Application of Performance Based Earthquake Engineering (PBEE) to Caltrans Ordinary Standard Bridge Design

California Dep. of Transportation Yeo (Tony) Yoon Toorak Zokaie

Part A – Approach and Theoretical Background

Components of Performance Based Earthquake Engineering

• Hazard Analysis:

Hazard Identification: Location, Intensity, Risk Loading: Seismic Intensity -> Acceleration Record/Input Motion

• Structural Analysis:

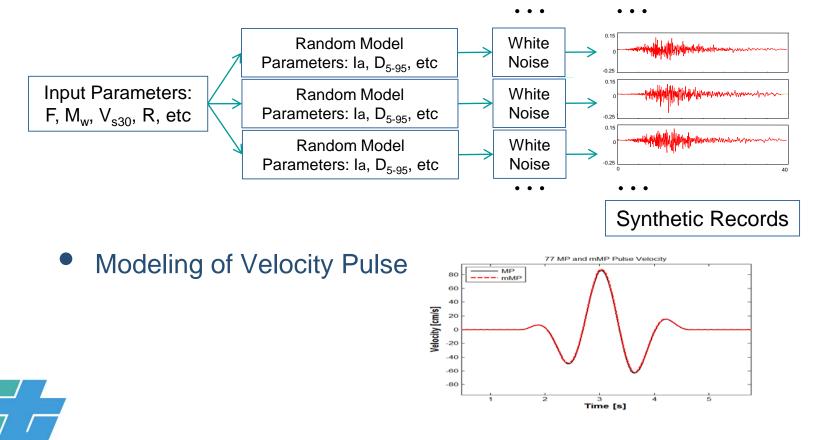
Structural Analysis: Modeling Guidelines & Software

• Damage Analysis:

Displacement, Ductility, & Strain

• Loss Analysis

1. Hazard Analysis

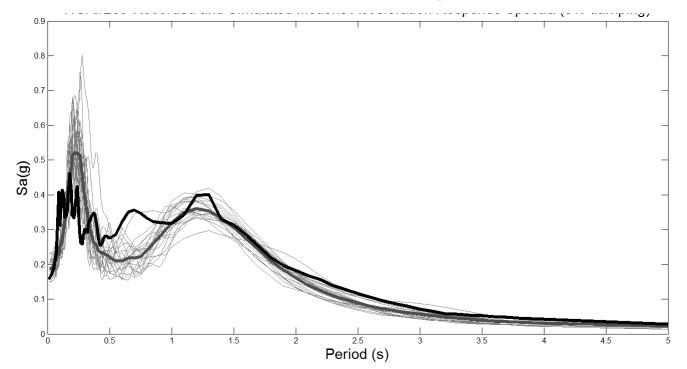

- Linear Spectral Analysis: Acceleration Response Spectra: ARS Online
- NLTHA: Uniform Excitation \rightarrow Acceleration Time History
 - Basis of Design: Site-Specific Design (Target) ARS obtained from ARS online
 - Synthetic Records (captures important site characteristics)
 - Record Selection (subset of all generated records)
 - Spectral Matching (Modify record to have its ARS match a target ARS)
 - Average of 7 Records

1. Hazard Analysis

Synthetic Record Generation:

• UCB Synthetic Record Generation Algorithm (By Prof. ADK)

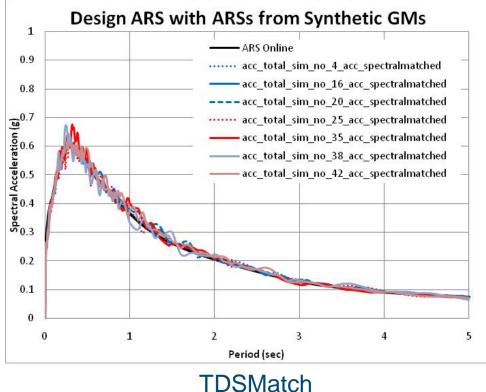
1. Hazard Analysis


Parameters Needed for Record Generation:

- Fault Type : Strike-Slip or Non-Strike-Slip
- Moment Magnitude, M_w: Can be chosen between 5.5 to 8
- Fault Distance, R: Between 0 km and 30 km
- Shear Wave Velocity, V_{S30}: Between 100 m/s and 2100 m/s
- **Directivity Angle, theta**: Between 0 and 90 degrees
- Distance, S: Between 0 km and 70 km

1. Hazard Analysis

Synthetic Record Generation - Example


Pseudo-acceleration response spectra at 5% damping of the NGA record #285 (black thick line), of 20 simulated ground motions using the fitted parameters (grey lines), and their geometric mean (thick grey line)

1. Hazard Analysis

Record Selection:

 Spectral Matching using TDSMatch based on Time Domain algorithm by Norm Abrahamson used in RSPMatch

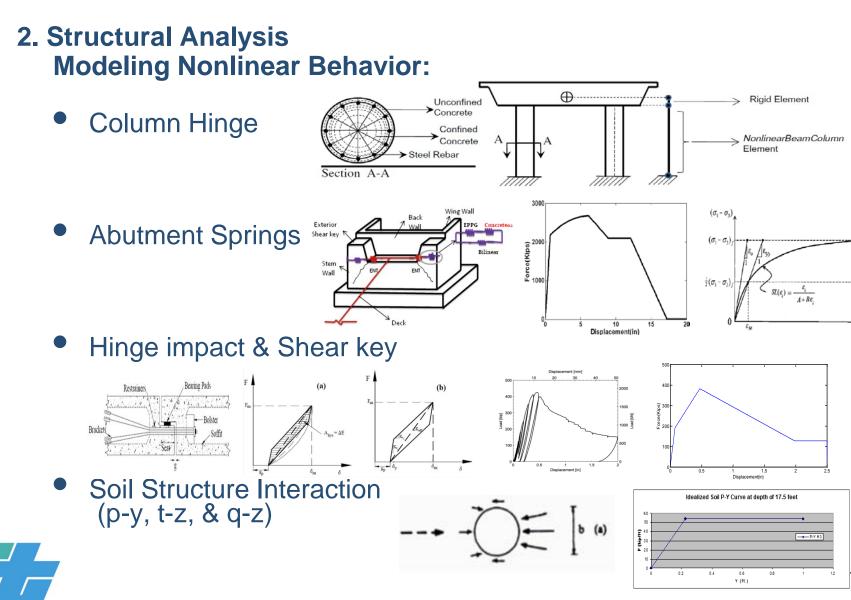
1. Hazard Analysis Input Motion Generation/Selection:

- Generate Design ARS from ARS Online (Target ARS), based on 1000-year return period
- Generate Synthetic Records: 50 Records (with near field velocity pulse if near field effect is needed)
- Select 7 records (from set of 50) with closest match to target ARS within 0.5 < T < 3.0 seconds
- Scale Records: Use TDSMatch to adjust the 7 selected records to the target ARS
- Use the adjusted records for analysis

2. Structural Analysis

Nonlinear Time History Analysis (NLTHA):

- Bridge Behavior in Seismic event is NONLINEAR
- NLTHA is the most accurate method available
- Current tools are efficient enough for NLTHA
- Response Spectrum Analysis does not capture some key nonlinear responses (e.g., column plastic hinge, span hinge, shear key, abutment response, & isolation bearing)
- Equal displacement principal is an approximation



2. Structural Analysis

What is needed for Nonlinear Time History Analysis:

- Loading Guidelines (i.e., Acceleration Time History Records):
 - Intensity, peak acceleration, #of peaks
 - Duration
 - Frequency content
 - Near-Field Effect
- Modeling Guidelines: PEER 2008-03
- Reliable Software: CSI-Bridge, OpenSees, & Midas-Civil
- Acceptance Criteria: $\Delta_{capacity} / \Delta_{demand}$, Ductility, etc.

SL

2. Structural Analysis Response Calculation:

- Apply each input motion in longitudinal and transverse directions (and more directions if curved or highly skewed)
- Record maximum displacements in longitudinal and transverse directions
- Calculate average of the maximum displacements (in each direction) as displacement demand

Capacity Calculation:

- Perform push-over analysis in longitudinal and transverse directions
- Calculate displacement capacity based on strain limits given in SDC

3. Damage Analysis

Acceptance Criteria / Damage Assessment:

- Displacement-based, Current SDC Limits:
 - $\blacktriangleright \Delta_{demand} = average \Delta_{max.col} of each column$
 - $\blacktriangleright \Delta_{capacity} = From Push-over analysis of bent or frame$

$$\blacktriangleright \ \mu_{d.col} = \Delta_{demand} / \Delta_{y;} \ \mu_{c.col} = \Delta_{capacity} / \Delta_{y}$$

$$\Delta_{\text{demand}} \leq \Delta_{\text{capacity}} \&$$

▶ $\mu_{d.col} \leq 4$ (single column) or 5 (multi-column) &

$$\blacktriangleright \mu_{c.col} \ge 3$$

3. Damage Analysis

Possible Future Acceptance Criteria / Damage Assessment:

- No Push-over Analysis needed, instead calculate the ultimate curvature for each plastic hinge
- Compare Curvature demand and capacity:
 - > Yield curvature = ϕ_v , based on SDC idealized M- ϕ curve
 - Curvature demand = ϕ_d = Average of maximum curvatures of the 7 analysis cases
 - ➤ Curvature capacity = ϕ_c (based on SDC strain limits), i.e.: $\phi_d \leq \phi_c$
 - ➤ Curvature Ductility: $\phi_c / \phi_y \ge 10$ (using SDC values)
- Identify Damage Index:
 - ➤ Curvature demand → Max strain demand → Damage Index

15

3. Damage Analysis

Possible Future Acceptance Criteria / Damage Assessment:

Damage State (DS) Index with Associated Strain Threshold and Repair Cost Based on the work by Saini and Saiidi, 2014

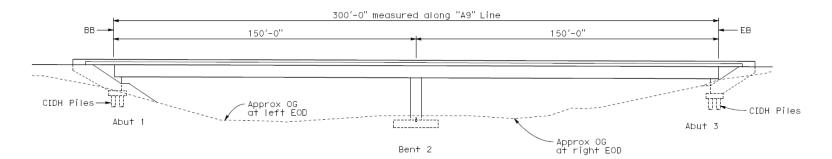
Damage		Trigger	Trigger Value						
State (DS)	Description		Concrete Cover Strain	Concrete Core Strain	Main Steel Strain	Confinement Steel Strain	ltem - Strategy	Units	Cost
1	Surface cracks	Strain	<= 0.002	na	<= 0.002	<= 0.002	ОК	na	0
2	First spalling	Strain	0.002< ε <= 0.005	na	0.002< ε <= 0.005	0.002< ε <= 0.005	Patch Concrete	SQFT	\$400 \$250 \$100 \$50
	5541118				0.000		Epoxy Inject	LF	\$62
3	Major spalling	Strain	Spalled to core strain	0.005< ε <= 0.008	0.005< ε <= 0.010	0.005< ε <= 0.010	Patch Concrete	SQFT	\$400 \$250 \$100 \$50
	spannig		height				Epoxy Inject	LF	\$62
4	Exposed reinf.	Strain	spalled off	0.008< ε <= 0.010	0.010< ε <= 0.025	0.010< ε <= 0.015	Steel Column Casing	EA	\$61,200
5	Core shedding	Strain	spalled off	0.010< ε <= 0.020 ⁽¹⁾	0.025< ε <= 0.06 ⁽²⁾	0.015< ε <= 0.120 ⁽²⁾	Replace Column	EA	\$138,055
6	Failure (rupture)	Strain & Displ.	spalled off	> 0.020 ⁽¹⁾	> 0.06 ⁽²⁾	> 0.120 ⁽²⁾	Replace Superstructure and Columns	EA	\$1,455,840

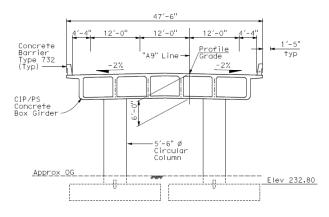
Summary

- Hazard Analysis Loading (Input motions):
 - Generate 50 synthetic records (Include near-field effect if needed)
 - Select 7 records that best match design ARS in range 0.5s \leq T \leq 3.0s
 - Use TDSMatch to adjust selected records to design ARS
- Structural Analysis Modeling: Include major nonlinearities:
 - Column plastic hinge, abutment spring, shaft p-y, & span hinge
- Structural Analysis Analysis: CSIBridge, OpenSees, or Misdas-Civil, etc.
 - Perform Nonlinear analysis in long./transverse (and maybe more) directions
 - Calculate maximum displacement demand (average of 7 motions)
- **Damage Analysis** Acceptance Criteria:
 - Perform Push-over analysis, obtain displacement capacity
 - Compare displacement demand vs. capacity (Current SDC)
 - Future: Compare curvature demand vs. capacity

Continue to Part B..

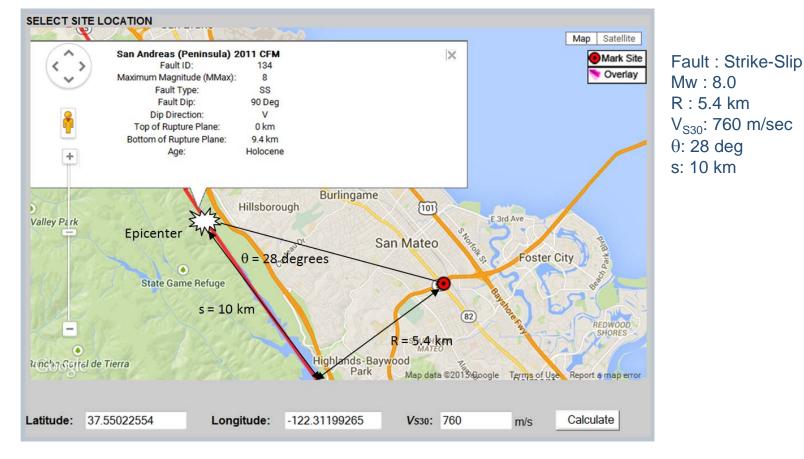
Application of Performance Based Earthquake Engineering (PBEE) to Caltrans Ordinary Standard Bridge Design


California Dep. of Transportation Yeo (Tony) Yoon Toorak Zokaie



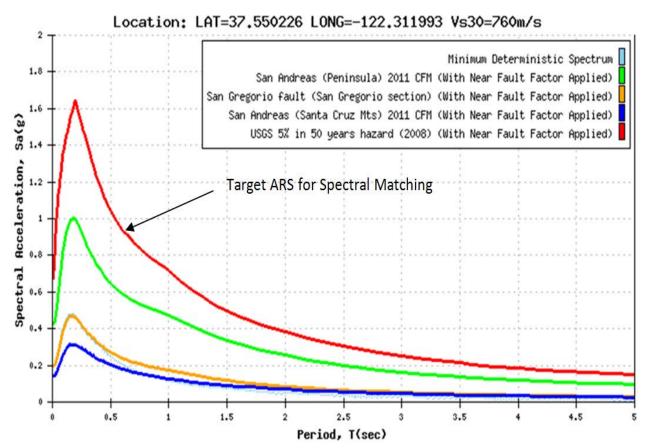
Part B – Illustrative Example

Design Scenario: An Ordinary Standard Bridge will be located in Bay Area, near San Mateo, at junction of highway 82 and 92. The bridge is a CIP/PT box girder bridge with two spans of 150 feet each. The bent consists of two 5'-6" diameter reinforced concrete columns. The footing is founded on competent rock.

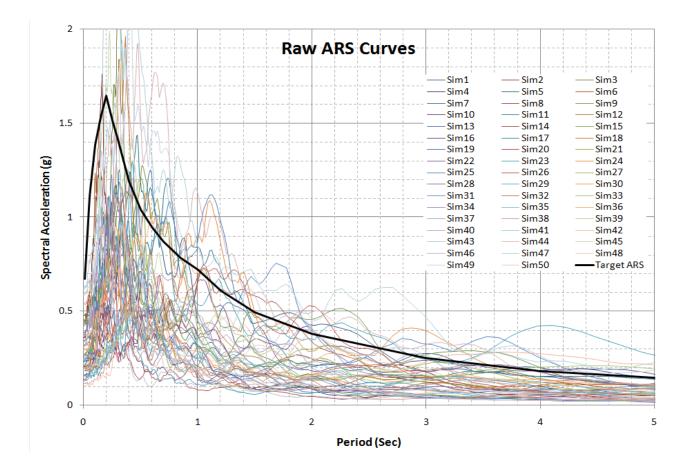

Step 1: Acceleration Record Generation & Selection

Step 2: Structural Analysis for Demand

Step 3: Structural Analysis for Capacity & Damage Assessment

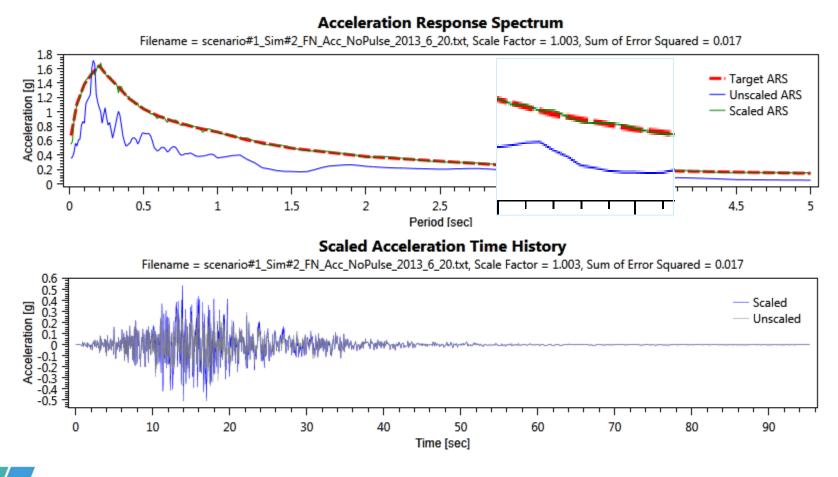


Step 1a: Acceleration Record Generation - Determine Target ARS from ARS Online and Obtain Parameters for Synthetic Ground Motion Generation.

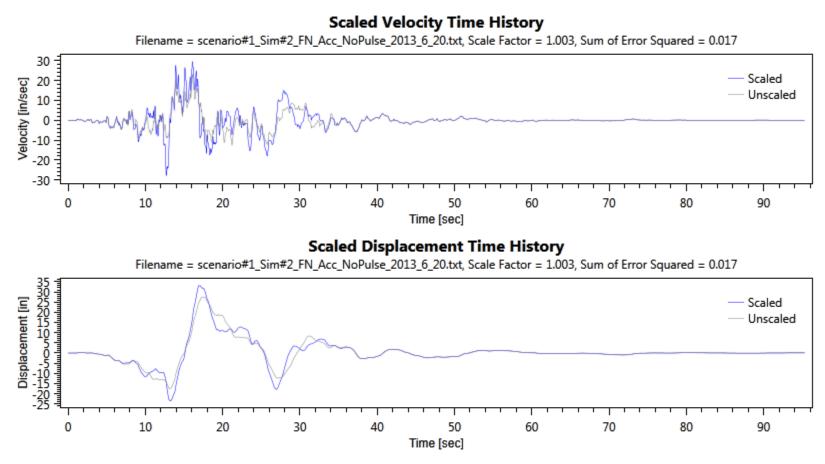


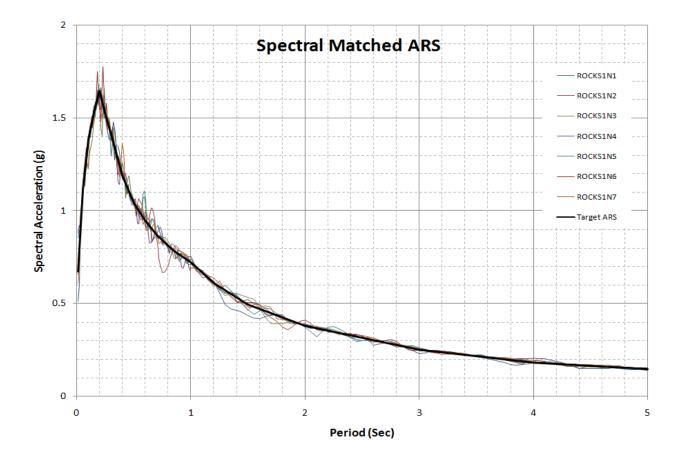
Step 1a: Acceleration Record Generation - Determine Target ARS from ARS Online and Obtain Parameters for Synthetic Ground Motion Generation.

Step 1b: Acceleration Record Generation - Generate 50 ground motions.

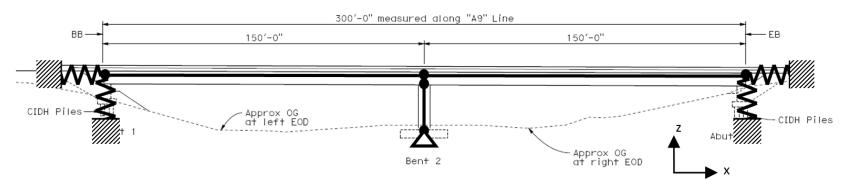

C,

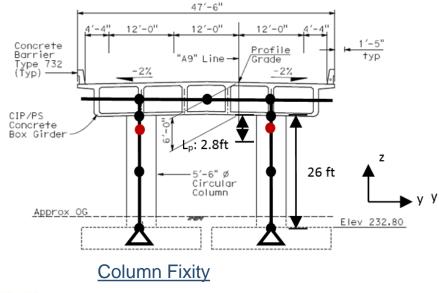
Step 1c: Acceleration Record Selection - Find 7 motions with lowest deviations from Target ARS.



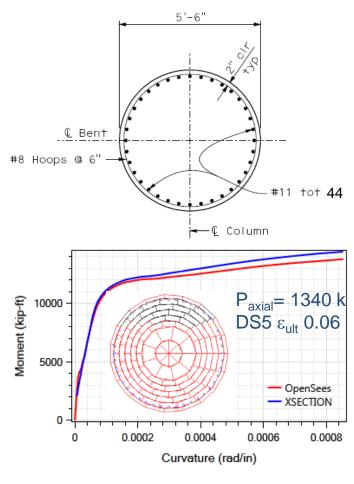

Step 1d: Acceleration Record Selection - Conduct Spectral Matching of 7 Motions to Target ARS.

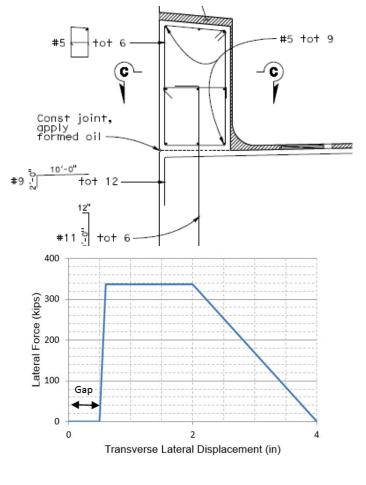
Step 1d: Acceleration Record Selection - Conduct Spectral Matching of 7 Motions to Target ARS.




Step 1d: Acceleration Record Selection - Conduct Spectral Matching of 7 Motions to Target ARS.

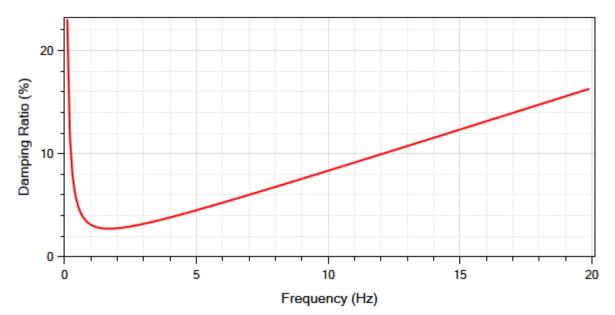
Step 2a: Structural Analysis – Idealize Bridge Model




Geometry & Material Properties

	Deck	Bentcap
E (ksi)	4287	4287
G (ksi)	1786	1786
f' _{ce} (ksi)	5	5
A _{CrossSection}	79	79
I_{xx} (ft ⁴)	-	156
I _{yy} (ft ⁴)	418	-
I _{zz} (ft ⁴)	13307	325

Step 2a: Structural Analysis – Idealize Bridge Model



Shear Key F- Δ

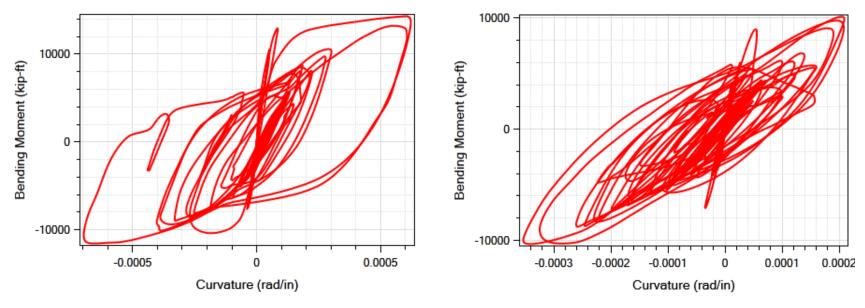
Step 2a: Structural Analysis – Idealize Bridge Model

Rayleigh Damping: 5 % damping @ T = 0.17 & 2 sec (f = 0.5 & 5.88 Hz)

Integration Type: Newmark

Algorithm: Modified Newton

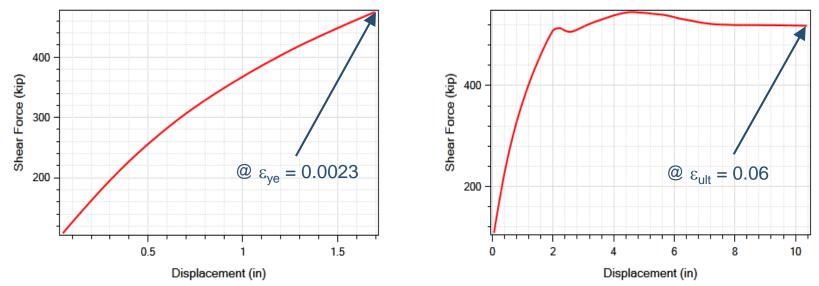
Step 2b: Structural Analysis – Perform TH Analysis using 7 Spectrally Matched Motions.



in transverse direction

Displacement time history @ column top subjected Motion Rock2

Step 2b: Structural Analysis – Perform TH Analysis using 7 Spectrally Matched Motions.


in transverse direction

in longitudinal direction

Moment - Curvature History @ column top subjected Motion Rock2

Step 3a: Structural Analysis for Capacity – Conduct Push-over Analysis to determine Displacement & Curvature Capacity

Pushover results in transverse direction

Damage State	Damage	Δ_{y} (in)		$\Delta_{ m c}$ (in)		ϕ_y (rad/in)		ϕ_{c} (rad/in)	
	State	Long Dir	Trans Dir	Long Dir	Trans Dir	Long Dir	Trans Dir	Long Dir	Trans Dir
	5 (ε _{ult} = 0.06)	2.3	1.8	12.9	10.4	6.6E-5	7E-5	1.3E-3	9.1E-4

Step 3b: Acceptance Criteria / Damage Assessment

Displacement Based

Motion	Δ_{c}	_l (in)	μ _d (in)			
ID	Long Dir	Trans Dir	Long Dir	Trans Dir		
ROCK1	4	9	1.7	5.0		
ROCK2	4.3	7.8	1.9	4.3		
ROCK3	3.9	6.7	1.7	3.7		
ROCK4	3.5	6.1	1.5	3.4		
ROCK5	4.7	7.1	2.0	3.9		
ROCK6	3	11.6	1.3	6.4		
ROCK7	5.4	6.6	2.3	3.7		
Avg	4.1 < ∆ _c	7.8 < ∆ _c	1.8 < 5	4.3 < 5		
Δ_{c}	12.9	10.4	-	-		
μ _c	-	-	5.6 > 3	5.8 > 3		

Step 3c: Alternate Acceptance Criteria / Damage Assessment

Motion	ϕ_d (in)	@ Col 1	ϕ_d (in) @ Col 2			
ID	Long Dir	Trans Dir	Long Dir	Trans Dir		
ROCK1	2.8E-04	8.6E-04	3.4E-04	7.7E-04		
ROCK2	3.5E-04	8.2E-04	3.5E-04	7.0E-04		
ROCK3	3.3E-04	8.4E-04	3.1E-04	5.8E-04		
ROCK4	2.9E-04	6.8E-04	2.7E-04	7.3E-04		
ROCK5	4.5E-04	6.8E-04	5.1E-04	8.5E-04		
ROCK6	3.8E-04	9.1E-04	3.6E-04	1.1E-03		
ROCK7	4.5E-04	7.0E-04	4.5E-04	6.9E-04		
Avg	3.6E-04 < φ _c	7.8E-04 < ∳ _c	3.7 Ε-04 < φ _c	7.7 Ε-04 < φ _c		
φ _c	1.3E-3	9.1E-4	1.3E-3	9.1E-4		
ϕ_{c} / ϕ_{y}	19.7 > 10	13.0 > 10	19.7 > 10	13.0 > 10		

Curvature Based

The above example was performed applying the motions in bridge longitudinal and transverse directions only. The complete analysis can be made repeating steps 2 & 3 by orienting the ground motions at different orientations (30 & 60 deg) per MTD 20-17.

Question?

