

Design and Construction of the Rockingham Bridges

Nicholas T. Rodda, PE, SE

FSS

© 2015 HDR, Inc., all rights reserved.

Topics

- Introduction to the Project
- Project Requirements
- Splice Girder Superstructure
- Substructure
- Design Details
- Design Challenges
- Upcoming Construction

Location

- Project site is Rockingham, VT
- Bridges carry Interstate 91 over the Williams River
- ADT is 6900 in 2017
- ADT of 7000 by 2027

Existing Bridges

- Existing bridges are twin four span steel deck trusses
- Built in early 1960's
- Two lanes, 30 feet wide, 850 feet long
- Rehabilitated in 1988
- VTrans lists the bridges in poor condition
- Significant spalling in the deck soffitt, columns
- Section loss in the steel

TYPICAL CONCRETE DECK DETERIORATION

Technical Concept

- Base Technical Concept was a twin segmental box girder design
- With two bridges, traffic can be shifted between structures
- Allows new bridges to be built on the original alignment

Technical Concept

- Alternate Technical Concept was proposed for twin four span precast post-tensioned splice girder bridges placed on the original alignment
- Channelization is the same as the BTC

Technical Concept

- ATC proposed an unsymmetrical span layout
- Span arrangement allows for use of some existing piers as temporary supports for girder erection.

Project Criteria

- RFP included several special requirements for the bridge design
- 100 year bridge design life
- Stainless Steel Reinforcement Requirements
 - All Deck Reinforcement
 - All Bridge Rail Reinforcement
 - Any Girder Stirrups Extending into the Deck
 - Pier Cap Reinforcement
- Stainless Steel Deck Drains
- 9 inch thick deck; 3 inches of asphalt
- Utilities Not Permitted to be Anchored in the Deck Soffitt

Girders

- New England Bulb Tee's were modified for use on the project
 - Thickened webs to accommodate 4 inch ID PT ducts
 - Hammerhead Segments were made variable depth
- Three 19 strand tendons were used; DSI is the PT supplier
- Precast Fabricator imposed limitations on girder segments
 - $_{\circ}$ 180 kip limit
 - $_{\circ}$ 10 feet height limit

Girder Design

- PGSplice component of the Bridgelink suite used for design of girders
- New version of the PGSplice a giant leap forward
 - Handles multi-span splice girder bridges
 - Handles variable depth sections
 - $_{\circ}~$ Time dependent analysis
- Design began while program was still in Beta testing phase
- Various design checks at different stages Casting bed to 100 years
- Load rating
- Limitations and Future
 - $_{\rm \circ}~$ Inability to stage the deck pours; important for camber
 - Strand elongation estimates not available directly
 - Temporary support reactions

Substructure - Piers

- All piers founded on driven H-pile supported foundations
- Interior piers over 100 feet tall
- Pier shape was requested by the Contractor
 - Allowed re-use of forms on hand
 - Constant 8 foot thickness
 - $_{\circ}~$ Width varies with height
- RFP required max. slenderness of 80
 - $_{\circ}~$ Adjusted k by providing two bearing lines
 - $_{\circ}~$ Modified k from 2.0 to be closer to 1.4
 - No change to pier shape

Substructure - Abutments

- Typical L-abutment layout supported by driven H-piles
- Unique trough detail at joint
 - Vtrans expressed concern over leaking seals allowing water to get to bearings
 - HDR proposed a modified MassDOT detail
 - Any water leaking past the seals will collect in the trough
 - $_{\circ}~$ Troughed drained by under-drain
 - Some challenges utilizing this with a modular joint; an edge beam was employed

Deck Drains

- RFP required all deck drains to be made entirely from stainless steel
- No off-the-shelf SS drains available
- 24 in. square w/ 8 inch drain pipe
- Vermont allows discharge directly into the river

2'-31/2'

Utilities

- RFP required that a multi-duct conduit system be installed on one of the bridges
- No attachments allowed to the soffitt
- Brackets made from angles are attached with inserts to the girders
- Vertical member has a slotted hole to simplify fabrication but allow for adjustment of the inserts around the PT

Future Bearing Replacement

- RFP required that the design allow for future bearing replacement
- Due to space limitations, this was challenging
- Seat width limitations meant that the jacks had to be placed under the diaphragms at the abutments
- End diaphragms are designed with lifting in mind.

Design Challenges

- Design-Build allowed for collaboration between the girder fabricator and designers
- Numerous changes made to girder design between 90% and 100%
 - Optional shop bends for girder stirrups allowed to reduce shipping height
 - Bunk points changed from what was assumed based on actual trucking availability
 - $_{\circ}~$ Stay-In-Place forms were added at a late point in the design
 - $_{\circ}~$ Bridge rail changed at a late point in the design

SCALE I"=I'-O" (SHOWING RAIL REINFORCEMENT)

Temporary Work Access

- A work bridge will be built between the two existing bridges
- Demolition handled from the work bridge; trusses are removed from below roadway
- Girders are erected from below the roadway; little interference with traffic

Erection

- Closures are wet cured for 10 days prior to post-tensioning
- Girders are post-tensioned prior to deck placement
- Facilitates future deck replacement

Construction Staging

- Having parallel structures allows convenient staging during construction
 - o Northbound bridge to be built first
 - Two way traffic during construction is facilitated by placement of temporary barriers
 - Temporary barrier on the new bridges is not pinned to protect deck integrity

Credits

- Tom French Project Manager/Engineer-of-Record
- Chester Werts Superstructure Design Lead
 - Nick Rodda Superstructure Design
 - Doug Nelson Diaphragm Design
 - Steve Couture CAD
 - $_{\circ}$ Jimin Huang QC
- June Wu Substructure Design Lead
 o RJ Xu
 - Pat McAlpine
 - Dave Dougherty
- Reed & Reed Contractor

