Historic Perspective on Galvanic Anode Use for Corrosion Protection of Bridges

Eliseo Conciatori Vector Corrosion Technologies

Presentation Outline

- Corrosion Problems on Bridges
- Review of Corrosion of Steel in Concrete
- Solutions using Galvanic Anodes

What could be happening here?

Corrosion Ravaged Columns Chicago, Illinois

Corrosion Basics

A Battery is an Electrochemical Process

Causes of Corrosion

- Chlorides
- Carbonation
- Dissimilar Metals

Results in the Destruction of the Steel's Passive Oxide Layer

Corrosion Cell in Concrete

Why Does This Occur?

Corrosion Potential for Steel in Concrete	
<u>Metal</u>	<u>Voltage</u>
Steel in Chloride-Free Concrete	0 to -200 mV
Steel in Chloride- Contaminated Concrete	-350 to -500 mV
*Typical potentials measured with respect to copper- copper sulfate electrode	

Corrosion Cell in Concrete

Galvanic Protection Systems

- Two different metals are connected in same electrolyte (concrete)
- More "active" metal = anode
- More "noble" metal = cathode
- Anode corrodes to protect cathode
- Natural reaction

- no external power required

Safe for prestressed concrete

Galvanic anodes naturally operate based on the principle of dissimilar metals corrosion like commonly used batteries. Current flows from the anode (the metal with the most negative potential) to the cathode (steel).

Galvanic Protection

Discrete Galvanic Anodes

Patch Accelerated Corrosion

Typical Embedded Discrete Galvanic Anode for Corrosion Protection

What is the purpose of the mortar shell around the anode?

- Mortar is specially formulated to keep the zinc active over time.
 - High pH
 - Halides (Chlorides, Bromides, etc.)
- Mortar accepts corrosion by-products from the zinc core.

Activation Technology

Alkali Activated

- High pH is corrosive to zinc but not to steel
- Allows zinc anodes to provide protection to reinforced concrete over time

Patch Accelerated Corrosion

Installed Galvanic Anode

Installation of Galvanic Anodes

Saw cut and cleaned repair area.

Installing anodes around the perimeter of the repair.

Testing anode connection to reinforcing steel.

Embedding anodes with repair material.

Point Anodes Protection

Prestressed Beam Ends

<u>Discrete</u> Galvanic Type 1A Anodes for use in Patches comes in different sizes and shapes

What do you do about corrosion that could be occurring outside a spall?

Drilled in Anodes for "Hot Spots"

Half Cell Survey

Preventative Medicine!

- Discrete Type 2A Anodes drilled in sound concrete for "Localized" Protection
- Addresses on-going corrosion activity in "Hot Spots" identified by <u>potential</u> testing
- Pro-active solution for areas that are contaminated but have not yet spalled or delaminated

Corrosion Control Anode Installation

Steel connection next to pre-drilled 2" diameter hole

Anode/Steel Connector

Anode

Steel Connection

2" Diameter Hole

Embedded Galvanic Anodes - Nomenclature

Type 1A and 1H –Installed in Patch Repairs

Type 2A (No Type 2H available) –Installed in Hot Spots in Sound Concrete

Joints and Interfaces

Accelerated Corrosion at Joint Interface

Anodes Prevent Accelerated Corrosion at Joint Interface

Distributed Anodes

*Galvanic Strip Anodes Used to Protect Replaced Expansion Joint

"Distributed" Galvanic Corrosion Protection Systems:

For Deck Overlays and Structural Members (Beams, Columns, Pier Caps, Etc.) overbuilds and Encasements or Jackets

(*When more than localized protection is required)

Distributed Strip Type Anode Protection in a Deck

On Many Slab Bridges...

- Slabs are in good condition
- Deterioration at abutment around the key way

Typical Slab Bridge Abutment

Abutment Repair Detail With Galvanic Protection

Distributed Galvanic Anodes in Large Area Repairs

Custom galvanic anodes distributed throughout large repair areas provide a high level of protection and long service life.

Galvanic Distributed Anodes

Pier Cap Protection

Corrosion Ravaged Columns Chicago, Illinois

Galvanic Anodes used in New Concrete Structures:

Normally used to Protect and extend Life to Areas of Rehabilitated Structures

*Can also be used to Protect and extend life to "Targeted Areas" of New Concrete Construction

Corrosion Prevention

- Used for New Concrete to Prevent Corrosion and extend Service Life of New Structures (*Especially in Severe Environments)
- Galvanic anodes force the cathodic reaction to occur at steel surfaces in uncontaminated new concrete
- Preventing initiation of corrosion in new structures is substantially less than for actively corroding existing structures
 - Typically in the range of 0.025 to 0.2 mA / ft2 of steel surface area (versus 0.1 to 0.7 mA / ft2)

Anode Placed in New Concrete:

- Galvanic anodes
 - Anodes can be distributed over large areas
 - Or used as targeted projection for specific areas of concern

Galvanic Anodes in New Construction

- Targeted protection
 - Potential future high chloride exposure areas
 - Critical structural elements
 - Construction joints, etc.

Marine Pile Protection

Precast Closure Strip

Discrete Anode for New Construction

- General Protection for New Construction
- Extra long tie wires
 - Allows anode to be tied in the center of the steel grid
 - More even current distribution
- Spacing:
 - a minimum of one anode per
 2.7 sqf of steel surface area
 - maximum spacing of 30 inches between anodes.

Summary of New Construction Protection

- Anodes provide cathodic current to improve corrosion resistance of conventional reinforcing steel
 - establishes a strong passive layer
 - increases the tolerance to chlorides.
 - keep chlorides away from the steel.
- Global or targeted protection strategies can be utilized

Thank You