Sellwood West Approach Interchange Bridge Design Challenges and Project Delivery

12m

Overview

- Sellwood Bridge Background
- Landslide Mitigation
- Seismic Analysis
- Drilled Shaft Design
- Cast in Place Girders and Deck Flare
- Future Streetcar Loading
- Shared Bent Cap Design
- Construction

The Project Site

Sellwood Bridge Background

- Opened on December 15, 1925
- The Busiest Two-Lane Bridge in Oregon
- Sufficiency Rating: 2 out of 100
- Weight limit reduced to 10 tons in 2004
- Bridge Replacement Currently Underway
- Cost: Approx. \$310 Million

West Approach Interchange

Landslide Impacts

Landslide Background

- Landslide movement of 2 to 5 feet between 1925 and 1960
- In 1960, piers west of river observed to be extremely out of vertical due to slide movement
- Portions of upper landslide debris excavated to reduce load on slope
- CH2M HILL began landslide monitoring program in January 2007
- Landslide has moved an average of 0.1 to 0.2 inches per year since 2007

Landslide Mitigation

Global Landslide Stability Analysis

Elevation (ft)

Predicted Seismic Landslide Movement

- 3 to 6 inches of movement during 1000 year design event
- Predicted movements are AFTER landslide mitigation
- Varying degrees of movement across all piers
- Some piers are located outside of landslide zone

FIGURE 9b Horizontal Displacement Profile at the Location of SE Ramp Bridge Bent 3 (1,000-yr EQ)

Seismic Design Criteria

- AASHTO Guide Specifications for LRFD Seismic Bridge Design and ODOT Bridge Design & Drafting Manual
- SDC D due to "liquefaction-induced lateral spreading or slope failure that may impact the stability of the bridge" per AASHTO Guide Specifications for LRFD Seismic Bridge Design

- Two-level performance criteria
 - 1000-year "no collapse"
 - 500-year "serviceable"
- Site specific response spectrum

Site Specific Design Response Spectrum

LARSA Seismic Modeling

- Prestressed concrete girder superstructure
- Drilled shaft foundation
- Linear response spectrum analysis
- Nonlinear static pushover analysis
- Linear translation and rotational springs at the top of each drilled shaft

LARSA Seismic Modeling

- Many models created to bound anticipated response:
 - 1000 and 500 year events
 - Expansion joints "closed" or "open"
 - Passive soil resistance activated by abutment back wall movement
 - Upper bound and lower bound soil parameters
 - Oversized shafts with permanent casing
 - With and without landslide

Concrete Drilled Shafts

LPILE Drilled Shaft Analysis

Moment (k-ft)

LPILE Drilled Shaft Analysis

Shear (k)

Superstructure Modeling

Interchange Bridge Exterior Prestressed Girder

Bridge Deck Slab Flare

Future Streetcar Line

Shared Bent

Shared Bent

Shared Bent

SE Ramp Bridge - Girders

SE Ramp Bridge – Deck Pour

Transition to Sellwood Bridge

Thank You

ch2m.