

We Make a Difference

SteelI-G inder Bridge Cross-Fram e Strength and Stiffness Requirem ents W estem Bridge Engineers'Sem inar, Septem ber 6, 2017

- Stability Bracing
- Practical Im plem entation
- Design Example
- Sum m ary

- Stability Bracing
- Practical Implementation
- Design Example
- Sum m ary

- TypicalSteelI-GirderBridge
 Components
 - Deck
 - Girders
 - Cross-fram es ordiaphragm s
- Stability Bracing
 - Restrains lateral torsional deflection of I-girders
 - Resists lateral-torsional buckling of I-girders
 - Continuous bracing by com posite deck
 - Discrete bracing ("brace points")
 - Cross-fram es truss fram ew ork
 - Diaphragm s solid web
- M ostly fam iliarconcepts...

- TraditionalDesignApproach –
 2 Categories
 - Curved or severely skewed bridges
 - V-Load, 2D, or 3D analysis
 - Analysis results include crossfram e forces
 - Significant DL and LL forces
 - Cross-fram e strength and stiffness OK by inspection
 - Straight bridges with little orno skew
 - Line girderanalysis
 - Analysis doesn't provide crossfram e forces
 - DL and LL forces in cross-fram es neglected
 - Cross fram es designed forwind bading and maximum member slenderness limits

Stability Bracing

- RecentAdvances
 - Stability bracing strength and stiffness requirem ents
 - Yura, JA, 'Fundam entals of Beam Bracing", *A ISC Engineering Journal*, 1st Quarter 2001
 - AISC Specifications for Structural SteelBuildings, Appendix 6 3
 - Yura, JA, Helwig, TA, Volum e 13: Bracing System Design, *FHWA SteelBridge Design Handbook*, November, 2012

- Two prim ary design requirem ents
 - Stiffness requirem ent

$$(\beta_T)_{req} = \frac{\beta_T}{\left(1 - \frac{\beta_T}{\beta_{sec}}\right)}$$

Where: $\beta_T = \frac{2.4 L M_f^2}{\phi n E I_{eff} C_b^2}$

• Strength Requirem ent

$$(M_{br})_{req} = \frac{(0.005)L_b \, L \, M_f^2}{n \, E \, I_{eff} \, C_b^2 \, h_o}$$

• Simple equations... but how do you implement in bridge design?

9/14/2017

- Stability Bracing
- Practical Implementation
- Design Example
- Sum m ary

- Stability Bracing
- Practical Im plem entation
- Design Example
- Sum m ary

 FHW A SBDH :Defines equations and variables, with figures and discussions, then says:

"Using these equations the stability bracing forces are additive to the bracing forces resulting from a first-order type of analysis (dead bad, live bad, etc.)"

Buthow?

- NoDLorLL cross-fram e forces from LGA?
- W hat lim it states to investigate?
- W hat bad com binations and factors to use?
- W hat about negative m om ent regions?

Practical Im plem entation

- Loads
 - Straightbridges with little orno skew
 - Line girder analysis no cross-fram e results
 - DL and LL forces in cross-fram es negligible
 - Wind forces by simplified hand calculations
 - Stability bracing forces from Yura's equations

Practical Im plem entation

Michael Baker

- Lim it States, Load
 Com binations, Load Factors
 - AASHTO LRFD and engineering judgm ent

Notes:

- 1. Including dynam ic effects if applicable.
- 2.DC is weight of structural steelonly

Lim it State	Condition	Com posite or Noncom posite?	PosorNeg Moment?	Load Com bination			
Strength I	Final	Com posite	Negative	125 DC + 15 DW + 1.75 LL			
Strength I	Constr.	Noncom posite	Positive or Negative	125 DC + 15 DW + 15 Constr. <i>(Note 1)</i>			
Strength III	Final	Com posite	Negative	125 DC + 15 DW + 0 LL + 14 W S			
Strength III	Constr.	Noncom posite	Positive or Negative	125 DC + 125 DW + 125 W S + 125 Constr. <i>(Note 2)</i>			
Strength V	Final	Com posite	Negative	125 DC + 15 DW + 135 LL + 0 4 W S + 10 W L			
Special	Constr.	Noncom posite	Positive or Negative	14 DC + 15 Constr. <i>(Note 1)</i>			

- Lim it States, Load
 Com binations, Load Factors
 - Stability bracing forces calculated using factored m ajor-axis bending m om ent (M $_{\rm f}$)
 - Multiply by a bad factor of 1.0 for combination with other force effects
 - <u>StrI, Constr:</u> Now ind, but full constr bads for deck placem ent, with constr. live bads and dynam ic effects as applicable.
 - <u>StrIII, Constr.</u>: Include wind, with reduced construction bads (eg., constr.equipment, stored materials, but no constr.live bad).
 Not checked for deck placement conditions.
 - <u>Constr.Conditions</u>:DW includes applicable utility bads but not future wearing surface bading.
 - Localow ner-agency construction bad case guidance governs

Practical Im plem entation

Michael Baker

- Continuous Span Bridges
- Positive M om ent Regions
 - Addressed by Yura
- Negative M om entRegions
 - Not investigated by Yura
 - Does deck stabilize girders? Assum e it does not until further research is com pleted
 - Use maximum negative momentat pier?

Assum e bearings/anchorbolts provide bracing at pier, use m om ent at first cross-fram e away from pier

- Positive vs.Negative M om ent Regions
 - M om ent, cross-fram e spacing, properties by region

- Simplifications for Cross-Frame System Stiffness Parameter, eta_b
 - Use FHW A SBDH Figure 9 equations - conservatively only considers two girders
 - O therw ise can use FHW A SBDH
 Figure 23 equations with num ber
 of girders per cross-fram e taken
 as:

 $n_{gc} = \frac{number \ of \ girders \ in \ cross \ section}{number \ of \ cross-frames}$

Figure 9 Stiffness Formulas for Twin Girder Cross Frames [20]

- Simplifications for Web Distortional Stiffness Parameter, β_{sec}
 - Can use FHW A SBDH Figure 10 eq.
 - Form ost cases with "full-depth crossfram es" web distortional effects can be neglected and β_{sec} taken as infinity
 - How ever, AASHTO allows shallower cross-frames or diaphragms consider calculating β_{sec} explicitly when appropriate
 - Evaluate β_{sec} for each region of girder height using FHW A SDBH Figure 11 equation

Stiffener Figure 10 Web Stiffener Geometry

$$\beta_{\rm sec} = 3.3 \frac{E}{h_o} \left(\frac{(1.5h_o) t_w^3}{12} + \frac{t_s b_s^3}{12} \right)$$

Figure 11 Cross frame and Diaphragm Geometry

$$\beta_{c}, \beta_{s}, \beta_{t}, \beta_{u} = \frac{3.3E}{h_{i}} \left(\frac{h_{o}}{h_{i}}\right)^{2} \left(\frac{(1.5h_{i})t_{w}^{3}}{12} + \frac{t_{s}b_{s}^{3}}{12}\right)$$

Michael Baker NTERNATIONAL

- Simplifications for In-Plane GirderStiffness Param eter, eta_q
 - Equation for β_{q} assumes only one brace atm idspan
 - Conservative worst-case sim plification when more than one brace perspan is provided - can derive equations form ultiple braces
 - Form ostbridges with 4,5, orm ore girders, the effect of β_{α} is less significant
 - Fornarrow bridges, if β_q dom inates the calculation of the overallbrace stiffness, then global system buckling m ightbe a concern

$$\beta_{g} = \frac{24(n_{g} - 1)^{2}}{n_{g}} \frac{S^{2}EI_{x}}{L^{3}}$$

- Stability Bracing
- Practical Im plem entation
- Design Example
- Sum m ary

- Stability Bracing
- Practical Implementation
- Design Example
- Sum m ary

- Practical design project
- Three straight steel I-girder bridges
- Little orno skew
- Basic design param eters:
 - Six units, mix of 2-and 3-span units
 - Spans:113 'to 164 '
 - Girderspacing: 9'-4" to 10'-9"
 - Girderwebdepths:62"to74"
 - Cross-fram e spacing: 21'to 25'

Design Exam ple

Michael Baker

- Representative Calculations
 - Required cross-fram e stiffness:

$$(\beta_T)_{req} = \frac{\beta_T}{\left(1 - \frac{\beta_T}{\beta_{sec}}\right)} \tag{2}$$

• Required cross-fram e strength:

$$(M_{br})_{req} = \frac{(0.005)L_b L M_f^2}{n E I_{eff} C_b^2 h_o} \qquad (3)$$

- Representative Calculations
 - Values of key design param eters:

β_T	=	overall required brace system stiffness (kip-in./rad)					
	=	$\frac{2.4 L M_f^2}{\phi n E I_{eff} C_b^2} \tag{4}$					
β_{sec}	=	web distortional stiffness (kip-in./rad). For full-depth cross-frame					
		connection plates, β_{sec} can be taken equal to infinity. For this case, for					
		illustration, the value of β_{sec} was calculated to be 12,910,512 kip-in./rad					
L	=	span length (in.) = $147.5 \text{ ft} = 1770 \text{ in}.$					
M_{f}	=	maximum factored major-axis bending moment in the region (i.e. positi					
-		or negative moment region) and span under consideration for the Limit-					
		State load combination under consideration (kip-in.) see summary					
		below					
ϕ	=	resistance factor for bracing $= 0.80$					
n	=	number of cross-frames within the span $= 5$					
I_{eff}	=	effective moment of inertia $(in.^4) = 981.5 in.^4$					
C_b	=	moment gradient modifier, conservatively taken as 1.0					
L_b	=	unbraced length (i.e., cross-frame spacing) (in.) = 24.75 ft = 297 in.					
h_o	=	distance between the flange centroids (in.) = 69.375 in.					

- Representative Calculations
 - <u>Actual</u>cross-fram e stiffness:

The required bracing stiffness, $(\beta_T)_{req}$, from Eq. (2) is checked against the actual overall brace system stiffness, $(\beta_T)_{act}$, given as:

$$(\beta_T)_{act} = \frac{1}{\left(\frac{1}{\beta_b} + \frac{1}{\beta_{sec}} + \frac{1}{\beta_g}\right)}$$

where, by separate calculations for the subject cross-frame:

β_b	=	cross-frame system stiffness (kip-in./rad) = 1,540,514 kip-in./rad
β_{sec}	=	web distortional stiffness (kip-in./rad) = 12,910,512 kip-in./rad
β_g	=	in-plane girder stiffness (kip-in./rad) = 339,863 kip-in./rad

thus:

$$(\beta_T)_{act} = 272,557 \text{ kip-in./rad}$$

Design Exam ple

Michael Baker

- Representative Calculations
 - <u>Required</u> cross-fram e stiffness
 - Maximum negativem om ents at the first cross-frame away from the support:

<u>Strength I: 77,136 K-in</u>. Strength III: 36,696 K-in. Strength V: 67,860 K-in.

- By Eqs. (4) and (2), the required cross-fram e stiffness, β_T , p_{req} , is 225,883 kip-in, rad.
- Actual cross-fram e stiffness, β_T , is 272,557 kip-in./rad.
- Cross-fram e has sufficient stiffness.

- Representative Calculations
 - Cross-fram e strength requirem ents
 - Calculate bracing required strength perEq.3 (expressed as a m om ent value)
 - Convert to m em ber force dem ands in chords and diagonals
 - Include consideration of wind bads
 - Select results for a cross-fram e in a negative m om ent region:

Required bracing strength:

$$(M_{br})_{req} = \frac{(0.005)L_b \, L \, M_f^2}{n \, E \, I_{eff} \, C_b^2 \, h_o}$$

Limit	Load Factors			Wind Loading		Stability Bracing Forces		Total Loading		
State	γрс	γdw	γιι	γws	W chord	W $_{diag}$	${f S}_{chord}$	S $_{diag}$	F chord	F _{diag}
					(kips)	(kips)	(kips)	(kips)	(kips)	(kips)
Str I	1.25	1.5	1.75	0.0	0.0	0.0	25.8	40.5	25.8	40.5
Str III	1.25	1.5	0	1.4	12.3	19.3	5.8	9.2	18.1	28.5
Str V	1.25	1.5	1.35	0.4	3.5	5.5	19.9	31.4	23.5	36.9

• FinalCross-Frame Design

- Stability Bracing
- Practical Implementation
- Design Example
- Sum m ary

- Stability Bracing
- Practical Implementation
- Design Example
- Sum m ary

- D iscussed stability bracing strength and stiffness reqm 'ts and in plem entation
- Yura's equations are simple, easy to use
- Interpretation forbridge use
 - Limit states, bad combinations and factors
 - Consideration of negative m om ent regions
 - Practical design sim plifications
- Design example
 - Forces not excessive
 - M em bersizes reasonable
- Value of investigating stability bracing

We Make a Difference

Questions?

