

PRACTICAL SOLUTIONS TO BRIDGE ENGINEERING CHALLENGES

September 9–11, 2015 | Peppermill Hotel | Reno, Nevada

SESSION-8B

Significant Changes in Design and Construction Cost of Earth Retaining Structures Caused By Recent Changes to AASHTO LRFD Design Criteria

Authors:

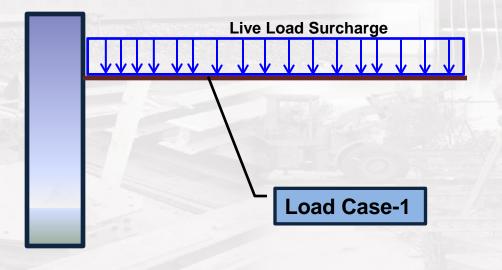
Ahilan Selladurai, P.E., S.E

Bob Fish, P.E.,S.E

OUTLINE

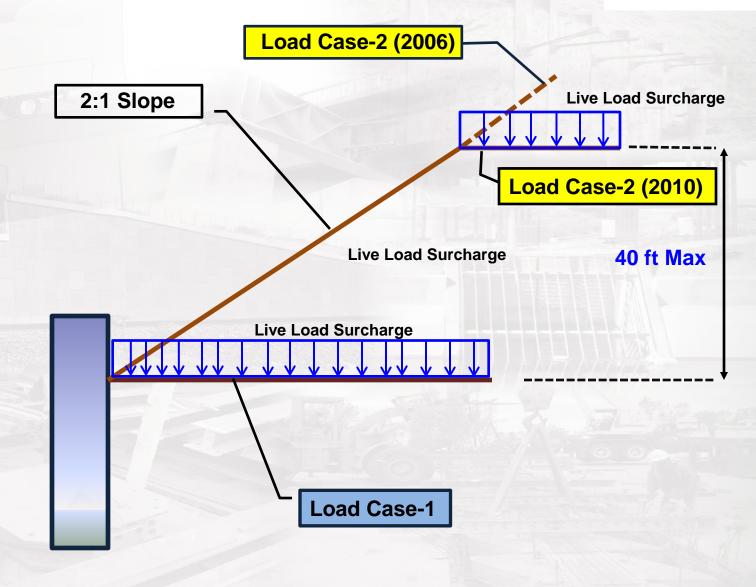
- Geometry & Cost Comparison ASD/LRFD
- LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- > Limitations on Design Approach
- > Summary of AASHTO LRFD Changes 2007-2014
- **Conclusion**

OUTLINE

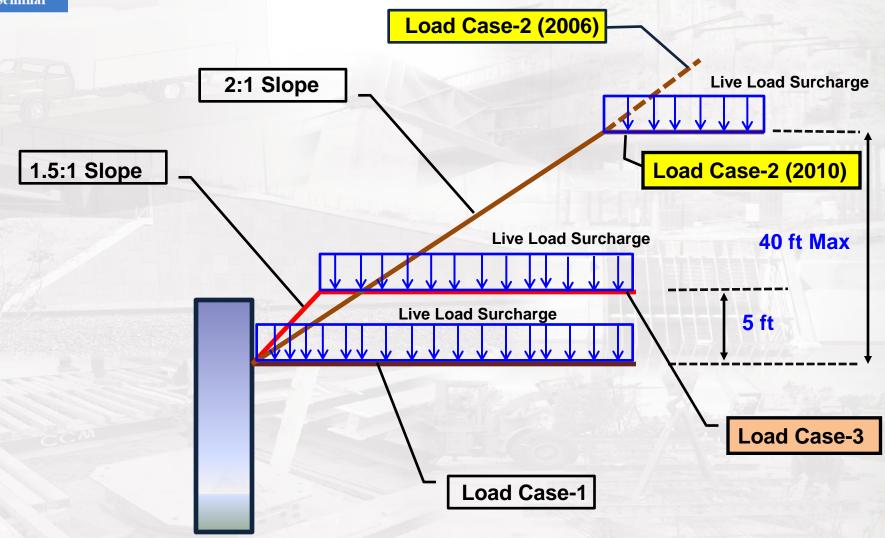


- > Geometry & Cost Comparison ASD/LRFD
- > LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- Limitations on Design Approach
- > Summary of AASHTO LRFD Changes 2007-2014
- Conclusion

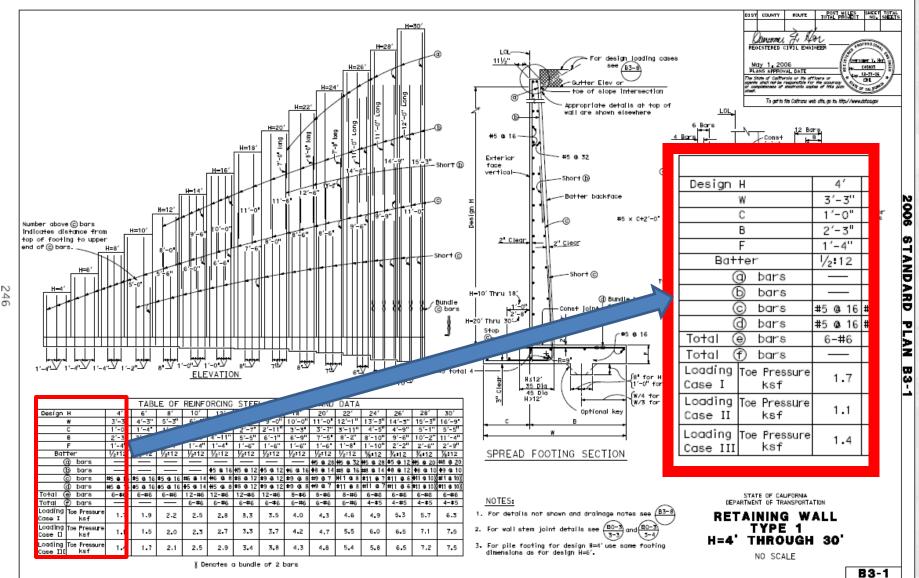
CALTRANS TYPICAL LOAD CASES



CALTRANS TYPICAL LOAD CASES



CALTRANS TYPICAL LOAD CASES



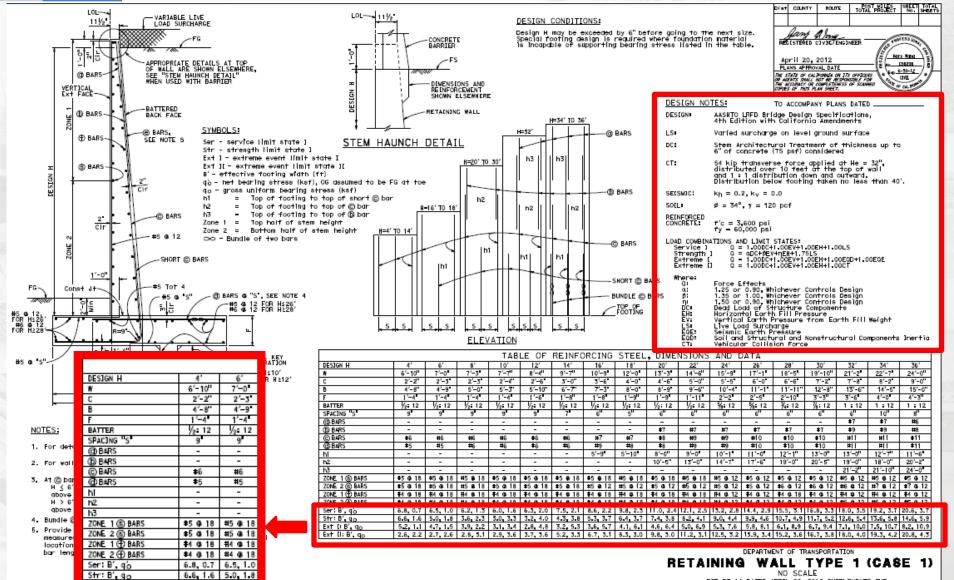
CALTRANS STD PLANS 2006

AECOM

Ext [+B', qo

Ext II: B' ou

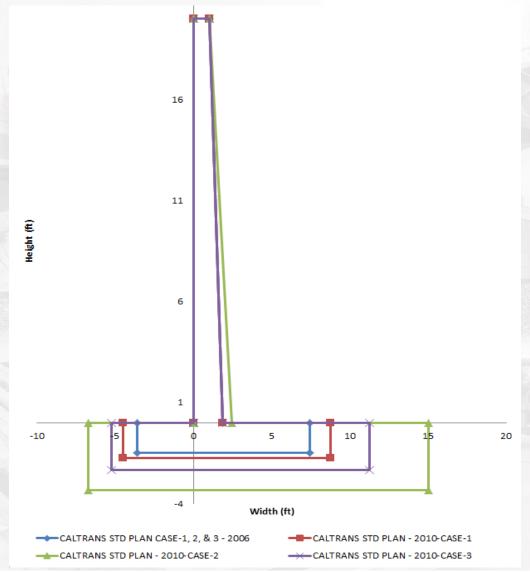
5.2, 1.1 4.7, 1.5


26 22 27 26

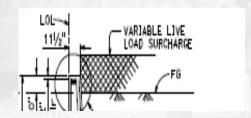
CALTRANS STD PLANS 2010

RSP B3-1A DATED APRIL 20, 2012 SUPPLEMENTS THE

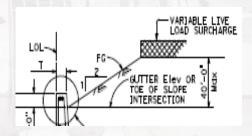
STANDARD PLANS BOOK DATED 2010.

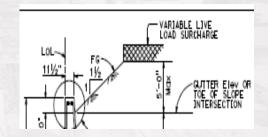

GEOMETRY COMPARISION CALTRANS AECOM STD PLANS 2006 vs 2010

	CALTRANS STD PLAN					
Description	2006 All Load Cases	2010 Load Case-1	2010 Load Case-2	2010 Load Case-3		
H - Height -ft	20.00	20.00	20.00	20.00		
W -Footing Width -ft	11.00	13.25	21.75	16.50		
T -Wall Top -ft	1.00	1.00	1.00	1.00		
Batter (1: xx)	1/2:12	1/2:12	5/8:12	½:12		
F -Footing thickness -ft	1.50	1.75	3.33	2.33		
C -Toe to Back Face -ft	3.58	4.50	6.75	5.25		



GEOMETRY COMPARISION ASD/LRFD A=COM - CALTRANS STD PLANS 2006 vs 2010




LOAD CASE - 1

LOAD CASE - 2

LOAD CASE - 3

QUANTITY & COST COMPARISION ASD/LRFD – CALTRANS STD PLANS 2006 vs 2010

EXCAVATION PER LINEAR FT OF RETAINING WALL						
	CALTRANS STD PLAN					
Description	2006	2010	2010	2010		
•	All Load	Load	Load	Load		
	Cases	Case-1	Case-2	Case-3		
Excavation - CY	46.00	58.00	127.00	81.00		
Increase - %	0 % 26 % 178 % 76 %					

BACKFILL PER LINEAR FT OF RETAINING WALL						
		CALTRANS	STD PLAN			
Description	2006 All Load Cases	2010 Load Case-1	2010 Load Case-2	2010 Load Case-3		
Backfill - CY	26.00	31.00	50.00	38.00		
Increase - %	0 %	20 %	95 %	50 %		

QUANTITY & COST COMPARISION ASD/LRFD – CALTRANS STD PLANS 2006 vs 2010

CONCRETE PER LINEAR FT OF RETAINING WALL							
	CALTRANS STD PLAN						
Description	2006	2010	2010	2010			
	All Load Cases	Load Case-1	Load Case-2	Load Case-3			
Concrete - CY	237	260					
Increase - %	0 %	3%	27%	10 %			

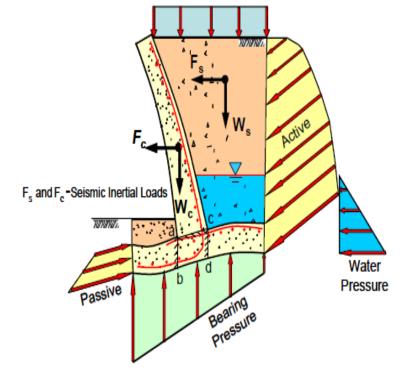
	STEEL PER LINEAR FT OF RETAINING WALL						
F. 77.7		CALTRANS STD PLAN					
	Description	2006	2010	2010	2010		
		All Load Cases	Load Case-1	Load Case-2	Load Case-3		
	Steel - Ibs	304	287	376	330		
	Increase - %	0 %	- 6 %	24 %	9 %		

QUANTITY & COST COMPARISION ASD/LRFD – CALTRANS STD PLANS 2006 vs 2010

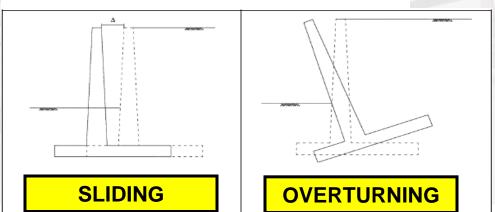
Concrete	\$ 150 /CY
Steel	\$ 2 /CY
Excavation	\$ 50 /CY
Backfill	\$ 75 /CY

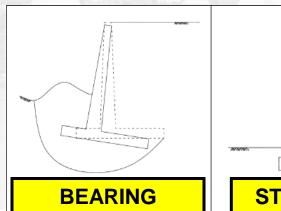
COST PER LI	INEAR FT OF RET	AINING WALL		
		CALTRANS S	ΓD PLAN	
Description	2006 All Load Cases	2010 Load Case-1	2010 Load Case-2	2010 Load Case-3
Cost per ft	\$ 2075	\$ 2100	\$ 2800	\$ 2350
Increase - %	0.00%	2 %	34 %	14 %

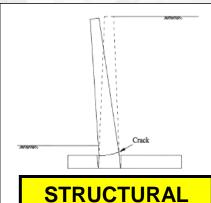
OUTLINE



- > Geometry & Cost Comparison ASD/LRFD
- LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- Limitations on Design Approach
- > Summary of AASHTO LRFD Changes 2007-2014
- **Conclusion**


LRFD DESIGN CRITERIA





- a. Loading
- b. External Stability
- c. Structural Design

REF: FHWA-NHI-11-032

AASHTO LRFD REQUIRED CHECKS

Service Limit State –
Overall Stability, Settlement, Rotation, Deflection,
Structural Service Requirements

Strength Limit State –
Bearing, Sliding, Eccentricity & Structural Capacity
Analysis

Extreme Limit State –
Overall Stability, Bearing, Sliding, Eccentricity &
Structural

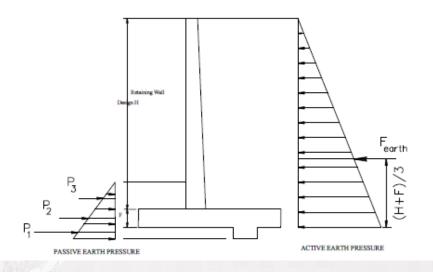
CALTRANS REQUIRED CHECKS

Minimum Analyses for Earth Retaining System Design

Limit State	Service 1	Strength	Strength 1b	Extreme Event 1	Notes
Settlement Analysis	X	14	*	Event 1	For the case of proprietary system design, this analysis will be the responsibility of the project designer(s).
Overall or Global Stability Analysis	X			. X	For the case of proprietary system design, these analyses will be the responsibility of the project designer(s).
Nominal Compression Bearing Resistance Analysis		Х	. X	X	Meeting the bearing requirements under all three limit states effectively eliminates need of an eccentricity check under the strength and extreme limit states.
Tilting/ Rotation Analysis	Х			4	Limiting eccentricity: - B/6 for soil and intermediate geo-materials - B/4 for rock foundations
Sliding Failure Analysis		•	X	х	The vertical component of EH is factored by 1.0 for both the Strength 1b and Extreme limit states.
Structural Service Performance Analyses	Х				These analyses will vary according to ERS type and technology as generalized in the following.
Structural Capacity Analyses		Χ	Х	Х	These analyses will vary according to ERS type and technology as generalized in the following.

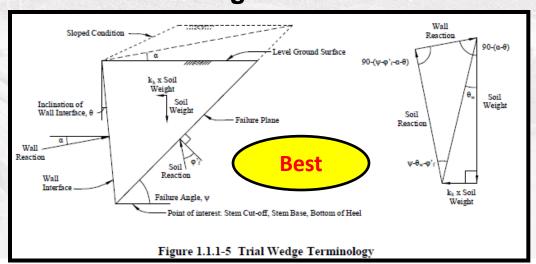
CALTRANS REQUIRED CHECKS

Service Limit State –
Overall Stability, Eccentricity, Settlement, Rotation,
Deflection, & Structural Service Requirements


Strength Limit State – Bearing, Sliding & Structural Capacity Analysis

Extreme Limit State –
Overall Stability, Bearing, Sliding, Eccentricity &
Structural Capacity Analysis

STATIC EARTH PRESSURE



Coulomb Theory

$$K_{a} = \frac{\cos^{2}(\phi - \theta)}{\cos^{2}\theta\cos(\delta + \theta)\left(1 + \sqrt{\frac{\sin(\delta + \phi)\sin(\phi - \beta)}{\cos(\delta + \theta)\cos(\beta - \theta)}}\right)^{2}}$$

$$K_{p} = \frac{\cos^{2}(\phi + \theta)}{\cos^{2}\theta\cos(\delta - \theta)\left(1 - \sqrt{\frac{\sin(\delta + \phi)\sin(\phi + \beta)}{\cos(\delta - \theta)\cos(\beta - \theta)}}\right)^{2}}$$

Trial Wedge Method

Rankine Theory

$$K_a = \cos \beta \frac{\cos \beta - (\cos^2 \beta - \cos^2 \phi)^{1/2}}{\cos \beta + (\cos^2 \beta - \cos^2 \phi)^{1/2}}$$

$$K_p = \cos \beta \frac{\cos \beta + (\cos^2 \beta - \cos^2 \phi)^{1/2}}{\cos \beta - (\cos^2 \beta - \cos^2 \phi)^{1/2}}$$

For the case where $\boldsymbol{\beta}$ is 0, the above equations simplify to

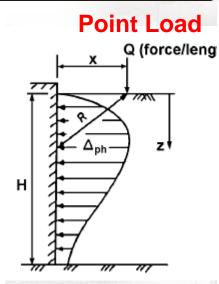
$$K_a = \tan^2\left(45 - \frac{\phi}{2}\right) = \frac{1 - \sin(\phi)}{1 + \sin(\phi)}$$

$$K_p = \tan^2\left(45 + \frac{\phi}{2}\right) = \frac{1 + \sin(\phi)}{1 - \sin(\phi)}$$

SURCHARGE LOAD

Different in ASD & LRFD

Uniform Load


Table 3.11.6.4-1—Equivalent Height of Soil for Vehicular Loading on Abutments Perpendicular to Traffic

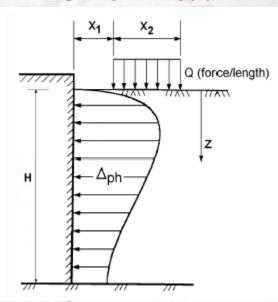

Abutment Height (ft)	h_{eq} (ft)
5.0	4.0
10.0	3.0
≥20.0	2.0

Table 3.11.6.4-2—Equivalent Height of Soil for Vehicular Loading on Retaining Walls Parallel to Traffic

	h_{eq} (ft) Distance from wall backface to edge of traffic			
Retaining Wall Height (ft)	1.0 ft or 0.0 ft Further			
5.0	5.0	2.0		
10.0	3.5	2.0		
≥20.0	2.0	2.0		

The load factor for both vertical and horizontal components of live load surcharge shall be taken as specified in Table 3.4.1-1 for live load surcharge.

ASD – 2ft Surcharge Always

AASHTO LOAD COMINATIONS

TG

 γ_{TG}

Υ*τ*σ Υ*τ*σ SE

 γ_{SE}

 γ_{SE}

 γ_{SE}

EQ

Table 3.4.1-1 Load Combinations and Load Factors.

DC DD DW EH EV ES EL	LL IM CE BR PL LS	WA	ws	WL	FR	TU CR SH
γ_p	1.75	1.00	_		1.00	0.50/1.20
Υn	1.35	1.00	_	_	1.00	0.50/1.20
γ_p		1.00	1.40	_	1.00	0.50/1.20
Υp	_	1.00	_		1.00	0.50/1.20
Ϋ́	1.35	1.00	0.40	1.0	1.00	0.50/1.20
γ_p	γEQ	1.00	_	1	1.00	_
γ_{p}	0.50	1.00			1.00	_
1.00	1.00	1.00	0.30	1.0	1.00	1.00/1.20
1.00	1.30	1.00		_	1.00	1.00/1.20
1.00	0.80	1.00			1.00	1.00/1.20
1.00		1.00	0.70	_	1.00	1.00/1.20
_	0.75	_	_	_		_
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	$\begin{array}{c} DD \\ DW \\ EH \\ EV \\ ES \\ EL \\ \end{array}$ $\begin{array}{c} \gamma_{\rho} \\ \gamma_{\rho} \\ \end{array}$	DD LL DW IM EH CE EV BR ES PL EL LS γ _p 1.75 γ _p 1.35 γ _p γ _p 7.20 γ _p 0.50 1.00 1.00 1.00 1.00 1.00 0.80 1.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

EH-Max + EV-Max EH-Max + EV-Min

EH-Min + EV-Max

EH-Min + EV-Min

Table 3.4.1-2 Load Factors for Permanent Loads, γ_p,

IC

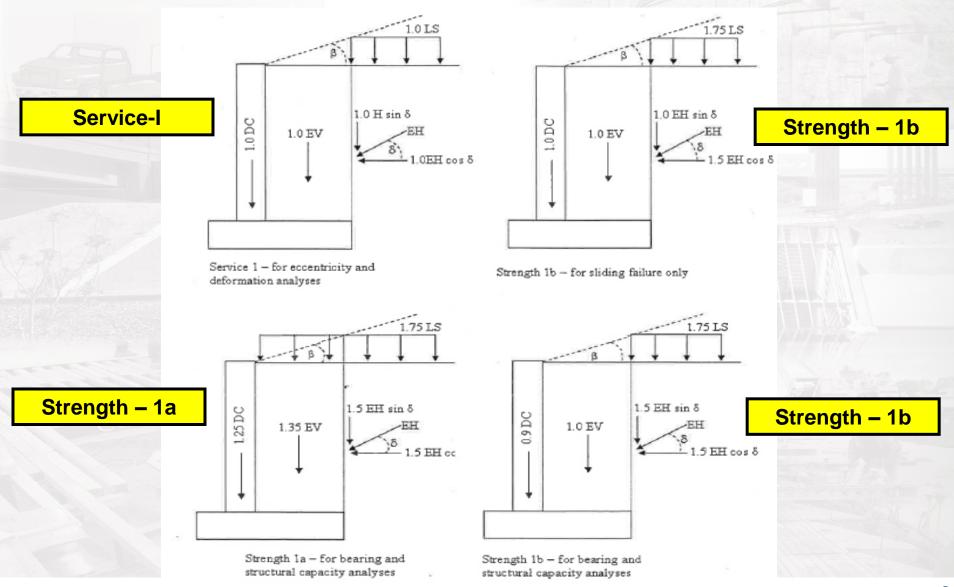
Use One of These at a Time

CT

CV

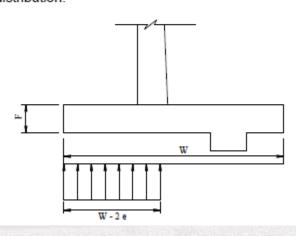
	Type of Load, Foundation Type, and		Load Factor	
N	Method Used to Calculate Downdrag			
DC: Component a	and Attachments	1.25	0.90	
DC: Strength IV	only	1.50	0.90	
DD: Downdrag	Piles, a Tomlinson Method	1.4	0.25	
	Piles, \(\lambda \) Method	1.05	0.30	
1	Drilled shafts, O'Neill and Reese (1999) Method	1.25	0.35	
DW: Wearing Sur	faces and Utilities	1.50	0.65	
EH: Horizontal E	arth Pressure			
 Active 		1.50	0.90	
At-Rest		1.35	0.90	
AEP for	AEP for anchored walls		N/A	
EL: Locked-in Er	ection Stresses	1.00	1.00	
EV: Vertical Earth	n Pressure			
Overall 5	Stability	1.00	N/A	
 Retainin 	g Walls and Abutments	1.35	1.00	
			0.90	
Rigid Frames		1.35	0.90	
	1.95	0.90		
	Flexible Buried Structures other than Metal Box Culverts Flexible Metal Box Culverts			
- Tiexible	TITATION PLANT PLANT AND IN	1.50	0.90	
ES: Earth Surchar	ge	1.50	0.75	

Different in ASD & LRFD


Big Envelope with Max-Min Factors

Resulted Bigger Geometry

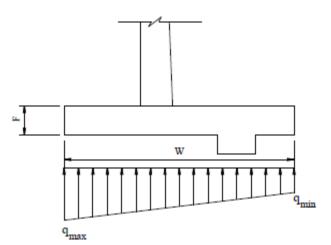
CALTRANS LOAD COMINATIONS



BEARING PRESSURE

A. GEOTECHNICAL BEARING PRESSURE:

For geotechnical soil bearing pressures evaluation, soil pressure is distributed as uniformly distributed pressure below the footing for a length of (W-2e) (where e-eccentricity). Following figure shows soil pressure distribution.



Plastic Soil – For Geotechnical Pressure Evaluation

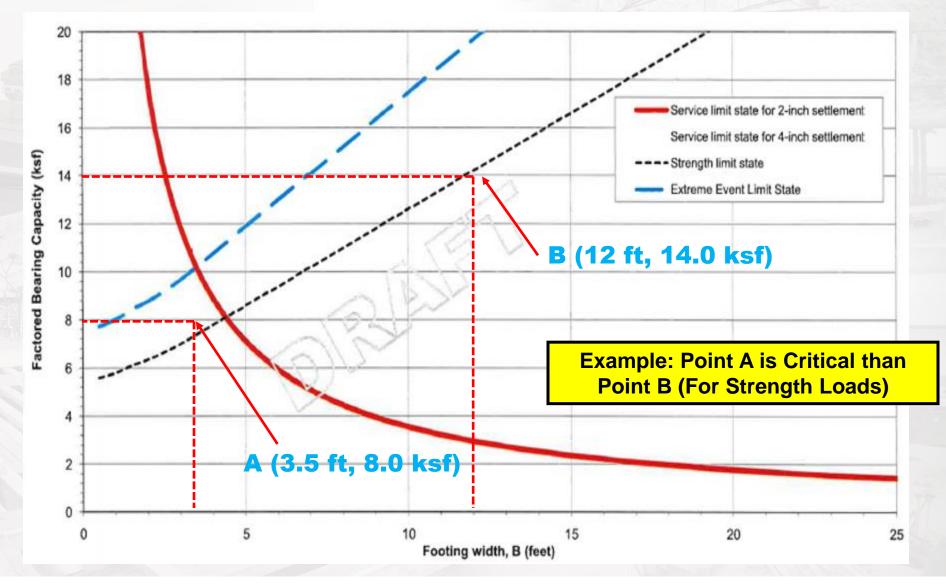
$$\sigma_{\text{vmax}} = \frac{\sum V}{B} \left(1 + 6 \frac{e}{B} \right)$$
 (11.6.3.2-2)

$$\sigma_{\text{uniff}} = \frac{\sum V}{B} \left(1 - 6 \frac{e}{B} \right) \tag{11.5.3.2-3}$$

B. SOIL PRESSURE FOR STRUCTURAL DESIGN:

If resultant force is outside the middle one third of footing width,

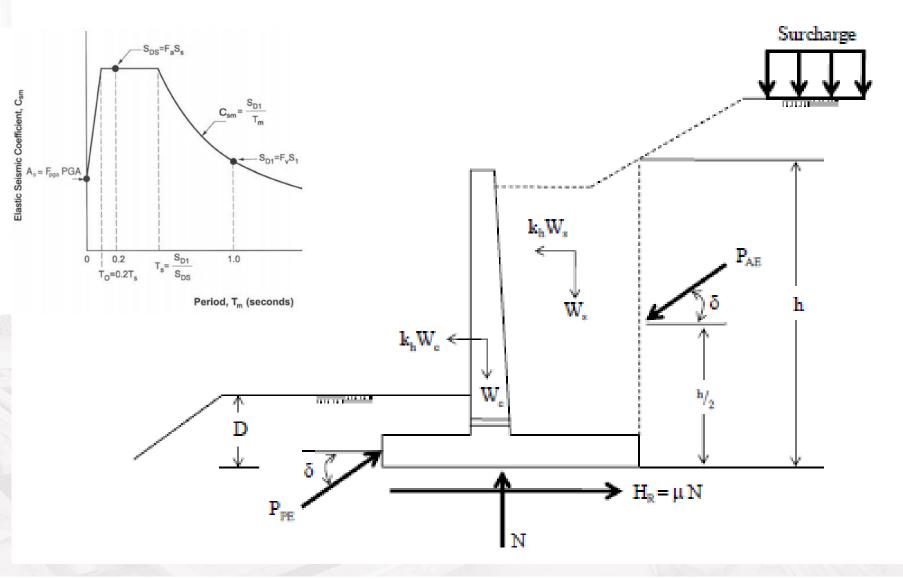
$$\sigma_{\text{vanux}} = \frac{2\sum V}{3[(B/2) - e)]}$$
 (11.6.3.2-4)


$$\sigma_{vmin} = 0$$
 (11.6.3.2-5)

Triangular Pressure Distribution
Critical for Structural Design

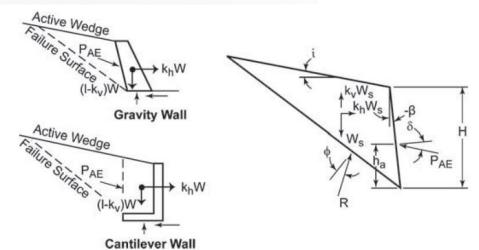
LRFD BEARING CAPACITY -SAMPLE

OUTLINE



- > Geometry & Cost Comparison ASD/LRFD
- > LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- Limitations on Design Approach
- > Summary of AASHTO LRFD Changes 2007-2014
- > Conclusion

SEISMIC EARTH PRESSURE



SEISMIC EARTH PRESSURE

Seismic Active Earth Pressure $P_{AE} = 0.5 \gamma H^2 (1 - k_{\nu}) K_{AE}$

Seismic Passive Earth Pressure $P_{\rm pp} = 0.5 \, \gamma \, H^2 (1 - k_{\nu}) K_{\rm pp}$

$$K_{AE} = \frac{\cos^{2}(\phi - \theta - \beta)}{\cos\theta\cos^{2}\beta\cos(\delta + \beta + \theta)}$$

$$\times \left[1 - \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\right]^{-2}$$

$$K_{PE} = \frac{\cos^{2}(\phi - \theta + \beta)}{\cos\theta\cos^{2}\beta\cos(\delta - \beta + \theta)}$$

$$\times \left[1 - \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta + i)}{\cos(\delta - \beta + \theta)\cos(i - \beta)}}\right]^{-2}$$

$$\gamma = \text{unit weight of soil (ksf)}$$

$$H = \text{height of wall (ft)}$$

$$\phi = \text{friction angle of soil (°)}$$

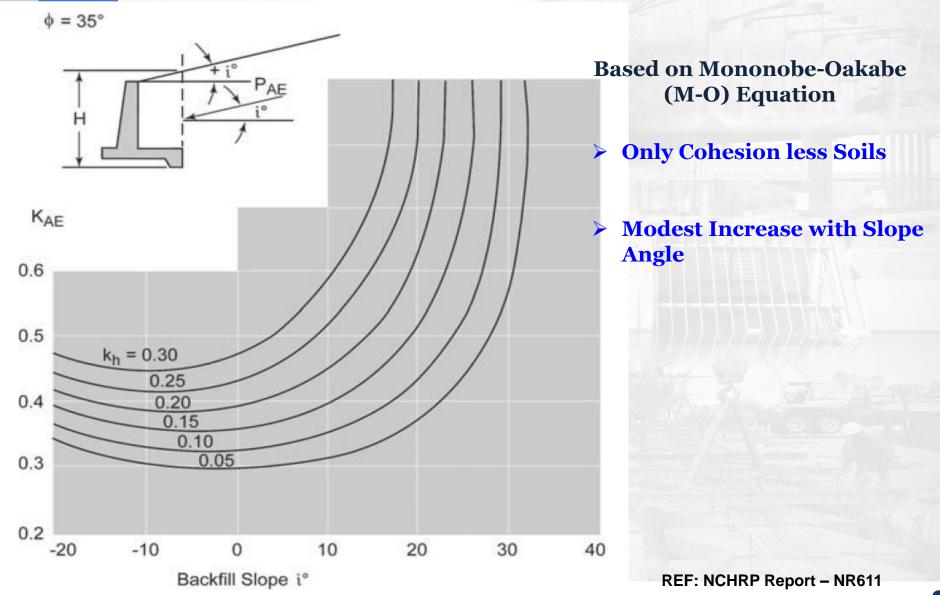
 ϕ = friction angle of soil (°)

 $\theta = \arctan (k_b/(1 - k_v))(^\circ)$

 δ = angle of friction between soil and wall (°)

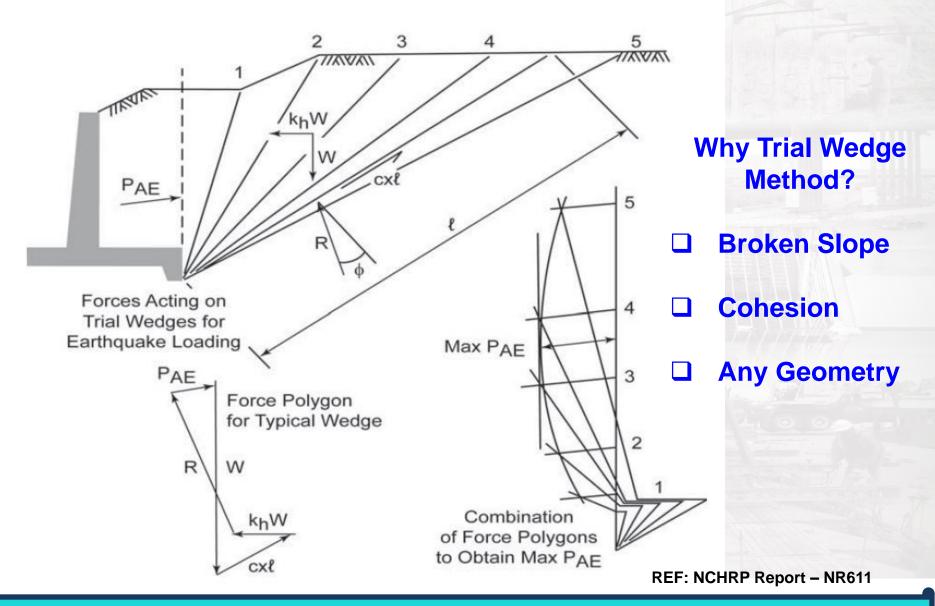
 k_h = horizontal acceleration coefficient (dim.)

 k_v = vertical acceleration coefficient (dim.)

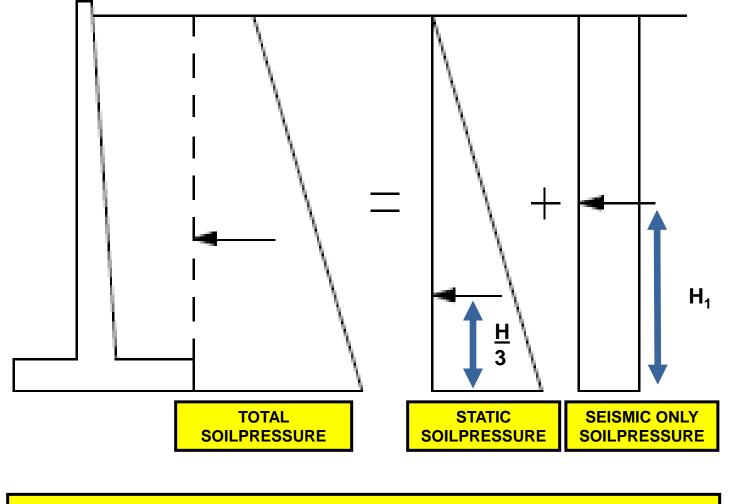

i = backfill slope angle (°)

 β = slope of wall to the vertical, negative as shown (°)

SEISMIC EARTH PRESSURE vs BACKFILL SLOPE



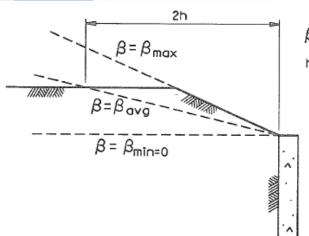
TRIAL WEDGE - SEISMIC



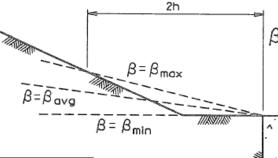
SEISMIC SOIL PRESSURE APPLICATION

SEISMIC SOIL PRESSURE APPLICATION

OUTLINE



- > Geometry & Cost Comparison ASD/LRFD
- LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- > Limitations on Design Approach
- Summary of AASHTO LRFD Changes 2007-2014
- > Conclusion



COHESION & IRREGULAR BACKFILL

 $\beta_{avg} = \beta$ at x = 2hh = Wall height

 $\beta_{\text{avg}} = \frac{\beta_{\text{max}} - \beta_{\text{min}}}{2}$

 β_{max} calculated at x = 2h

Slope Approximation for Irregular Slope

Critical value of α is between α calculated using β_{min} and β_{max} . Use β_{avg} for first trial.

$$\sigma_h = K_a \sigma_v - 2c\sqrt{K_a}$$
$$\sigma_h = K_p \sigma_v + 2c\sqrt{K_p}$$

Bells Relationship for Cohesion

LIMITATION MONONOBE-OKABE EQUATION

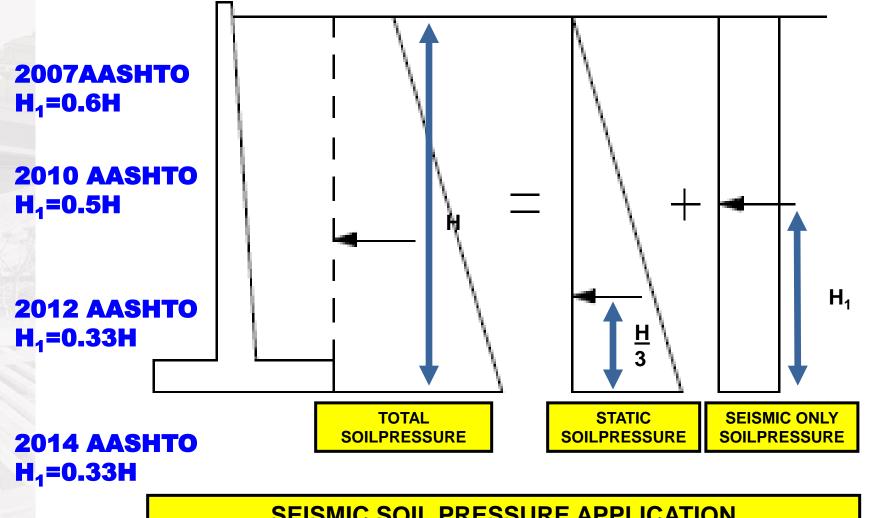
- ➤ The retaining wall is free to yield sufficiently to enable full soil strength or active pressure conditions to be mobilized. If the abutment is rigidly fixed and unable to move, the soil forces will be much higher than those predicted by the Mononobe-Okabe analysis.
- > The backfill is cohesion-less, with a friction angle
- > The backfill is unsaturated, so that liquefaction problems will not arise.
- \succ K_{AE} is sensitive to changes in the soil friction angle,

$$\phi \ge i + \theta_{MO} = i + \arctan\left(\frac{k_h}{1 - k_v}\right)$$

OUTLINE

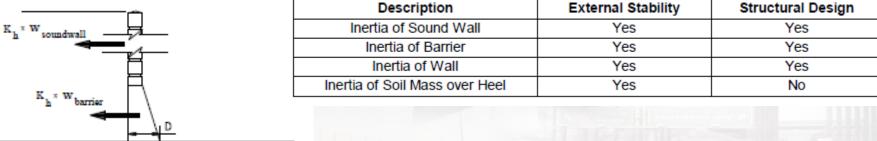
- > Geometry & Cost Comparison ASD/LRFD
- > LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- Limitations on Design Approach
- > Summary of AASHTO LRFD Changes 2007-2014
- Conclusion

ECCENTRICITY LIMITS


Agricon.	AASHTO	Service	Strength	Seismic
	2007	NA	W/2 Soil 3W/4-Rock	Both Soil and Rock 2W/3 – EQ=0.0 8W/10 – EQ=1.0
	2010	NA	W/2 Soil 3W/4-Rock	Both Soil and Rock 2W/3 – EQ=0.0 8W/10 – EQ=1.0
	2012	NA	2W/3 Soil 9W/10-Rock	Both Soil and Rock 2W/3 - EQ=0.0 8W/10 - EQ=1.0
	2014	NA	2W/3 Soil 9W/10-Rock	Both Soil and Rock 2W/3 – EQ=0.0 8W/10 – EQ=1.0

CALTRANS – SERVICE ONLY – Limit W/6

SEISMIC LOAD LOCATION


SEISMIC SOIL PRESSURE APPLICATION

SEISMIC INTERTIA FORCE

Caltrans Criteria

2012 & 2014 AASHTO ONLY

To investigate the wall stability considering the combined effect of P_{AE} and P_{IR} and considering them not to be concurrent, the following two cases should be investigated:

- Combine 100 percent of the seismic earth pressure P_{AE} with 50 percent of the wall inertial force P_{IR} and
- Combine 50 percent of P_{AE} but no less than the static active earth pressure force (i.e., F₁ in Figure 11.10.5.2-1), with 100 percent of the wall inertial force P_{IR}.

AGENDA

- Geometry & Cost Comparison ASD/LRFD
- > LRFD Design Method Strength & Service
- LRFD Design Method Seismic
- Limitations on Design Approach
- > Summary of AASHTO LRFD Changes 2007-2014
- **Conclusion**

CONCLUSION

- > Retaining Wall Geometry has significantly changed because of LRFD Design Criteria compare to ASD
- > LRFD Design Criteria Constantly changed from 2007 to 2014.
- > AASHTO significantly reduced Design Requirements in Recent LRFD Codes compare to 2007 LRFD Code.
- > DOTs' Issues Interim Memorandums to Amend AASHTO LRFD Requirements.
- > Few Design Requirements are clear in AASHTO LRFD yet (E.g. Seismic Inertia Force and related load combinations).

ACKNOWLEDGEMENTS

Department of Transportation, California

Gary Wang, P.E, Retaining Wall Specialist

Shannon Post, P.E, PMP, Chief, Underground Structures

Kathryn Griswell, PE, MSE Wall Specialist

Roberto Lacalle, P.E, PMP, Former Chief, U.S.

Ahmad Abdel-Karim, PhD, PE, Vice President

Walt LaFranchi, PE, Department Manager

Zuri Abajian, PE, Engineer

Nichols Julie, Technical Editor

DISCLAIMER

Neither AECOM or Authors will not be liable for any direct, indirect, special, incidental, or consequential damages arising out of the use this presentation materials or any accompanying information..

QUESTIONS & ANSWERS

Contact Details:

Ahilan Selladurai,

Phone: 916-414-5800 x 6088

Direct: 916-414-1588

E-Mail: ahilan.selladurai@aecom.com

Bob Fish,

Phone: 916-414-5800 x 6070

Direct: 916-414-1570

E-Mail: Bob.Fish@aecom.com