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Overview

• Introduction, Background, and Motivation
• Gravity Loading
• Seismic Loading
• Laboratory Test Results from Full-Scale Specimens

Shear Strengthening
Flexural Strengthening
Reversed Cyclic Performance for columns

• Field Implementation on Mosier Bridge over I84
• Conclusions and Future Directions
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During the 1950 and 60’s:
• Post-war construction boom
• Reinforced concrete widely used
• Advent of standardized deformed 

reinforcing steel bars produced poor details
• Design codes were not conservative 

Now:
• Visual distress, changes in use, extend life
• Using updated design codes to assess

Results:
• Replace, limit loads, retrofit

Retrofit:
• Want environmentally insensitive 

material with high strength, well defined 
properties, and efficient mechanical 
anchorages

Introduction-Gravity Loads
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Strengthening Approaches
Flexural girder strengthening with 
CFRP laminate

http://aslanfrp.com/Aslan400/Resources/Aslan400.pdf

• Post-tensioning
• Wrapping/confining

• Carbon fiber reinforced polymer (CFRP) laminate
• Near-surface mounted (NSM)

• Carbon fiber reinforced polymer rod/strip
• Glass fiber reinforced polymer (GFRP) rod
• Stainless steel bars

FRP rods and laminates fail due to bond and 
anchorage and materials are nonductile

Concerns with corrosion at surface for most 
metals

Want environmentally insensitive material with 
high strength, well defined properties, and 
efficient mechanical anchorages

-> Titanium

Strengthening with NSM CFRP strips

http://aslanfrp.com/Aslan500/aslan500-pg2.html
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Background: NSM Strengthening Materials
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Carbon Fiber Reinforced Polymer (CFRP)
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CFRP Bond Failure – Limits material strength
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CFRP-NSM

Outer shell peeling
Inner core cracked diagonally

Wide CFRP-NSM

Tightly spaced CFRP-NSMCopyrig
ht



Titanium?

No one uses titanium in 
structural engineering!

It is too expensive

It’s only for aircraft or 
medical devices….
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Titanium Alloy Material Properties (Ti-6Al-4V)
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Titanium Alloy Material Properties (Ti-6Al-4V)

• Aircraft fastener quality (6% Aluminum 4% Vanadium)

• Well-defined, high strength, and ductile (limited hardening-
>protects bond, structural fuse)

• High fatigue resistance (CAFL~ 75 ksi), low notch sensitivity

• Impervious to chlorides due to stable oxide layer

• Coeff. of thermal expansion (8.6µε/oC) (8-12 Con. and 12 St.) 

• Conventional fabrication (shear, cut, and bend)

• Relatively lightweight of 281 lb/ft3 (steel 1.7x)
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Experimental Work
• Full-scale tests with typical 

proportions and materials 
from legacy designs

• Shear specimens: 10             
(3 control)
1/4 in. diameter TiABs

• Flexure specimens: 10          
(3 control)
5/8 in. diameter TiABs

• Fatigue and freeze-thaw 
exposure: 3                              
(2 shear, 1 flexure)
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4 ft height, 24 ft long, 20,000 lbCopyrig
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Shear Strengthening Considering MCFT

ACI c sV V V= +
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Shear Strengthening – Cross sections (High V and M-)

12

36M Grade 420
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Shear : Installation

Copyrig
ht



• Designed to simulate 50 years 
of damage based field testing

• 2,400,000 cycles
• Internal stirrup stress range of 

13 ksi
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Shear : Fatigue with Freeze-Thaw

• 120 cycles
• Represents 25-100 years of damage in 

Oregon, depending on location

Freeze-Thaw
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Single Leg Stirrups
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T Specimens Load-Deflection
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Midspan Deflection (mm)
Sh

ea
r (

k)

Sh
ea

r (
kN

)

0

0.0

0.25

6.4

0.5

12.7

0.75

19.0

1

25.4

1.25

31.8

1.5

38.1

0 0

50 222

100 445

150 667

200 890

250 1112

SPR T5.24
T5.24.12.E1
T5.24.12S.E1*Copyrig
ht



IT Specimens Load-Deflection
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Shear Results Epoxy E1 Ti@ 12 in.
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Flexure T Beam Details
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914 mm

356 mm

1. T.45.Ld3: Baseline T Beam

2. T.45.Ld3.NSM-Ti: with 10 in stirrups

3. T.45.Ld3.NSM-Ti.2: Titanium with 6 in stirrups

Copyrig
ht



IT Beam Details
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356 mm

1. IT.45.Ld2: Baseline IT Beam

2. IT.45.Ld3.NSM-Ti: Titanium with 10 in. stirrups

3. IT.45.Ld3.NSM-Ti.2: Titanium with 6 in. stirrups
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NSM: DESIGN DEMAND & CAPACITY
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T and IT Beam Construction

45°
preformed 
crack

1.5 in. 
spacer

Strain gageBlockout for slip sensor

Cutoff bar

23

Copyrig
ht



Specimen Construction

45˚ preformed 
crack

1 in. spacer

Blockout for slip 
sensor

Cutoff bar
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Experimental Setup: NSM Strengthening Methodology
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ACI 440.2R
• Groove Spacing
• Groove dimensions

Epoxy Manufacturer Data

Tensile 
Strength (ksi)

Elongation at
Break (%)

Compressive Yield 
Strength (ksi)

Bond Strength 
(2 day cure) (ksi)

4 1 12.5 >2Copyrig
ht



Experimental Setup: NSM Strengthening Methodology
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Hook Fabrication
• 2  Ti bars on each side

• 12.5 ft length
• 6 in. hooks

• 2 in. bend diameter
• Ti: Heat to 900 ˚F or 1250 ˚F

Copyrig
ht



IT.45.Ld2 Failure
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Failure Crack
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IT.45.Ld3.NSM-Ti2 Failure
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IT Beam Experimental Results
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T.45.Ld3 Failure
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T.45.Ld3.NSM-Ti Failure
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T.45.Ld3.NSM-Ti2 Failure
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T Beam Experimental Results

33

1780 kN

1330 kN

890 kN

445 kN

12.5 25 37.5 50 62.5 75

Displacement (mm)

Copyrig
ht



Durability High Cycle Fatigue and Freeze-Thaw Combined
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• Largest combined structural-environmental chamber
• Thermocouples at 0.5, 1.5, and 3 in. ensure temperature targets
• 1.6 million cycles @ steel stress range >50 years of life.
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T Beam Experimental Results – Durability (s=10 in.)
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TiAB Env. and Fatigue
TiAB

Base
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Mosier Overcrossing of Interstate 84

• Built in 1952
• Serves a nearby quarry
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Vertical offset
on crack face
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Mosier As-Built Details
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DL produces M-
LL produces M+
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Reduced Positive Moment Capacity at Cutoffs

Designer assumes the steel is completely failed
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Reduced Positive Moment Capacity at Cutoffs
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Test Plan

Three specimens:

1. Mosier 1: As-Built

2. Mosier 2: Strengthen after failing reinforcing steel anchorage
(designer’s assumption)

3. Mosier 3: Strengthen with reinforcing steel anchorage intact
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Searched mill certifications to locate bars that best matched 
strength curves of original design. Used smaller sized Grade 
420 (60) rebar to match development length of intermediate 
grade steel (280 MPa (40 ksi))Copyrig
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Mosier Beam Details
Left Support  

5- 25M
2- 22M

Right Support 
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Mosier Construction
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Experimental Results: Mosier 1 
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Experimental Results: Mosier 1
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Designer’s actual assumption = 0

Design Strength< Factored Load Effect for CTP3

135 kN-m

271 kN-m

407 kN-m

542 kN-m

678 kN-m

6 13 19 25 32 44

Midspan Displacement (mm)
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Mosier Test Setup Retrofit
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DL produces M-

LL produces M+
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Ti-NSM Retrofit: Mosier
• 2 Ti bars on each side

• 12 ft lengths
• 6 in. long hooks

• Heat to 480-675 ˚C
• 2 in. diameter bend
• Epoxy in to 1 in. square grooves
• 6 in. deep, 3/4 in. dia. holes
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Experimental Results: Mosier 3

49

Video 1

Copyrig
ht



Analysis

50

• Design strength of Ti girder exceeds factored demands even with
conservative assumptions

• Reserve strength of Ti girder substantially exceeds factored demands
• Failed anchorage provided similar response as intact

D
es

ig
n

Reserve 
Capacity

297 kN-m

Predicted strength w Ti

Copyrig
ht



March 12, 2014 51

30% less expensive than CFRPCopyrig
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Seismic Deficiencies of 
pre-1970’s columns
• Insufficient transverse reinforcement

 #3 a@ 12 in spacing

• Common design details:

 Lap-splice lengths of 24 db to 36 db

 Large bar sizes (> #11; square and round)

 Longitudinal rebar placed at column corners

 Grade 40 steel (275 MPa)

 f’c = 3300 psi (22.7 MPa)
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6 x 6 ft square

Plan 
View

24 db to 
36 db

24 x 24 in. Square

Elevation 
View
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Common Approach for Retrofitting
Fiber reinforced (FRP) laminates (Confinement)

• High-strength
• Surface preparation
• Non-ductile
• Degradation concerns
• Not inspectable
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Specimen Detailing A 
(-)

A + B  
(-) C (in) D (in)

C1-L Lap-splice Ls = 29 db - - -

C2-LRT Lap-splice + 
Titanium Ls = 29 db 1.67 Ls 1.5 3

C3-LRS Lap-splice + 
Titanium Ls = 29 db 1.50 Ls 1.5 2.5

C4-RT Lap-splice +
Titanium - 1.67 Ls 1.5 3

Seismic Performance

B

A

Spiral @ C

Spiral @ D
C1-L

#3 @ 12 in.
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Experimental Set-Up
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Elevation View

Actuator 
110 kip 

+/- 10 in

Axial load  
200 kip

(0.10 f’cAg)
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TiAB Spiral Reinforced Concrete Shell
• Continuous spiral
• Debonded shell from column with plastic sheet
• Flexible polycarbonate sheet formwork
• Ratchet strap drawn tight to TiAB spiral (no cover) and holds form
• See-through, so know completely filled
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Progression of lap-splice exposure and bond-slip
• Lap-splice failure -> rapid flexural strength degradation
• Severe spalling
• Non-ductile
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Control Specimen: Observed Performance

Copyrig
ht



Retrofitted specimens: corner spalling progression
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Titinium Observed Performance
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Retrofitted specimens with lap splices (similar performance):
• Ductile withdrawal of hooked anchorages
• Footing concrete spall cones
• Rocking column behavior

Observed Performance
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Load-Deformation Response
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Fuse Seismic Forces Imparted on Footing

• Spread footing
• Timber pile
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Conclusions

Titanium's 
• well-defined material properties
• high strength
• ductility
• environmental durability and
• ability to fabricate mechanical anchorages
make the Ti-6Al-4V alloy reinforcement a promising 
material for economically strengthening bridges for 
gravity loads and achieving high seismic performance 
of poorly detailed bridge columns.

62

Copyrig
ht



Acknowledgements

• Oregon Department of Transportation

• Perryman Company, Houston, PA

• Undergraduate Research Assistants: Kyle England,
Brandon Zaikoski, Caleb Lennon, Liam Kucey, Tyler
Redman, Anthony Quinn, and Jonathan Roy

63

The findings and conclusions are those of the authors and do not necessarily reflect 
those of the project sponsors or the individuals or companies acknowledged.Copyrig

ht


	Renewal of Aging and Deteriorated�Reinforced Concrete Bridges with Titanium Alloy Bars (TiABs)
	Overview
	Introduction-Gravity Loads
	Strengthening Approaches
	Background: NSM Strengthening Materials
	CFRP Bond Failure – Limits material strength
	CFRP-NSM
	Titanium?��No one uses titanium in structural engineering!��It is too expensive��It’s only for aircraft or medical devices….
	Titanium Alloy Material Properties (Ti-6Al-4V)
	Titanium Alloy Material Properties (Ti-6Al-4V)
	Experimental Work
	Shear Strengthening Considering MCFT
	Shear Strengthening – Cross sections (High V and M-)
	Shear : Installation
	Shear : Fatigue with Freeze-Thaw
	Slide Number 16
	Single Leg Stirrups
	T Specimens Load-Deflection
	IT Specimens Load-Deflection
	Shear Results Epoxy E1 Ti@ 12 in.
	Flexure T Beam Details
	IT Beam Details
	NSM: DESIGN DEMAND & CAPACITY
	T and IT Beam Construction
	Specimen Construction
	Experimental Setup: NSM Strengthening Methodology
	Experimental Setup: NSM Strengthening Methodology
	IT.45.Ld2 Failure
	IT.45.Ld3.NSM-Ti2 Failure
	IT Beam Experimental Results
	T.45.Ld3 Failure
	T.45.Ld3.NSM-Ti Failure
	T.45.Ld3.NSM-Ti2 Failure
	T Beam Experimental Results
	Durability High Cycle Fatigue and Freeze-Thaw Combined
	T Beam Experimental Results – Durability (s=10 in.)
	Mosier Overcrossing of Interstate 84
	Slide Number 38
	Slide Number 39
	Mosier As-Built Details
	Reduced Positive Moment Capacity at Cutoffs
	Reduced Positive Moment Capacity at Cutoffs
	Test Plan
	Slide Number 44
	Mosier Construction
	Experimental Results: Mosier 1 
	Experimental Results: Mosier 1
	Mosier Test Setup Retrofit
	Ti-NSM Retrofit: Mosier
	Experimental Results: Mosier 3
	Analysis
	Slide Number 52
	Seismic Deficiencies of �pre-1970’s columns
	Common Approach for Retrofitting
	Seismic Performance
	Experimental Set-Up
	TiAB Spiral Reinforced Concrete Shell
	Control Specimen: Observed Performance
	Titinium Observed Performance
	Observed Performance
	Slide Number 61
	Fuse Seismic Forces Imparted on Footing
	Conclusions
	Acknowledgements



