading

P = axial load

R = load at strut

 ℓ = spacing between supports

Load on Wale Section

Bracing Design

- Wales
 - Bending
 - Axial loads
- Struts
 - Axial loads
 - Self weight
- Installation stresses
- Accidental loads

Bracing Design

- Wale restraint varies with construction stage
- Cannot "redistribute"
- Spud pile interaction
- Wale support brackets only after dewater
 - Carry wale vertical loads
 - Control weak axis buckling (if axial loads)
 - Design load = dead + buckling load
 - Buckling load = 0.04 (axial load)
- Wale local buckling
- Drainage

Circular Wale—Axial Stress

$$F_s = T/A + M/S$$

where:

 F_s = Wale stress

T = Wale axial load

M = Wale bending moment

= 0.86Tb

b = arc rise = $R - [R^2 - (c/2)^2]^{1/2}$

R = Radius to wale neutral axis

c = Chord length over arc

A = Wale cross section area

S = Wale section modules

Circular Wale—Buckling

$$P_{cr} = 3EI/R^2$$

where

 P_{cr} = Critical buckling load in wale

E = Modulus of elasticity of wale

I = Moment of inertia of wale about the vertical axis

For steel, E = 29,000 ksi For concrete, E = 57,000 $\sqrt{f'_c}$

- The factor of safety for buckling ≥1.5
- No allowance for temporary conditions

