Seismic Design of a Light Rail Transit Bridge with Fault Rupture Crossing

Ot

James R. Gingery, PhD, PE, GE Ebrahim Amirihormazaki, PhD, PE

Western Bridge Engineers' Seminar Reno, Nevada 10 September 2015

Presentation Outline

- 1. Project Overview
- 2. Site-Wide Fault Mapping
- 3. Field Exploration at Three Bridge Sites
- 4. Design Fault Rupture Displacements
- 5. Faulting Through Foundations
- 6. Bridge Design for Fault Rupture

Project Overview

- \circ 11 miles of new light rail in S. California
- 9 stations
- 7 bridges
- >4 miles of elevated viaduct
- C Several miles of retaining walls
- \$2.1B total cost
- \circ 4 kilometers of the alignment affected by surface fault rupture hazard

ER

Desk Top Study – Vintage Stereoscopic Aerial Photo Interpretation

Interpretations by Scott Rugg and Tom Rockwell (Kleinfelder 2013)

Detailed Field Exploration Programs at Three Bridge Sites

Field Exploration and Fault Mapping at LRT Overhead Bridge Site – Plan View

Geologic Mapping of Cut Surface

Design Fault Displacements – Deterministic and Probabilistic Analyses

Branch Branch

Logic tree used in PFDHA

Hazard curve with deterministic values overlain

Fault Rupture Design Scenario

Fault Rupture Design Scenario

Foundation Design Strategy

- \circ Unusual situation of faulting through foundations
- Avoid primary fault where possible
- Large Diameter CIDH Piles or mat-footings
- Modeling to evaluate foundation behavior and displacements

Desirable foundation behavior Undesirable behavior

Modeling of Soil-Fault Foundation System

Modeling of Soil-Fault Foundation System

Soil Model Calibration and Validation

Constitutive model approach of Anastasopoulos et al. (2007)

Centrifuge test data from Loli et al. (2009)

Model simulation results

Modeling of Soil-Fault Foundation System

Pile Performance

Fault Rupture Design Displacements

d_{x} d_v d_z θ_{x} $\theta_{\rm V}$ θ _z **Fault Rupture Design Scenario Foundation** (feet) (feet) (feet) (deq) (deq) (deg) -0.9 -2.3 $4₁$ 0.5 -1.5 **Abutment 1** 0 Model Case 1 -0.1 0.3 -0.1 -0.1 Bent 2 $\bf{0}$ 0 **West Fault Trace Location** Bent 3 $\bf{0}$ 0 $\bf{0}$ $\bf{0}$ 0 0 **Abutment 1** -2.7 4.4 0.5 -0.1 0 -0.1 Model Case 2 -0.3 0.6 -0.4 0.1 -0.6 Bent 2 $\bf{0}$ **Centralized Fault Trace Location** Bent 3 $\mathbf{0}$ Ω $\bf{0}$ Ω $\mathbf{0}$ $\bf{0}$ -3.0 5.0 -0.7 0.6 0.1 -1.1 **Abutment 1** Mode Case 3 -0.2 Bent 2 -0.7 1.1 0.1 $\bf{0}$ $\bf{0}$ **East Fault Trace Location** -0.2 04 -0.1 -0.3 Bent 3 0 0

Table of Fault Rupture Design Scenarios

- Performance Objectives:
	- 1. Performance Level (No collapse)
		- **Higher Level Project-Specified Ground Motion (Caltrans Design** Spectrum)
	- 2. Service Level (Minimally serviceable to unserviceable after event)
		- **-** Lower Level Project-Specified Ground Motion

Bridge Demand:

 $u_{ot} = u_{os} + u_{od}$

Peak Seismic Response of

the Bridge

Peak Quasi-Static Demand

Peak Dynamic Demand

Bridge Alternatives

Deformed Shape of a Continuous Bridge Due to Surface Fault Rupture (Integral Bent Cap)

Bridge Alternatives

Deformed Shape of a Continuous Bridge Due to Surface Fault Rupture (Dropped Bent Cap)

Bridge Alternatives

Deformed Shape of a Simply Supported Bridge Due to Surface Fault Rupture

- \circ Simple spans with pre-cast girders
- Widened seats
- Articulation
- \circ Compression: gap at Abut + Pin Fuse at B2

Abutment Design

 $1/4" = 1'$ -0"

NOTE: Bent 2 shown, Bents 3, 4, and 10 similar, see Note 1.

SECTION G-G

 $1/2" = 1' - 0"$

Conclusions

- C Surface fault rupture hazard assessment and mitigation requires multi-discipline approach
- \circ Translation of hazard into design scenarios requires engineering insight and judgment
- Foundations intersected by faults can be designed for ductile behavior and to perform satisfactorily despite severe fault load demands
- C Bridge can be designed for no-collapse using articulation and ductility, but severe damage should be expected. NFELD

THANK YOU

Bright People. Right Solutions.