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Curve Effect and Skew
Effect

The support forces at the end
of skewed and curved bridges
vary along the bridge width.

Curve Effect — Effect of
curving a bridge horizontally
on the bridge reactions
(support forces)

Skew Effect — Effect of skewing
a bridge on the bridge
reactions




Issues Caused

Effects cannot be accurately
predicted in 2D models

Girders can be under-designed
for shear

Bearings receive overload or
uplift

Additional moments on
substructure



Code Procedures
» AASHTO LRFD 6t

2D analysis limits for curved bridges

Skew shear correction factors for Live Load only V/@j’ L
CURVE DATA }f B

(c3) 404.00 | 204833 | s058 | 1700y

) woor [icer ealae] pLa
» Caltrans Amendments to AASHTO s

Skew shear factors changed for some bridge types and applications.

Skew shear factors applied to all loads for T-beam and box-girder bridges

3

3D Plate-Beam MModel

2D beam element



Code Procedures

» No clear guidance concerning Skew and Curve Effects on:
How to account for torsion in reaction response (Rigid Beam Analogy?)
Distributing reaction forces to substructure (non-monolithic)
Bearing design
Varying post-tensioning

Uplift in acute corners




Code Procedures: Curve Limits

Centerline of Bridge

Pier _
Fier

» lgnore curve for central angles
< |2 degrees (L/R=0.2) ..

» Model as curved spine model

for central angles between 12
and 34 (L/R=0.6)

Abutment
Abutment

» Full 3D analysis for central
angles > 34

Center of Curve



Code Procedures: Skew

» Dead Loads
No skew correction in AASHTO LRFD 6%
Caltrans Amendment provides a correction factor for exterior girders for Box Girder

Bridges

6

Correction Factor = 1.0 + 00

This factor is only dependent on skew angle, 0, and yielded non-conservative results
for most models in this study.



Example West Llagas Pedestrian Bridge (Gilroy, CA)
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Simplified
Procedure w/Skew
Correction

Analysis Results
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Reaction Distribution for Torsion: Rigid Beam Analogy

O=2X
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Sum moments about center girder:
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Simplified
Procedure w/Skew
Correction &
Torsion Distribution

Analysis Results
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Analysis Study

» Scope
Over 800 4-Cell Box-Girder Bridges
Single-span
Bridge models were varied between 0 and 60 degree skew angle and -48 to 48 degree
central angle
Varied bearing stiffness



Features of Characteristic Plot

Aspect Ratio 1.0, K, .., = 500,000 k/in

Aspect Ratio is Length to Width (L/W) - Design
45 Dashed Line is Skew Corrected Value S
40 —— e 30
Line with dotted markers is straight bridge
30 | 12
\ S
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20 W/‘—ﬁ
15 - Grey lines are curved bridges with L/R noted on legend
5 Ro is the % of abutment reaction at obtuse corner girder
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Sample of Bridge Models

Bridee Model — Plan View

Description

AspectRatio=4.0
Central Angle =0°

Skew Angle =0°

AspectRatio=4.0
Central Angle =-482

Skew Angle =0°




Sample of Bridge Models

A

Aspect Ratio=4.0
Central Angle =48°

Skew Angle =30°




Aspect Ratio 1.0, Kye,/ine = 500,000 k/in
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Aspect Ratio 1.0, K;c,in, = 500,000 k/in
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30

25

The Curve Effect is more
pronounced for negative
central angles than for
positive central angles.

The top curve (36°) starts
at 28%, the middle curve
(0°) starts at 18%, and the
bottom curve (-36°) starts
at 6%.

The distance between the
lower curves (18 — 6 =
12) is greater than the
distance between the
upper curves (28 — 18 =

10).




Aspect Ratio 2.0, Kyc,/ine = 500,000 k/in
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Aspect Ratio 2.0, Kpearing = 500,000 k/in
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Aspect Ratio 4.0, Kyc,/ine = 500,000 k/in
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Aspect Ratio 4.0, Kyc,/ine = 500,000 k/in
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Empirical Formulas

» At small skew angles and small central angles:
Curve effect is not dependant on skew angle

Skew effect is not dependant on central angle

Outside Corner

6 a
SkewC C tion Factor = 1 + — * AR"°® + — x AR
ewcurve Lorrection ractor + 50 * + 100 %

Inside Corner

: 0 09 , ¢ 0.4
SkewCurve Correction Factor = 1 + % x*x ARV + % x* ARY



Proposed Correction Formulas
Compared to 3D Model Response
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Summary and Conclusions

» Aspect ratio (length to width ratio) influences skew effect on reaction forces and,
therefore, also influences shear forces

» Aspect ratio influences curve effect
» Aspect ratio influences coupled skew-curve effect

» Bearing pad stiffness (support stiffness) influences skew effect, curve effect, and
skew-curve effect

» Spine model analysis with code modifications may not yield conservative reaction
forces for skewed and curved bridges with high aspect ratios (> 1.0).



Future Work

» Shear Force and Bearing Reactions:
Effect of Bearing Position
Other Bridge Types and Configurations
Multi-Span Bridges
Effects of Prestressing

Lab Experimentation

» A fuller perspective of the differences in 2D spine model analysis vs. 3D shell
model analysis

30



Work in Progress

» Caltrans Structural Analysis Committee (Chair: Toorak Zokaie, PE)

» Curved Bridge Superstructure Response

Dead Load, Live Load, and Post-tensioning responses
Girder End Shear
Girder Stress

Column response
Longitudinal Moment
Transverse Moment




Results: Dead Load Abutment Shear ...

Dead Load Abutment girder Shears 100'-span Dead Load Abutment girder Shears Ratios 100'-span
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Dead Load Mid-span Bottom Stress ...

Dead Load Mid-span girder's Bottom Stress 100'-Span Dead Load Mid-span girder's Bottom Stress Ratios 100'-Span

1.1

270

1.05
250

230 / 1

210 / % —8—65,2gir,col25
[l 100-100,6S,3 gir, cal 25 0.95

g 190 _ a = —&—85,3gir,col25
& A 100-100,85,3 gir, col 25' = ;
v 170 N 0o ==115,3gir,col25
= *% 100-100,118,3 gir, col 25' : d .
a 150 == 65,5gir,col25
~ X 100-100,68,5 gir, col 25' 2

130 i 0.85 =@~ 85,5gir,col25

. / ©100-100,85,5 gir, col 25 R e oni3E

/ ©100-100,11S,5 gir, col 25 0.8
90
70 0.75
70 90 110 130 150 170 190 210 230 250 270 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3D stress(ksf) L/R

Dead Load Mid-span girder's Bottom Stress L/R and 3D 100'-span

220
210
200
190 —fl—65,3gir,col25
4 e 8S,3gir,col25
2 180

—<—115,3gir,col25

- . / —He— 63,58']!’,(10 125
160 —@—85,5gir,col25
4/ —+—115,5gir, col25

150

33 140

(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
L/R




Pre-stress Mid-span Bottom Stress ...

Girder's P.S Mid-span Bottom Stresses Case 100'-span Girder's P.S Mid-span Bottom Stresses Ratios 100'-span
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Work in Progress: Preliminary Findings

» Superstructure Study Work in Progress
DL, PS and LL moments increase slightly with L/R, 2D analysis is slightly under 3D
DL shear & normal stress increase greatly with L/R, 2D gives acceptable accuracy
PS stresses do not change much with L/R

DL bent shear has same accuracy regardless of curvature but could be low due to
section geometry






