

Seismic Design Challenges of the West Mission Bay Drive Bridge Replacement 2017 Western Bridge Engineers' Seminar

Kumar Ghosh, Ph.D., PE Senior Bridge Engineer

US Fish and Wildlife Regional Water Board USACE Coastal Commission Farks and Recs City of San Diego Caltrans

Location Map

Why a new bridge?

Seismic Impacts on Bridge Foundation Design

Column-Pile Shaft Pin Details

Pile Shaft Optimization – Structure Performance and Cost

Agenda

Why a New Bridge?

 Functionally Obsolete (FO) and Structurally Deficient (SD)

west mission bay drive bridge

Existing Bridge Information

- Built in 1950
- Four 12' travel lanes (2 each direction)
- Current and future daily traffic volume on bridge exceeds current capacity
- Need to match desired lane configurations on both sides
- Barrier separated 5' sidewalks
- Existing foundation is not sufficient for seismic event - Concrete pier walls on timber piles (30'-45' in length)

Explanation

Fault Zones

12. Potentially Active, Inactive, Presumed Inactive, or Activity Unknown

Landslides

21. Confirmed, Known or highly suspected

Liquefaction

31. High Potential - shallow groundwater major drainages, hydraulic fills

Coastal Bluffs

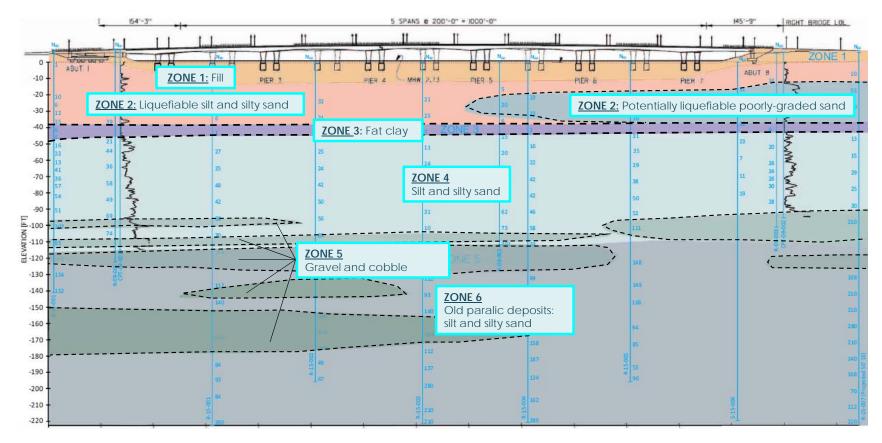
47. Generally stable, Favorable geologic structures, minor or no erosion, no landslides

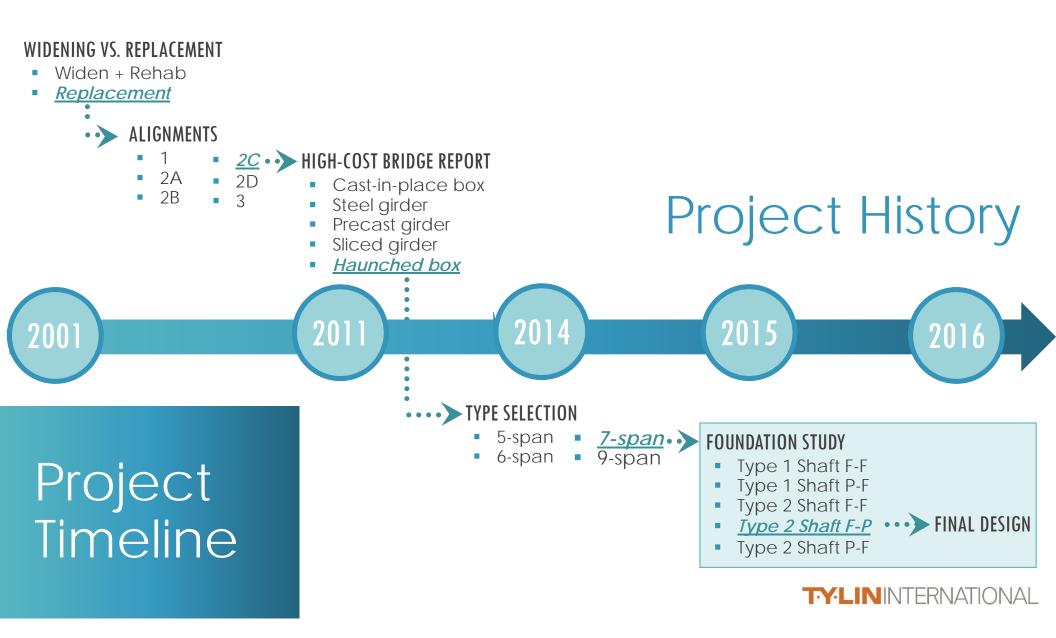
Other Terrain

- 51. Level mesas underlain by terrace deposits and bedrock nominal risk
- 52. Other level areas, gently sloping to steep terrain, favorable geologic structures,Low risk
- **53.** Level or sloping terrain, unfavorable geologic structure, low to moderate risk

N

NO SCALE

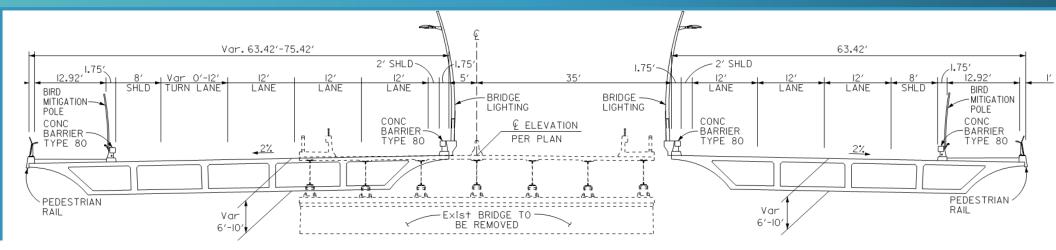

Faults


- ✓ Fault
- Inferred Fault
- ... Concealed Fault

TYLININTERNATIONAL

Seismic Safety Map

Soil Characterization



Stage Construction

WIDEN & REPLACE BRIDGE WITH SHIFT TO THE EAST (TWO STRUCTURES)

Bridge Configuration

1/1/1/1/1/AAAJA	
Bridge Length	1,300′
Number of Spar	s 7
Number of Frame	es 2
Max Span Lengt	h 200'

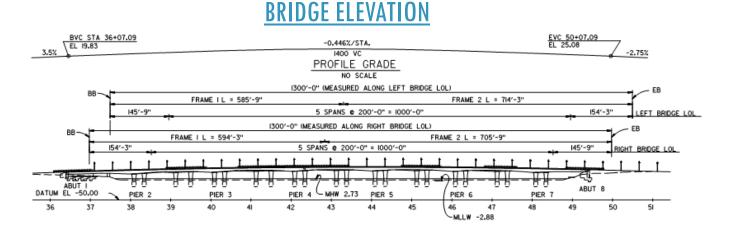
Ð \odot LIMITS OF BELVEDERE 3 PLAN 18 (19 (2) (2) (2) LIMITS OF BELVEDERE BELVEDERE DATUMS NOT ORTHAGONAL (INTERSECTIONS) Ś <10> (7" - 0.7/8") (7' = 0.7/8") (7'=07/8") RAILINGS NOT SHOWN DUE TO OBLIQUE SECTION BELVEDERE DATUM (BD) IS ALIGNED WITH THE EDGE OF DECK IN THE NON-BELVEDERE PORTION <# BD DECK 1 1 ELEV. @ BD +10' +20' +25' 105-10-55 φ <u>19</u> +35' ş. 8 ġ 10 ą. ũņ. \$ 12 " LIMITS OF BELVEDERE -3.32 50' - 0" 50' - 0" BELVEDERE SOFFIT (RCP) 1* = 10'-0* VERTICAL DISTANCE -6.50 -9.53 17" - 5 7/8" BELVEDERE SEAM SECTION

Why a new bridge?

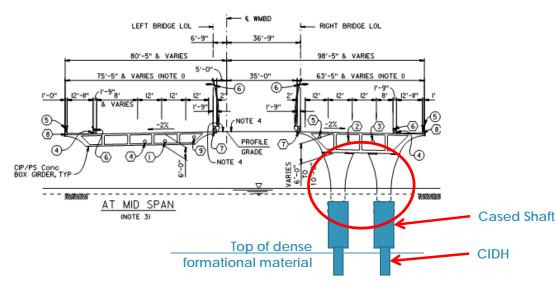
Seismic Impacts on Bridge Foundation Design

Column-Pile Shaft Pin Details

Pile Shaft Optimization – Structure Performance and Cost


Agenda

Seismic Challenges


- 1
- Design substructure for both liquefied and non-liquefied soil layers (shear critical short column for non-liquefied and flexure critical tall column for liquefied condition)
- 2 Design abutment for lateral spreading
- 3 Develop pin details between column and pile shaft
- Satisfy all Caltrans MTD and SDC requirements including new code updates

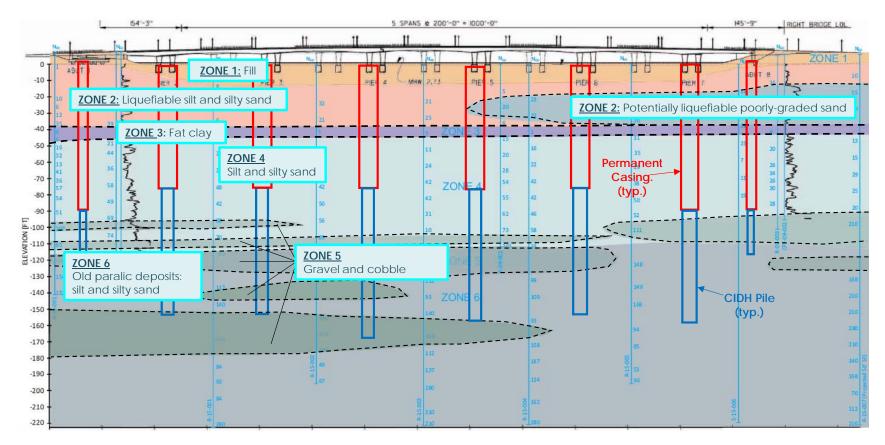
Geometry & Site Constraints

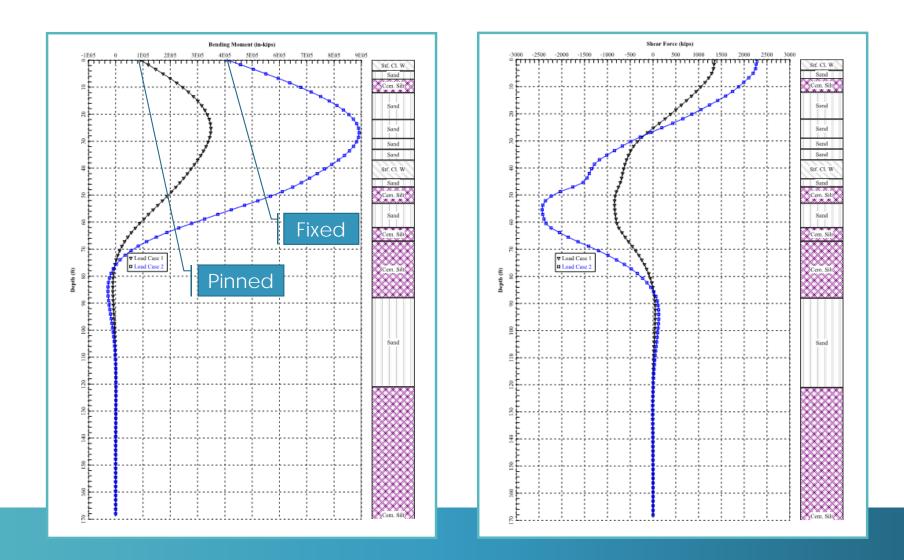
BRIDGE SECTION

- Actual column height varies from 19' to 27' for non-liquefied soil conditions – does not satisfy height/diameter ratio of > than 4.0 (MTD 20-18 Draft) for fixed-fixed condition
- P_{DL}/fc'Ag < 0.1</p>
- 30' of liquefiable soil results in a longer effective column for liquefied condition – high moment demand on the pile shaft and design governed by lateral stability – requires permanent casing
- Axial resistance provided by the CIDH portion of shaft only – longer pile length

Foundation Design: CIDH Piles with Permanent Steel Casing

PERMANENT STEEL CASING


- Oscillator or rotator recommended
- For constructability in loose caving soil
- For added structural bending strength
- Axial resistance ignored


CIDH PILES

- Friction (f=0.7): 1.25 x AASHTO LRFD BDS (Reese & O'Neill, 1999) b-method
- End Bearing (f=0.7): Capacity to be verified by full scale axial load test on sacrificial pile (Osterberg Cell Method)

	Pile Data Table								
Location		Nominal Res	istance (kips)	Steel Casing Specified	Design Tip	Specified			
	Location	Pile Type	Compression	Tension	Tip Elevation (ft)	Elevation (ft)	Tip Elevation (ft)		
	Abut 1L	60" CIDH with 72" permanent steel casing	2470	N/A	-90.0	-117.0 (a-I, c), -56.5 (d)	-117		
	PIER 2L	108" CIDH with 120" permanent steel casing	9130	N/A	-77.0	-162.0 (a-I, c), -108.0 (a-II), -94.0 (d)	-162		
	PIER 3L	108" CIDH with 120" permanent steel casing	9220	N/A	-77.0	-163.0 (a-I, c), -109.2 (a-II), -94.0 (d)	-163		
	PIER 4L	108" CIDH with 120" permanent steel casing	10280	N/A	-77.0	-175.0 (a-I, c), -104.2 (b), -94.0 (d)	-175		
	PIER 5L	108" CIDH with 120" permanent steel casing	8880	N/A	-77.0	-159.0 (a-I, c), -105.6 (a-II), -94.0 (d)	-159		
	PIER 6L	108" CIDH with 120" permanent steel casing	8290	N/A	-77.0	-152.0 (a-I, c), -102.0 (a-II), -94.0 (d)	-152		
	PIER 7L	108" CIDH with 120" permanent steel casing	8430	N/A	-90.0	-160.0 (a-I, c), -105.0 (a-II), -94.0 (d)	-160		
	Abut 8L	60" CIDH with 72" permanent steel casing	2270	N/A	-90.0	-116.0 (a-I, c), -55.5 (d)	-116		

Casing and Pile Lengths

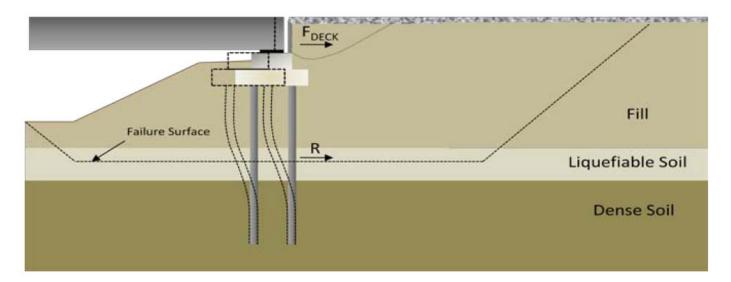
Moment & Shear Demands along Shaft from LPILE

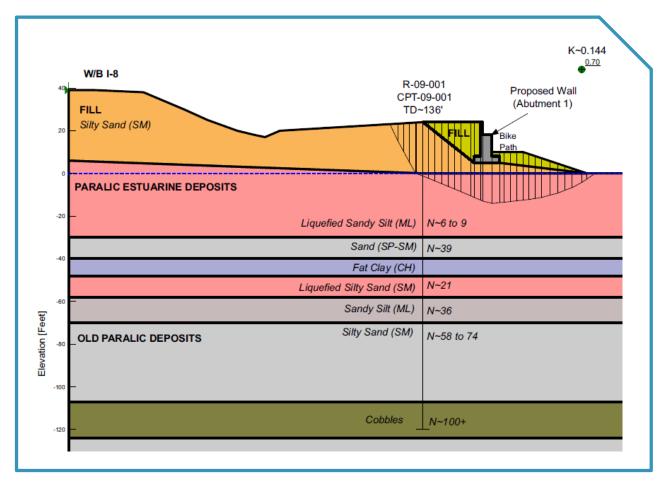
Pier Pile

7' column and 10' casing with column pinned at bottom

ADVANTAGES	 Nominal moment transfer to shaft and seismic shear demand is approximately ½ Reduced rebar congestion in the CIDH pile Satisfies all Caltrans SDC 1.7 seismic checks
DISADVANTAGES	 Difficult inspection of pin Stainless steel or dual coated pin reinforcement is recommended Column-shaft interface to be placed 2' below the total permanent scour elevation

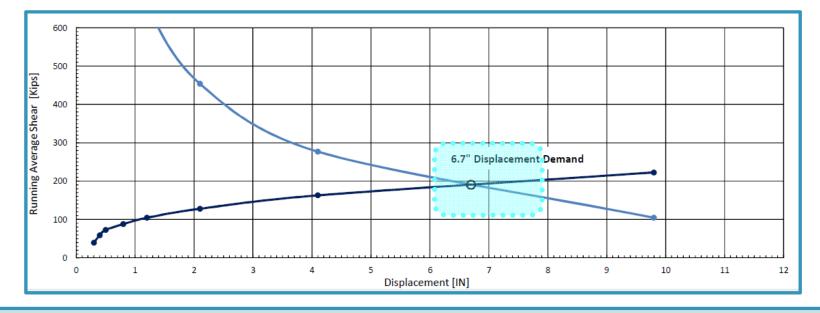
Lateral Spreading at Abutments


Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading


MEMO TO DESIGNERS 20-15 • NOVEMBER 2016

February, 2011

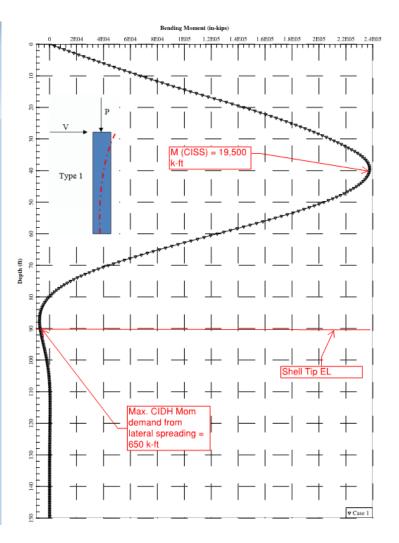
20-15 LATERAL SPREADING ANALYSIS FOR NEW AND EXISTING BRIDGES



For PGA/3 ~ 0.144g, F.S. < 1.0 with liquefaction

Slope Stability Analysis

Lateral Spreading Equivalent Displacement



- The potential exists for lateral spread of the river levees given a large earthquake on the Rose Canyon fault zone (Mw~6.8 to 7.2) and soil liquefaction.
- The proposed 6' diameter pile groups should limit deformation to <12" at the abutment locations.

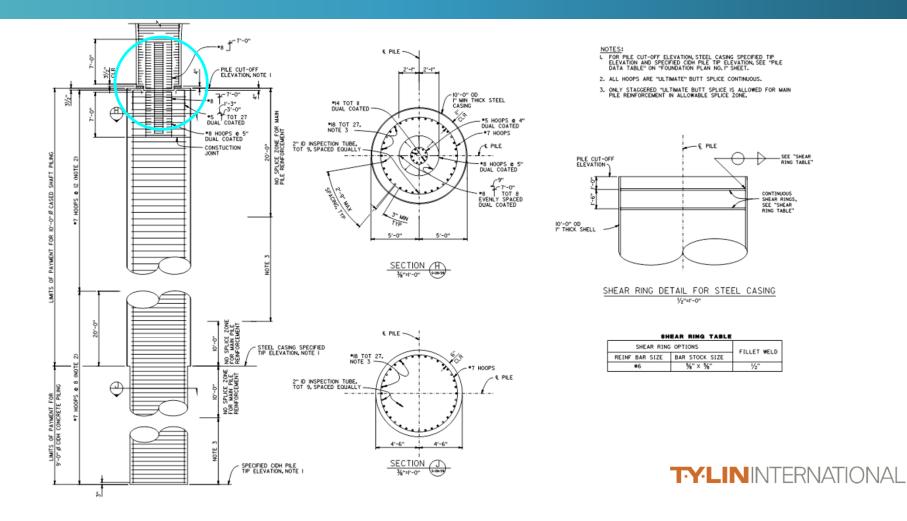
The soil movement profile is input as soil movement values versus vertical depth below the ground surface to the tip of the pile. All soil movement values below the deepest point are assumed equal to zero.

To read a file with soil movement vs. depth data, first specify the filename by using the Browse button, then press the Read Values from File button. The file should be a text file with with the data entered one data pair per line, separated by spaces, commas, or tabs.

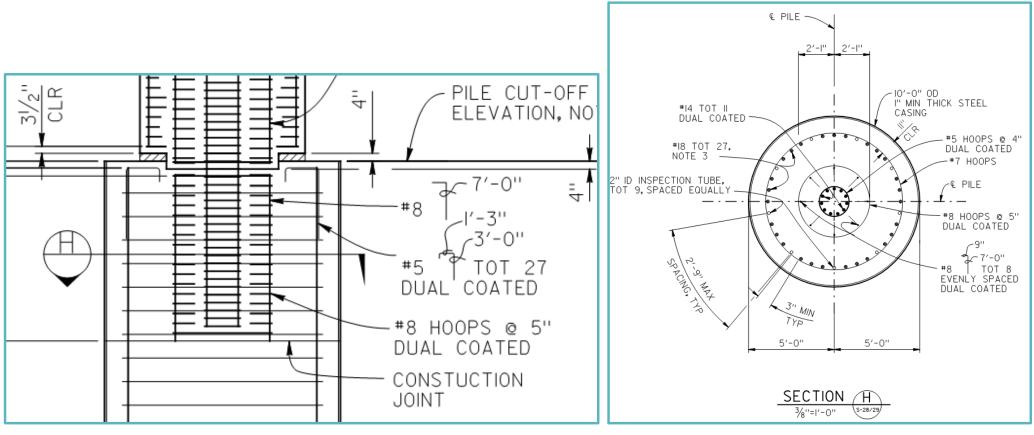
TYLININTERNATIONAL

LPile Analysis

Why a new bridge?


Seismic Impacts on Bridge Foundation Design

Column-Pile Shaft Pin Details


Pile Shaft Optimization – Structure Performance and Cost

Agenda

Pier Pile Pin Details

Pin Details

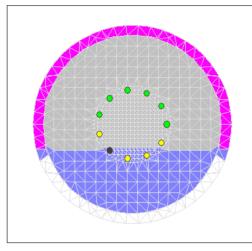
Moment at Pin

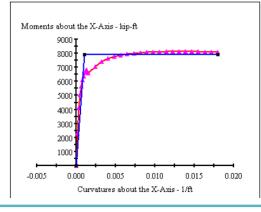
Section Details:

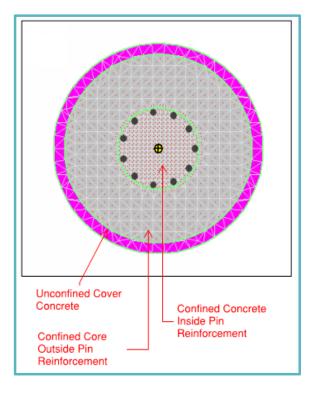
X Centroid:	
Y Centroid:	
Section Area:	

.4671E-6 ft 67.69E-9 ft 17.67 ft^2

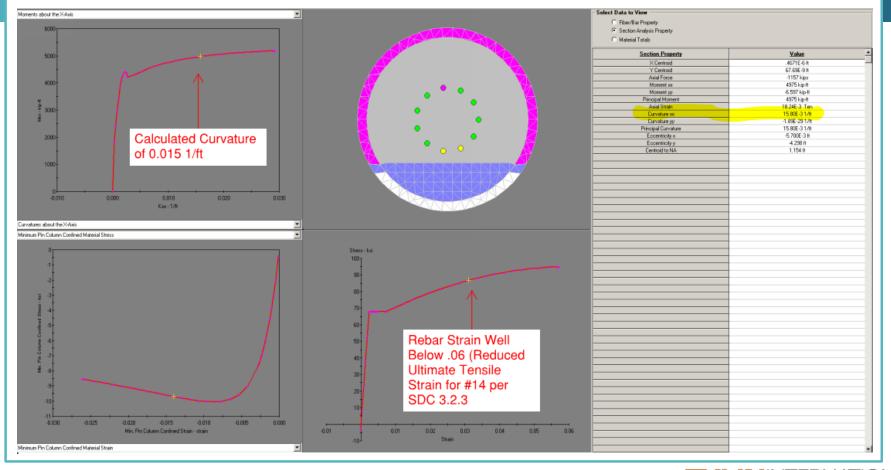
Loading Details:


Constant Load - P: Incrementing Loads: Number of Points: Analysis Strategy:

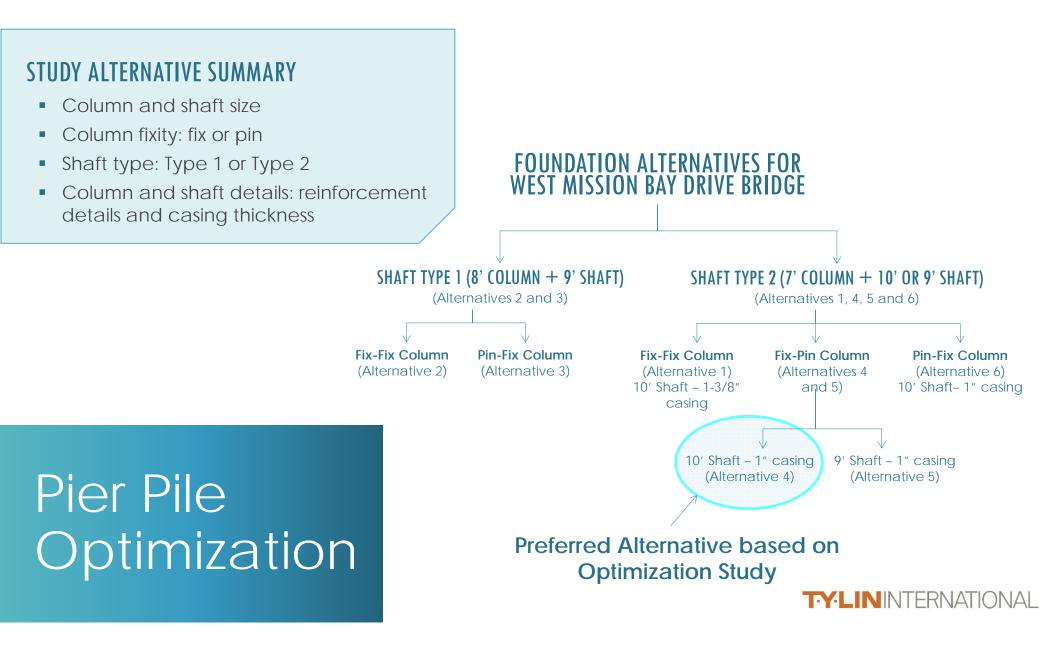

Mxx Only 31 Displacement Control


4893 kips

Analysis Results:


Failing Material:	Pin Column Confined
Failure Strain:	26.11E-3 Compression
Curvature at Initial Load:	-2.51E-13 1/ft
Curvature at First Yield:	.7835E-3 1/ft
Ultimate Curvature:	17.99E-3 1/ft
Moment at First Yield:	6071 kip-ft
Ultimate Moment:	8095 kip-ft
Centroid Strain at Yield:	.2078E-3 Comp
Centroid Strain at Ultimate:	10.55E-3 Ten
N.A. at First Yield:	2652 ft
N.A. at Ultimate:	.5867 ft
Energy per Length:	138.4 kips
Energy per Length: Effective Yield Curvature:	138.4 kips 1.022E-3 1/ft
Effective Yield Curvature:	1.022E-3 1/ft
Effective Yield Curvature: Effective Yield Moment:	1.022E-3 1/ft 7922 kip-ft
Effective Yield Curvature: Effective Yield Moment: Over Strength Factor:	1.022E-3 1/ft 7922 kip-ft 1.0000
Effective Yield Curvature: Effective Yield Moment: Over Strength Factor: EI Effective:	1.022E-3 1/ft 7922 kip-ft 1.0000 7.748E+6 kip-ft^2
Effective Yield Curvature: Effective Yield Moment: Over Strength Factor: EI Effective: Yield EI Effective:	1.022E-3 1/ft 7922 kip-ft 1.0000 7.748E+6 kip-ft^2 0 kip-ft^2

Pin Rebar Strain


Why a new bridge?

<mark>Seismic Impacts on Bridge</mark> Foundation Design

Column-Pile Shaft Pin Details

Pile Shaft Optimization – Structure Performance and Cost

Agenda

Pier Pile Optimization

			TYPE 1	SHAFT	T\	(PE 2 SHAFT	
		Alt # 1	Alt # 2	Alt # 3	Alt # 4	Alt # 5	Alt # 6
	Shaft Type	Type 2	Type 1	Type 1	Type 2	Type 2	Type 2
	Column Top Fixity	Fix	Fix	Pin	Fix	Fix	Pin
	Column Bottom Fixity	Fix	Fix	Fix	Pin	Pin	Fix
Alternative	Column Geometry						
Allendive	Diameter (ft) =	7	8	8	7	7	7
	Long. Reinf	37-#14	26-#18	26-#18	37-#14	37-#14	37-#14
	Long. Reinf %	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%
Comparison	Transv. Reinf.	Bund.#8@5	Bund.#8@5	Bund.#8@5	Bund.#8@5	Bund.#8@5	Bund.#8@5
Companson							
· · · · · · · · · · · · · · · · · · ·	Pile Shaft Geometry						
	Diameter Cased Shaft (ft) =	10	9	9	10	9	10
Casi	ng thickness (in) from constructability =	1.375	1.00	1.00	1.00	1.00	1.00
	Long. Reinf % (Cased Shaft) =	1.81% *	1.13% (26-#18)*	1.13% (26-#18)*	1.21% *	2.01% *	1.81% *
	Transv. Reinf. (Cased Shaft) =	#8@12	#8@12	#8@12	#8@12	#8@12	#8@12
	Cut off Elevation (ft) =	-4	-4	-4	-4	-4	-4
	Diameter CIDH Socket (ft) =	9	8	8	9	8	9
	Long. Reinf % (CIDH Socket) =	2.23%	1.43%	1.43%	1.49%	2.55%	2.23%
	Transv. Reinf. (CIDH Socket) =	#8 bundled @ 7	#8 bundled @ 7	#8 bundled @ 7	#8@12	#8@6	#8@5

T PREFERRED ALTERNATIVE BASED ON OPTIMIZATION STUDY

Pier Pile Optimization

Seismic Analysis Summary

	Alt # 1	Alt # 2	Alt # 3/	Alt # 4	Alt # 5	\ Alt # 6
Shaft Type	Type 2	Type 1	Type 1	Type 2	Type 2	Type 2
Column Top Fixity	Fix	Fix	Pin	Fix	Fix	Pin
Column Bottom Fixity	Fix	Fix	Fix	Pin	Pin	Fix
Preliminary Seismic Analysis Summa	ary (For Liquefied Soil C	ondition)				
∆d (in)	18.20	24.83	56.29	28.99	38.22	41.21
Total $\Delta y = \Delta y \operatorname{col} + \Delta \operatorname{ftg}(\operatorname{in})$	9.80	10.98	21.96	19.27	29.82	32.61
∆c (in)	20.40	19.56	93.52	29.75	40.29	43.09
T (sec)	1.60	2.09	5.30	2.41	3.03	1.86
μd	1.86	2.26	2.56	1.50	1.28	1.26
$\Delta D / \Delta c$	0.89	1.27	0.60	0.97	0.95	0.96
(PX∆r)/(0.2Mp:column)	0.64	0.72	1.99	0.72	0.81	0.7
Preliminary Seismic Analysis Summa	ary (For Non-Liquefied					
∆d (in)	4.40	9.62	24.57	7.67	8.58	14.17
Total Δy = Δycol + Δftg (in)	3.10	3.2	5.53	3.25	3.59	3.60
Δc (in)	8.70	8 74	26 45	13.73	14.07	14.08
T (sec)	0.80	1.01	2.08	0.87	1.00	1.33
μd	1.42	2.99	4.44	2.36	2.39	3.93
$\Delta D / \Delta c$	0.51	1.10	0.93	0.56	0.61	1.01
(PX∆r)/(0.2Mp:column)	0.29	0.37	0.90	0.39	0.45	0.56
				•		•

PREFERRED ALTERNATIVE BASED ON OPTIMIZATION STUDY

Pier Pile Optimization

Pile Shaft Design Summary

*NOTE:

- 1. Moment and shear demands were based on 1.2 overstrength factor. For Type 2 shafts the overstrength moment demands were multiplied by 1.25.
- 2. D/C ratio of CIDH Socket is limited to 0.5 as per Caltrans recommendation.
- 3. Alternative 1 required 1.375" casing thickness to satisfy the higher moment demands due to fix-fix condition.
- 4. 1" thick min. casing used for constructability.
- 5. Sacrificial loss of casing thickness was included in calculating the casing capacity.

	Alt#1	Alt # 2	Alt#3	Alt#4	Alt # 5	Alt#6
Shaft Type	Type 2	Type 1	Type 1	Type 2	Type 2	Type 2
Column Top Fixity	Fix	Fix	Pin	Fix	Fix	Pin
Column Bottom Fixity	Fix	Fix	Fix	Pin	Pin	Fix
Preliminary Pile Shaft Design Summary (For Liquefi	ed Soil Condition)					
Mu - Maximum Moment in Cased Shaft (k-ft)	135,375	92,750	2,750	75,000	85,300	107,500
Mu @ Cased Shaft/CIDH Socket Interface (k-ft)	72,875	29,600	28,300	19,750	19,750	41,750
φMne Cased Shaft Concrete Section (k-ft)				40,100	39,980	51,680
Mp Cased Shaft Concrete Section (k-ft)	54 520			42,330	42,320	54 520
Casing Thickness needed for Capacity (in) =	1.375			0.750	1.000	1.000
φMne Casing (k-ft) with fye = 51 ksi	81 296	Plastic Hinge in Type 1	Plastic Hinge in Type 1	41,776	46,644	57487
φMne(Total) Cased Shaft Concrete + Casing (k-ft)	132,916	Shaft	Shaft	81,876	86,624	109,117
D/C Ratio (Mu-max/ ϕ Mne) of Cased Shaft at Max. Moment =	1.02			0.92	0.98	0.98
D/C Ratio (Mu/ ϕ Mne) of Cased Shaft at Socket Interface =	0.55			0.24	0.23	0.38
φMne CIDH Socket (k-ft)	49,460	20,900	29,900	38,135	36,815	49,460
Mp CIDH Socket (k-ft)	53,305	31,470	31,470	40,950	39.820	53,305
D/C Ratio (Mu/ ϕ Mne) of CIDH Socket at Max. Moment =	1.47	0.99	0.95	0.52	0.54	0.84
Vu CIDH Socket (kips)	3,620	3,200	2,900	1,700	1,900	2,700
φVn CIDH Socket (k-ft)	3,275	2,790	2,790	1,850	2,125	2,725

Project Status

Construction Cost

\$95 million (bridge) + \$10 million (roadway)

Schedule

Start of construction scheduled for early 2018

TYLININTERNATIONAL

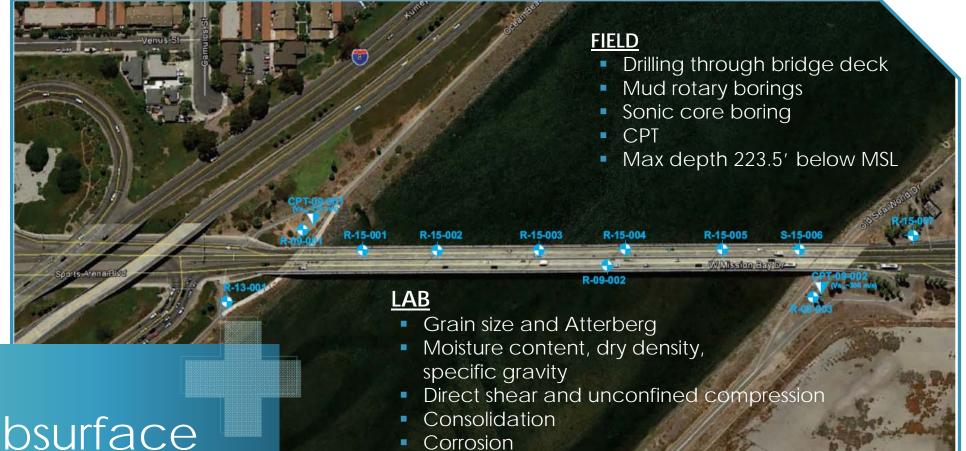
SUMMARY: Caltrans DES/OEE Deep Foundation Design Preferences and Upcoming Design Memos

Pile Shaft Design in Liquefiable Zone

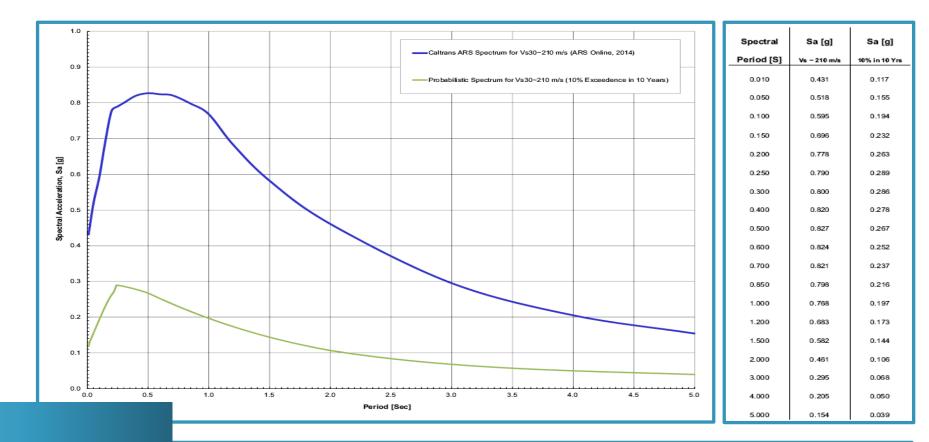
- Design substructure for both liquefied and non-liquefied soil layers
 - Satisfy height/diameter ratio of > than 4.0 for fixed-fixed condition (Seismic Design and Retrofit of Reinforced Concrete Short Columns and Pier Walls MTD 20-18 Draft)
- Satisfy new Caltrans MTD and BDP requirements
 - Type Selection for Abutments MTD 5-1 (Mar 2017)
 - Tip Post-Grouting of Drilled Shafts MTD 3-8 (Oct 2016)
 - Lateral spreading analysis for new and existing bridges MTD 20-15 (May 2017)
 - Caltrans BDP Chapter 16 Deep Foundations (Feb 2015)
- Satisfy upcoming Caltrans SDC requirements
 - For columns P_{DL}/fc'Ag < 0.1 (maybe 0.15 max)
 - At permanent casing CIDH interface, flexure demand/capacity ratio < 0.5
 - Pin details between column and shaft
- Construction considerations for CIDH piles
 - Foundation Report for Bridges (Feb 2017): http://www.dot.ca.gov/hg/esc/geotech/geo_manual/page/FR_for_Bridges_Feb2017.pdf

Acknowledgements

ESRADA Land Planning


U.S. Department of Transportation Federal Highway Administration

TYLININTERNATIONAL



SAFDIE RABINES ARCHITECTS

Subsurface Investigation

Seismic Design

Seismic CPT Vs30 = 675 - 715 ft/s (average 695 ft/s) ARS Design PGA = 0.431g

Lateral Spreading Analysis

- Both SLOPE/W and LPILE were used
- Caltrans ARS Online was used for design spectrum based on Vs30 ~ 210 m/s
- Caltrans ARS Design PGA ~ 0.431g
- Residual strengths were based on Seed and Harder using the corrected SPT data

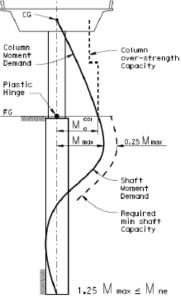
LPILE Analysis

- LPILE was also used to evaluate the response of a single 6' diameter pile with a permanent steel shell (a 0.8 p-multiplier was used for group efficiency).
- Soil displacements were applied in the LPILE model down to the critical failure plane from SLOPE/W.
- Soil displacements ranging from 0.3 to 9.8 inches were applied based on the Bray and Travasarou methodology, corresponding to seismic yield coefficients ranging from 0.05 to 0.40g.
- The results of the SLOPE/W and LPILE analyses were compared to determine the displacement demand on the abutment piles (~6 to 7" < 12" OK).

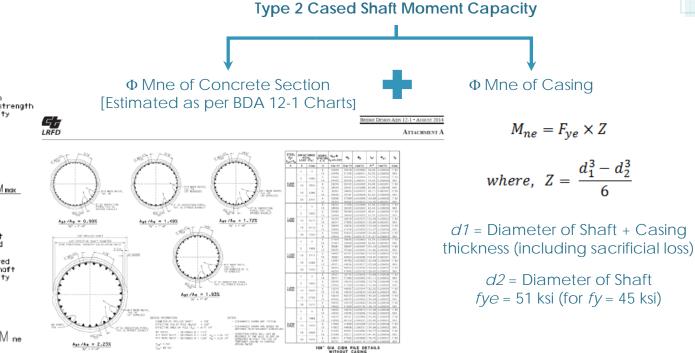
Pier Pile Optimization

Pier Length Summary

	Alt # 1	Alt # 2	Alt # 3	Alt # 4	Alt # 5	Alt # 6
Shaft Type	Type 2	Type 1	Type 1	Type 2	Type 2	Type 2
Column Top Fixity	Fix	Fix	Pin	Fix	Fix	Pin
Column Bottom Fixity	Fix	Fix	Fix	Pin	Pin	Fix
Pile Tip Elevations (Strength) Pile Tip Elev Right Bridge (ft) =	-167	-185	-185	-167	-185	-167
Pile Tip Elev Left Bridge (ft) =	-174	-190	-190	-174	-190	-174
Pile length Right Bridge (ft) =	163	181	181	163	181	163
Pile length Left Bridge (ft) =	170	186	186	170	186	170
Length/Diameter ≤ 30, MTD 3-1 (L/D) =	17	21	21	17	21	17
Casing length (ft) =	103	103	103	103	103	103

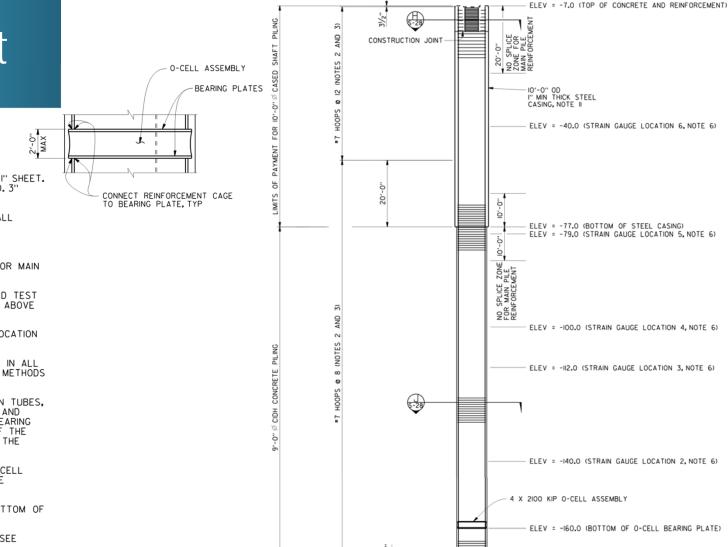

Pile Tip Elevations (Seismic)

Pile Tip Elev - Axial (ft) =	-120	-120	-120	-120	-120	-120
Pile Tip Elev - Lateral for Liquefied Case (ft) =	-162	-167	-167	-149	-158	-159


*NOTE:

- 1. Pile tip elevation shown are from preliminary analysis and were adjusted for the final design
- 2. Longer pile lengths for the 9' diameter cased shafts
- 3. The pile tip elevations are governed by Strength Limit State Loads
- 4. Factor of safety = 1.5 for determination of pile lengths for lateral stability

Pile Shaft Design



- For Fixed Column: Both Mo and Vo are applied at base of column
- For Pinned Column: Only Vo (1/2 of that for fixed column) is applied at base of column
- The demands in the shaft are obtained from LPILE analysis.

The cased shaft capacity is obtained through superposition of the CIDH and casing individual capacity

ELEV = ±0.0 APPROX ORIGINAL GRADE. NOTE 5

ELEV = -168.0 (STRAIN GAUGE LOCATION I, NOTE 6)

ELEV = -175.0 (CIDH PILE TIP ELEV)

I. FOR LOCATION OF TEST PILE, SEE FOUNDATION PLAN NO.1" SHEET. FOR "SECTION H" AND "SECTION J" SEE "PIER DETAILS NO.3" SHEET.

NOTES:

- 2. TEST PILE BAR REINFORCEMENT DETAILS NOT SHOWN SHALL REPLICATE THAT OF THE PRODUCTION PILES.
- 3. ALL HOOPS ARE "ULTIMATE" BUTT SPLICE CONTINUOUS.
- 4. ONLY STAGGERED "ULTIMATE BUTT SPLICE IS ALLOWED FOR MAIN PILE REINFORCEMENT IN ALLOWABLE SPLICE ZONE.
- CONTRACTOR SHALL VERIFY ORIGINAL GRADE AT PROPOSED TEST PILE LOCATION. CONSTRUCTION AND REMOVAL OF SHORING ABOVE PILE CUT-OFF SHALL REPLICATE PRODUCTION PILES.
- 6. PLACE 4 STRAIN GAUGES UNIFORMLY SPACED AT EACH LOCATION NOTED.
- 7. THE LOAD TEST PILE CONSTRUCTION SHALL BE IDENTICAL IN ALL RESPECT TO THE PROJECT PRODUCTION PILES INCLUDING METHODS OF INSTALLATION, TESTING, AND ALL MATERIALS.
- 8. INSTALLATION OF LOAD CELL ASSEMBLY, INSTRUMENTATION TUBES, INSPECTION PIPES, COMPRESSIBLE END BEARING MATERIAL, AND CONNECTION OF ROCK SOCKET REINFORCEMENT TO THE BEARING AND END PLATES SHALL CONFORM THE REQUIREMENTS OF THE LOAD CELL ASSEMBLY MANUFACTURER, AS APPROVED BY THE ENGINEER.
- 9. LOAD CELL ASSEMBLY SHOWN IS SCHEMATIC ONLY.LOAD CELL ASSEMBLY MANUFACTURER SHALL DESIGN DETAILS OF THE ASSEMBLY, SUBJECT TO APPROVAL OF THE ENGINEER.
- IO. 2" ID INSPECTION TUBES TOTAL 9 TO BE CARRIED TO BOTTOM OF CIDH PILE AT ELEV = -172.0
- II. FOR SHEAR RING DETAIL AT THE TOP OF STEEL CASING, SEE "PIER DETAILS NO. 3" SHEET.

Foundation Cost Comparison

Preliminary Seismic Analysis Summary

*	N	0	TE	
		\sim		•

- 1. Alternative 1 was used as the baseline for cost comparisons.
- 2. Cost of Alternatives 2, 3 and 5 were lower than Alternative 1 due to smaller shaft size and thinner shell (cost of furnish shell item is lower).
- 3. Cost of Alternatives 4 and 6 were lower than Alternative 1 due to thinner shell (cost of furnish shell item is lower)
- 4. Rebar quantity included both longitudinal and transverse reinforcement.

			r		4	
	Alt # 1	Alt # 2	Alt # 3 /	Alt # 4	Alt # 5	Alt#6
Shaft Type	Type 2	Type 1	Type 1	Type 2	Type 2	Type 2
Column Top Fixity	Fix	Fix	Pin	Fix	Fix	Pin
Column Bottom Fixity	Fix	Fix	Fix	Pin	Pin	Fix
Cost Comparison						
CIDH (Cased Shaft) unit price (\$/ft) =	2,500	2,175	2,175	2,500	2,175	2,500
CIDH (Cased Shaft) Length total (ΣLc) =	2,472	2,472	2,472	2,472	2,472	2,472
Casing unit price (\$/ft) =	2,791	2,000	2,000	2,350	2,000	2,350
Casing Length total (Σ Lc) =	2,472	2,472	2,472	2,472	2,472	2,472
CIDH rock socket unit price (\$/ft) =	215	1,950	1,950	2,175	1,950	2,175
CIDH rock socket Length total (Σ Lc) =	1, 82	1,902	1,902	1,482	1,902	1,482
L					'	
CIDH (Cased Shaft) rebar (Ibs) =	1,885,413	1,016,895	1,016,895	1,315,181	1,698,718	1,885,413
CIDH rock socket rebar (lbs) =	1,873,693	1,055,705	1,055,705	888,597	1,419,463	1,270,317
Rebar unit price (\$/lb) =	1.20	1.20	1.20	1.20	1.20	1.20
Rebar price in cased shaft(\$/If) =	915.25	493.64	493.64	638.44	824.62	915.25
Rebar price in CIDH socket (\$/If) =	1,112.30	666.06	666.06	719.51	895.56	1,028.60
Cased shaft unit cost (including rebar and casing) \$/ft =	6,206	669	4,669	5,488	5,000	5,765
CIDH socket unit cost (including rebar) \$/ft =	3,287	2,616	2,616	2,895	2,846	3,204
					'	
Total Pier Foundation Cost (\$/1000) =	20,213	16,517	16,517	17,857	17,771	18,999
Estimated Savings (\$/1000) =	0	3,696	3,696	2,356	2,441	1,213
					,	

PREFERRED ALTERNATIVE BASED ON OPTIMIZATION STUDY

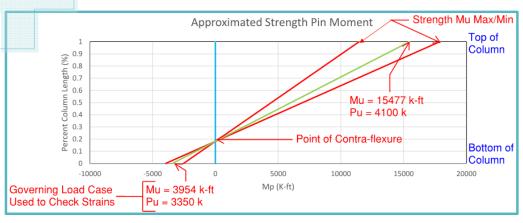
Pin Design

$$A_{zk} = \frac{1.2 \times (F_{zk} - 0.25P)}{f_y} \quad \text{if } P \text{ is compressive}$$
(7.6.7-1)
$$A_{zk} = \frac{1.2 \times (F_{zk} + P)}{f_y} \quad \text{if } P \text{ is tensile}$$
(7.6.7-2)

where:

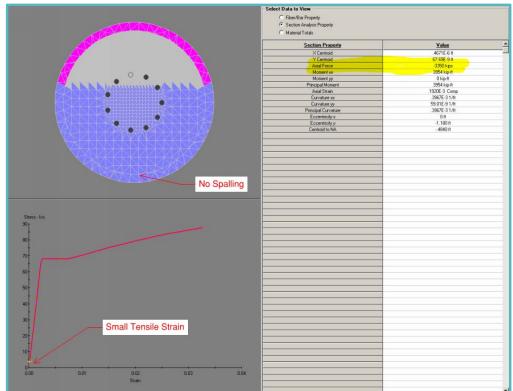
 F_{ik} = Shear force associated with the column overstrength moment, including overturning effects (kip) P = Absolute value of the net axial force normal to the shear plane (kip).

The value of P to be used in the above equations is that corresponding to the column with the lowest axial load (if P is compressive) or greatest axial load (if P is tensile), considering the effects of overturning. However, the same amount of interface shear steel A_{ik} , shall be provided in all column hinges of the bent. The area of dowel reinforcement provided in the hinge to satisfy the column key design shall not be less than 4 in.²


The hinge shall be proportioned such that the area of concrete engaged in interface shear transfer, A_{cv} satisfies the following equations:

$$A_{cv} \ge \frac{4.0 \times F_{sk}}{f_c}$$
(7.6.7-3)

$$A_{cv} \ge 0.67 \times F_{sk} \tag{7.6.7-4}$$


In addition, the area of concrete section used in the hinge must be enough to meet the axial resistance requirements as provided in LRFD-BDS Article 5.7.4.4., based on the column with the greatest axial load.

Pin under Strength Demands

*NOTE:

- 1. The axial load and moment at the pin were input in XTRACT to evaluate strains in rebar and concrete
- 2. The pin rebars are primarily in compression or minimal tension
- 3. No spalling of pin concrete under strength loads

