Effect of Curved Alignment and Skewed Supports on Bridge Response

Lucas Miner, PE Toorak Zokaie, PE, PhD Ben Fell, PE, PhD

Outline

- Motivation
- Code Procedure
- Study Results
- Conclusions
- Questions

Curve Effect and Skew Effect

The support forces at the end of skewed and curved bridges vary along the bridge width.

Curve Effect – Effect of curving a bridge horizontally on the bridge reactions (support forces)

Skew Effect – Effect of skewing a bridge on the bridge reactions

Issues Caused

for shear

uplift

substructure

Effects cannot be accurately predicted in 2D models

Girders can be under-designed

Bearings receive overload or

Additional moments on

Code Procedures

► AASHTO LRFD 6th

- 2D analysis limits for curved bridges
- Skew shear correction factors for Live Load only

- Caltrans Amendments to AASHTO
 - Skew shear factors changed for some bridge types and applications.
 - Skew shear factors applied to all loads for T-beam and box-girder bridges

Code Procedures

No clear guidance concerning Skew and Curve Effects on:

- How to account for torsion in reaction response (Rigid Beam Analogy?)
- Distributing reaction forces to substructure (non-monolithic)
- Bearing design
- Varying post-tensioning
- Uplift in acute corners

Code Procedures: Curve Limits

- Ignore curve for central angles < 12 degrees (L/R=0.2)</p>
- Model as curved spine model for central angles between 12 and 34 (L/R=0.6)
- Full 3D analysis for central angles > 34

Code Procedures: Skew

Dead Loads

- No skew correction in AASHTO LRFD 6th
- Caltrans Amendment provides a correction factor for exterior girders for Box Girder Bridges

Correction Factor =
$$1.0 + \frac{\theta}{50}$$

This factor is only dependent on skew angle, θ , and yielded non-conservative results for most models in this study.

Simplified Correction

Reaction Distribution for Torsion: Rigid Beam Analogy

Simplified **Procedure w/Skew Correction & Torsion Distribution**

Analysis Study

Scope

Over 800 4-Cell Box-Girder Bridges

Single-span

- Bridge models were varied between 0 and 60 degree skew angle and -48 to 48 degree central angle
- Varied bearing stiffness

Features of Characteristic Plot

Sample of Bridge Models

Sample of Bridge Models

The Curve Effect is n pronounced for nega central angles than for positive central angles

The top curve (36°) s at 28%, the middle cu (0°) starts at 18%, an bottom curve (-36°) s at 6%.

The distance between lower curves (18 - 6)12) is greater than the distance between the upper curves (28 - 10).

more
ative
for
les.
starts
eurve
nd the
starts
$$n$$
 the
 $f =$
he
 g
 $8 =$

Design
48
42
-36
-30
=24
-18
-12
-6
-0
6
12
-18
-24
-30
-36
-42
-48

Design
48
42
-36
-30
=24
-18
-12
-6
-0
6
12
-18
-24
-30
-36
-42
-48

Curve Effect for Varying Aspect Ratios

Empirical Formulas

At small skew angles and small central angles:

- Curve effect is not dependent on skew angle
- Skew effect is not dependent on central angle
- Outside Corner

SkewCurve Correction Factor =
$$1 + \frac{\theta}{50} * AR^{0.9} + \frac{\alpha}{100} * AR$$

Inside Corner

SkewCurve Correction Factor =
$$1 + \frac{\theta}{50} * AR^{0.9} + \frac{\alpha}{50} * AR^{0.4}$$

Proposed Correction Formulas Compared to 3D Model Response

 \succ Aspect ratio (length to width ratio) influences skew effect on reaction forces and, therefore, also influences shear forces

> Aspect ratio influences curve effect

- > Aspect ratio influences coupled skew-curve effect
- Bearing pad stiffness (support stiffness) influences skew effect, curve effect, and skew-curve effect
- > Spine model analysis with code modifications may not yield conservative reaction forces for skewed and curved bridges with high aspect ratios (> 1.0).

Future Work

- Shear Force and Bearing Reactions:
 - Effect of Bearing Position
 - Other Bridge Types and Configurations
 - Multi-Span Bridges
 - **Effects of Prestressing**
 - Lab Experimentation
- A fuller perspective of the differences in 2D spine model analysis vs. 3D shell model analysis

Work in Progress

Caltrans Structural Analysis Committee (Chair: Toorak Zokaie, PE)

- Curved Bridge Superstructure Response
 - Dead Load, Live Load, and Post-tensioning responses
 - Girder End Shear
 - Girder Stress
 - Column response
 - Longitudinal Moment
 - □ Transverse Moment

Results: Dead Load Abutment Shear ... 1-Span

Dead Load Mid-span Bottom Stress ... 1-Span

Pre-stress Mid-span Bottom Stress ... 1-Span

Work in Progress: Preliminary Findings

- Superstructure Study Work in Progress
 - DL, PS and LL moments increase slightly with L/R, 2D analysis is slightly under 3D
 - DL shear & normal stress increase greatly with L/R, 2D gives acceptable accuracy
 - PS stresses do not change much with L/R
 - DL bent shear has same accuracy regardless of curvature but could be low due to section geometry

Questions of Comments?

