Computer-Aided Design, Analysis and Load Rating of Precast-Prestressed Spliced Girder Bridges

Richard Brice, PE Software Applications Engineer

Lynn Peterson Secretary of Transportation

Western Bridge Engineers' Seminar Reno, NV September 2015

Outline

- LRFD Requirements for Spliced Girder Bridges
- Overview of Spliced Girder Analysis
- Computer Aided Design, Analysis, and Load Rating

Design, Analysis, and Rating of Spliced Girder Bridges

- Basic requirements of conventional precastprestressed girder bridges
 - Service stress limitations, ultimate strength requirements, etc.
- LRFD 5.14.1.3 Spliced Precast Girders
 - Additional requirements for contract documents
 - Additional service stress limitations
 - Additional analysis requirements

LRFD Requirement for Time-Step Analysis

LRFD 5.9.5.4.1

For segmental construction and **post-tensioned spliced precast girders**, other **than during preliminary design**, **prestress losses shall be determined by the time-step method**... **including consideration of the time-dependent construction stages** and schedule shown in the contract documents.

For components with combined pretensioning and post-tensioning, and where post-tensioning is applied in more that one stage, the effects of subsequent prestressing on the creep loss of previous prestressing shall be considered.

Introduction to Time-Step Analysis

- Models design life through discrete time intervals
- Uses fundamental principles of engineering mechanics
- Accounts for time-dependent material properties and responses (f'_c , ψ , $\varepsilon_{shrinkage}$, relaxation)
- Step-wise pseudo-linear solution to a nonlinear problem
- Structural response at the end of any interval is the summation of the responses of all the preceding intervals

Challenge of Time-Step Analysis

- Sheer quantity of computations that must be performed
 - Deformations are computed at many locations
 - Deformations are computed in every piece of the spliced girder
 - Deformations are computed for the design life of the structure
 - Transformed section properties change with time and location
 - Non-prismatic segments (haunches, varying tendon locations)
 - E_c and thus the modular ratios vary with time
 - Loading conditions change with time
 - Staged application of superimposed loads
 - Multi-staged post-tensioning
 - Statical structural system changes with time
 - Composite closure joints
 - Composite deck
 - Temporary support removal

Composition of Spliced Girders

- Precast concrete segments
- CIP concrete closure joints and deck
- Prestressing Strands and Tendons
- Non-prestressed reinforcement

Time Variation of Material Properties

- Three distinct materials
- Concrete
 - Strength (f_c') and stiffness (E_c) vary with time
 - Creep rate varies with time and time of loading
 - Shrinkage rate varies with time
- Prestressing steel
 - Relaxation rate varies with time and loading
- Non-prestressed Reinforcement
 - Constant with time. Obeys Hooke's Law

- Modeled as a sequence of discrete intervals
 - Begins when segments are constructed
 - Ends at conclusion of design life
- Interval duration is based on changes in loading and the statical structural system
- Intervals are sub-divided to capture timedependent material responses immediately following a change in forces

Typical Timeline

3. Post-tensioning and removal of temporary supports

Construction Event	Day of Occurrence
Construct Segments	0
Erect Segments	28
Cast Closure Joints and Deck	35
Install tendons	42
Install traffic barrier	60
Open to traffic	70

Incremental Deformations

- Time-step analysis is simply computing incremental deformations during each interval
- Axial strain and curvature
 - Computed for every part of the girder
 - Caused by
 - externally applied loads
 - change in statical structural system
 - creep and shrinkage of concrete
 - relaxation of prestressing strands and tendons

Computing Incremental Deformations

0

Time-Step Analysis By Example

- Simple span reinforced concrete beam
- Self-weight loading

Time Variation of Creep Coefficient

Time Variation of Shrinkage Strain

Time Step 1 – Analyze Loading Condition

- Moment due to self-weight (external force)
- Use transformed section analysis

Neglect bending stiffness of reinforcement

Time Step 1 – Incremental Deformations

 Incremental forces on the various parts of the cross section are determined by a transformed section analysis

$$-\Delta P_{c1} = P_c, \Delta M_{c1} = M_c, \Delta P_{r1} = P_r$$

- Incremental Deformations
 - Computed using modulus at time of loading and net section properties

$$-\Delta \varepsilon_{c1} = \frac{\Delta P_{c1}}{E_{c1}A_{cn}}, \Delta \varphi_{c1} = \frac{\Delta M_{c1}}{E_{c1}I_{cn}}$$
$$-\Delta \varepsilon_{r1} = \frac{\Delta P_{r1}}{E_{s}A_{s}}$$

Time Step 1 - End of Interval

Time Step 2 – Time-Dependent Effects

- Only Time Passes
- Time-dependent response of materials
 - Unrestrained Creep of Concrete

•
$$\Delta \varepsilon_{cr} = \frac{\Delta P_{c1}}{E_1 A_c} \psi(t_2, t_1)$$

•
$$\Delta \varphi_{cr} = \frac{\Delta M_{c1}}{E_1 I_c} \psi(t_2, t_1)$$

- Unrestrained Shrinkage
 - $\Delta \varepsilon_{sh}(t_2, t_1)$

Time Step 2 – Initial Strain Analysis

- Reinforcing causing internal restraint
- Compute restrained deformations and internal restraining forces,

Time Step 2 - End of Interval

Time Step 3 – Time-Dependent Effects

- Only Time Passes
- Time-dependent response of materials

•
$$\Delta \varepsilon_{cr} = \frac{\Delta P_{c1}}{E_1 A_c} [\psi(t_3, t_1) - \psi(t_2, t_1)] + \frac{\Delta P_{c2}}{E_2 A_c} \psi(t_3, t_2)$$

• $\Delta \varphi_{cr} = \frac{\Delta M_{c1}}{E_1 I_c} [\psi(t_3, t_1) - \psi(t_2, t_1)] + \frac{\Delta M_{c2}}{E_2 I_c} \psi(t_3, t_2)$

- Unrestrained Shrinkage
 - $\Delta \varepsilon_{sh}(t_3, t_2)$

Time Step 3 - Incremental Unrestrained Deformations

Unrestrained Axial Creep Strain

Time Step 3 – Initial Strain Analysis

- Reinforcing causing internal restraint
- Compute restrained deformations and internal restraining forces,

Time Step 3 - End of Interval

Time Step *i* – Repeat, Repeat, Repeat

- This procedure is repeated for every cross section and every time interval
- Analysis is more involved for spliced girders
 - Continuity externally restrains free deformations
 - Several concrete types cast at different times
 - Changes in statical structural system
 - Pretensioning and multi-stage post-tensioning
 - Intrinsic and reduced relaxation of prestressed steel
- Computers are great at performing repetitive computations and keeping track of numbers!

Computer Aided Design of Spliced Girders

- NCHRP Report 517 Extending Spans
 - Suggests DOT produced software was a significant contributing factor for wide-spread use of PT Box Girder technology
 - Implies same will be true for adoption of spliced girder technology
 - Notes the lack of a preferred industry standard
 - Recommends owner agencies and industry pursue development of high quality software tools for spliced girder bridges

PGSplice[™]

- Part of the new WSDOT BridgeLink[™] suite of software
- Design, analyze, and load rate continuous precast-prestressed spliced girder bridges
- Modeling
 - Cantilever pier segments
 - Drop-in field segments
 - Temporary erection towers
 - Strong back hangers
 - Multi-stage post-tensioning
- Analysis
 - Non-linear time step analysis
 - AASHTO, ACI 209 and CEB-FIP Model Code
- User interface, modeling, graphing and reporting features are very similar to PGSuper[™]

Bridge Configurations

4 Span Variable Depth Girder with Cantilever Piers Segments and Drop In Field Segments

Bridge Configurations

3 Span U-Beam with Segments Supported at Permanent Piers and Temporary Erection Towers

Bridge Configurations

End Spans are pretensioned girders - center span three segment spliced girder

Graphical Results

• Visualize Complex Results with Simple Graphical Representations

Detailed Reporting

• Transparent – eliminate frustration with "black boxes"

T BridgeL	ink - [Time Step Details Report]					
E Edit Project Loads Library Options View Window MyExtension Help						
D G + E 母 🏭 X つ C 🖉 🖌 Y + E 払 🖳 N 🦕 🖍 🤻 🧏 🏠 🗠 - E + 🔗 🖉 👔 🐁 🖻 🗹 🐁 🗄 🖗 🖇 🕈						
Edit						
Y _k is measured positive upwards from the top of girder.						
Composite Transformed Section Properties						
$A_{tr} = \frac{\sum E_k A_k}{E_{tr}} Y_{tr} = \frac{\sum E_k A_k Y_k}{E_{tr} A_{tr}} I_{tr} = \frac{\sum E_k (I_k + A_k (Y_{tr} - Y_k)^2)}{E_{tr}}$						
Component E _{tr} A _{tr} I _{tr} Y _{tr} H (KSI) (in ²) (in ⁴) (in) (in)						
Composite Section 3224 853.775 600285.5 -36.172 72.000						
Y _{tr} is measured positive upwards from the top of girder (at the girder/deck interface).						
Unrestrained creep deformation of concrete components due to loads applied in previous intervals						
$\Delta \varepsilon_c(i_e, i_b) = \sum_{j=1}^{i-1} \frac{\Delta P_c(j_m)}{A_c E_c(j_m)} [\psi(i_e, j_m) - \psi(i_b, j_m)]$						
$\Delta \varphi_c(i_e, i_b) = \sum_{j=1}^{i-1} \frac{\Delta M_c(j_m)}{I_c E_c(j_m)} [\psi(i_e, j_m) - \psi(i_e, j_m)]$						
Loading	Girder		Deck			
Interval	Δε	Δφ (1/in)	Δε	Δφ (1/in)		
1	(0.00 kip/(0.000 in ² * 2255 KSI))*(1.02212 - 0.769109)=0	(0 kip-in/(0.0 in ⁴ * 2255 KSI))*(1.02212 - 0.769109)= 0.00000000	(0.00 kip/(0.000 in ² * 0 KSI))*(0 - 0)=0	(0 kip-in/(0.0 in ⁴ * 0 KSI))*(0 - 0)= 0.00000000		
2	(-857.41 kip/(813.204 in ² * 2966 KSI))*(0.880683 - 0.634839)=-8.73819e-005	(-7626 kip-in/(555491.7 in ⁴ * 2966 KSI))*(0.880683 - 0.634839)= -0.00000114	(0.00 kip/(0.000 in ² * 0 KSI))*(0 - 0)=0	(0 kip-in/(0.0 in ⁴ * 0 KSI))*(0 - 0)= 0.00000000		
3	(0.00 kip/(813.204 in ² * 2966 KSI))*(0.880683 - 0.634839)	(0 kip-in/(555491.7 in ⁴ * 2966 KSI))*(0.880683 -	(0.00 kip/(0.000 in ² * 0	(0 kip-in/(0.0 in ⁴ * 0 KSI))*(0 - 0)=		
For Help, p	For Help, press F1 Continuous 1 AutoCalc : On NUM					

Case Study

- Two Span Continuous Spliced Girder Bridge
- Presented in PCI State-of-the-Art of Spliced-Girders report

Baseline Comparison

Comparison including Time-Dependent Effects

Software Availability

- Free download from WSDOT
 - http://www.wsdot.wa.gov/eesc/bridge/software
- Open Source
- BridgeLink[™] v1.0
 - PGSuper™ v3.0 (Beta)
 - PGSplice[™] v3.0 (Beta)
 - BEToolbox[™] v3.0

http://www.wsdot.wa.gov/eesc/bridge/software

