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Introduction

 Live-load distribution factors (LLDFs) are used to 
calculate forces of girders for the design and load 
rating of bridges.

 AASHTO LRFD live-load distribution factors are 
based on parameter study by Zokaie, et al. (1991).



Introduction (cont’d)

 Zokaie included many parameters i.e., girder 
spacing; span length; bending and torsional inertia; 
slab thickness; number of girders; overhang width 
and deck strength.

 The LLDF equations safely predict actual bridge 
behavior.

 They do not account for components of actual 
bridges that affect load distribution.

 Secondary parameters are continuity, cross bracing/ 
diaphragm and barrier/sidewalk.



Problem statements

 Parameters not used:
 Continuity over support
 Cross bracing and diaphragm
 Barrier and sidewalk
 Axle width

 By neglecting these parameters, LLDFs are 
possibly conservative.

 Conservative bridge design
 Possible unnecessary posting of bridges

 Previous research on LLDFs  in presetressed
concrete and steel girder bridges Barr et al. (2003), 
Sotelino et al. (2004), Eamon et al. (2004).



Objectives and scope

 Compare the LLDFs of the AASHTO LRFD 
code and those of the FEM.

 Study the effects of continuity, diaphragm, 
barrier, skewness and truck axle width 
variations on the LLDFs.

 Reinforced concrete girder bridges are 
studied.
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Methodology

 AASHTO LLDFs calculation (hand or software).
 Live-load distribution factors (D) from FEM:

– D = G / (S/n)
– n = number of loaded lanes
– G = girder force
– S = superstructure force 

 Compare LLDFs from AASHTO and those from 
FEM.

 Investigate the effects of continuity, diaphragm, 
barrier and truck axle width on LLDFs through 
various FEM models.



Parametric study

 A series of bridge models was created:
– Model # 1: simply supported with no 

diaphragms
– Model # 2: continuity at supports
– Model # 3: end diaphragms
– Model # 4: intermediate diaphragms (at 1/3 of 

span)
– Model # 5: barriers/sidewalk

 Skew angle (0, 10, 20, 30, 40, 50 and 60 
degrees)
A l  idth (4  6  8 d 10 f t)



Bridge layout

# 1: Simply supported

# 2: Continuity

# 3: End diaphragm

# 4: Int. diaphragms

# 5: Barriers



Trucks

1. Notional Rating Load

2. Truck axle width

2’  4’-10’  2’

8’-14’



Finite element model

a - FEM:
- Girders
- Diaphragms
- Deck
- Bent

b - Lanes:
- AASHTO: 1 lane
- FEM: 6 lanes



No continuity, no diaphragm
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Continuity, no diaphragm
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Continuity, diaphragm
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Effects of diaphragms (FEM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

LL
DF

s

Skew angle (degree)

No diaphragm

End diaphram

Intermediate
diaphragm

o End dia. decrease LLDFs 
2%

o Int. dia. decrease LLDFs 
16%



Effects of barrier
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Effects of axle width (FEM)
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Concluding remarks

 LLDFs associated with reinforced concrete girder bridges 
are studied.

 AASHTO LRFD LLDFs are compared to those of FEM.

 AASHTO LRFD LLDFs are more conservative.

 In case of a simple span bridge model, the difference 
(between code and FEM) is up to 30%.

 The differences decrease with increasing skew angle. The 
two methods provide similar results at skew = 60°.

 Continuity increases the LLDFs by 8%.

 Diaphragms decrease the LLDFs by 18%.



Concluding remarks (cont’d)

 Intermediate diaphragms have more effects on LLDFs (16%) 
compared to end diaphragms (2%).

 Barriers have small effects on LLDFs (2%).

 The shorter axle width the more LLDFs and vice versa. 

 4-ft width increases LLDFs by 10% compared to 6-ft width. 

 10-ft width reduces LLDFs by 10% compared to 6-ft width.

 It is worthwhile to include the secondary components in 
calculating LLDFs.

 For the case of continuity, no diaphragm and large skewness
(≥60°), the code LLDFs are unconservative.
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