

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Novel deconstructible columns for ABC in high seismic zones

Sebastian Varela, PhD Candidate

svarela@unr.edu

M. 'Saiid' Saiidi, PhD, P.E., Professor

saiidi@unr.edu

CEE Dept. - University of Nevada, Reno

partnerships for innovation academe + partners -> from scientific discoveries to practical use

General project description

- "Sustainable highway bridges with novel materials and deconstructible components" funded by NSF grant IIP-111406
- PI: Dr. M. 'Saiid' Saiidi
- In collaboration with 4 U.S. business partners and 1 international partner
- Periodic updates and further information: <u>http://wolfweb.unr.edu/homepage/saiidi/NSF-PFI</u>

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Overall Objective:

Develop <u>resilient</u> and sustainable bridge columns

"Failure" ₽

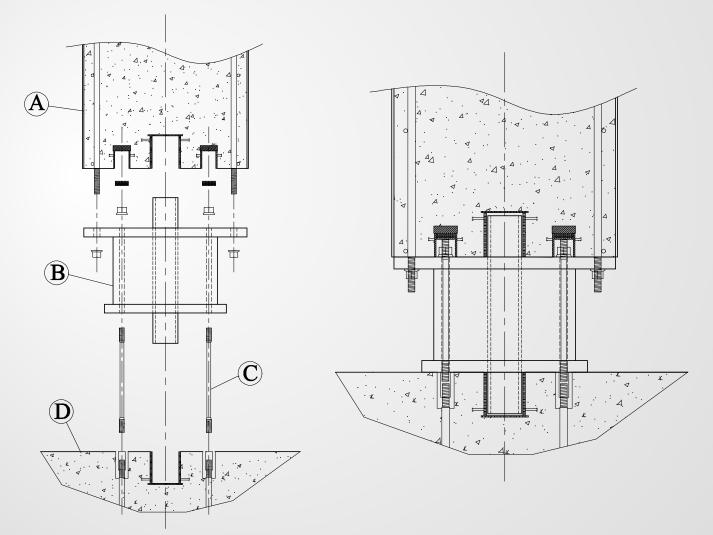
partnerships for innovation academe + partners → from scientific discoveries to practical use

Introduction

• Where do bridges go after they are decommissioned?

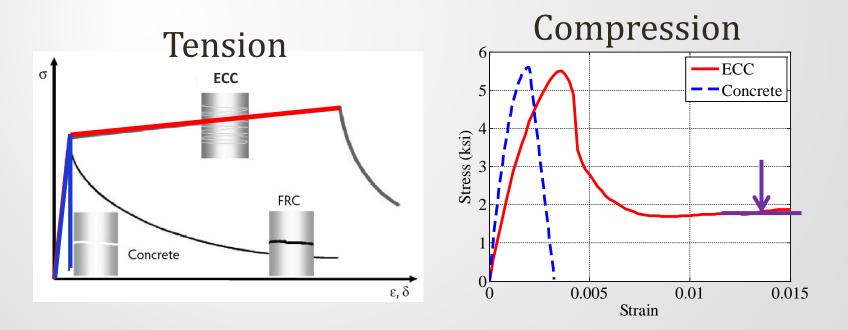
Demolition of a bridge in OR, 2009

Debris typically ends up in dumps


 \mathbb{N}

partnerships for innovation academe + partners → from scientific discoveries to practical use

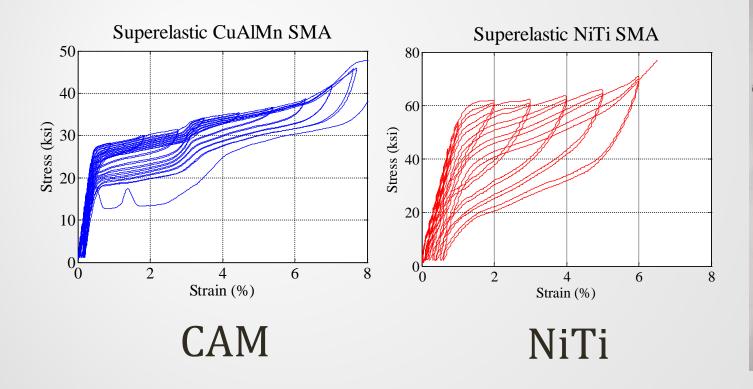
DfD concept for ABC columns



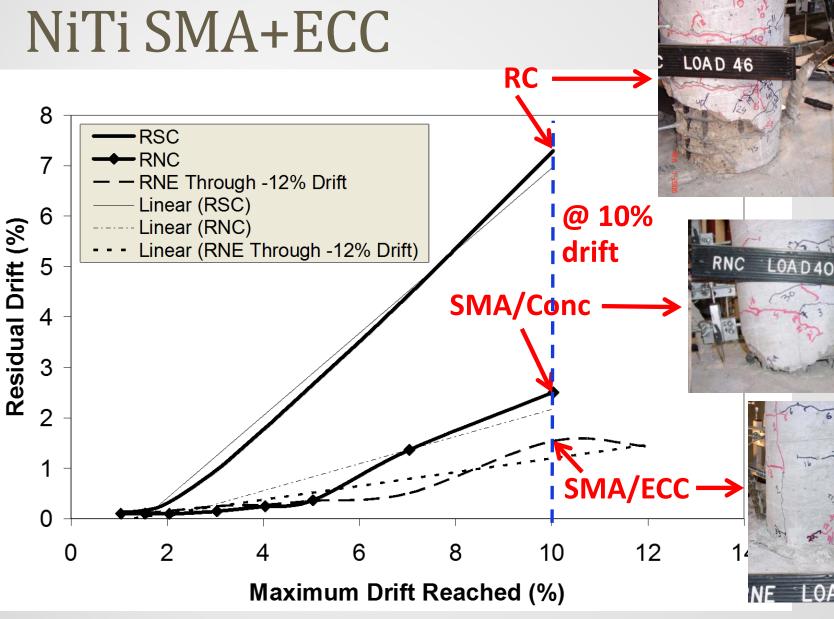
partnerships for innovation academe + partners --- from scientific discoveries to practical use

Novel materials: ECC

•<u>Engineered Cementitious Composite: superior</u> tensile ductility and decrease on the extent of apparent damage. Replaces concrete.



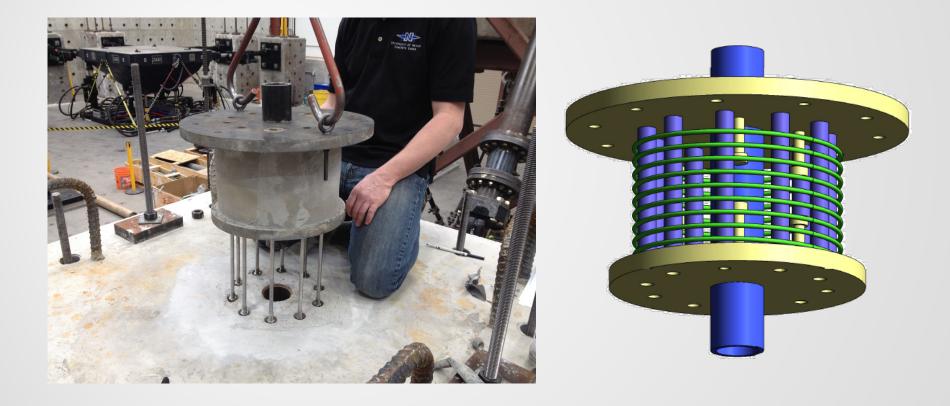
partnerships for innovation academe + partners -> from scientific discoveries to practical use


Novel materials: SMAs•Superelastic Shape Memory Alloys

partnerships for innovation academe + partners → from scientific discoveries to practical use Western Bridge Engineers' Seminar

1 0AD 40

M


University of Nevada, Reno

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Precast ECC plastic hinge elements

R

University of Nevada, Reno

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Rubber plastic hinge elements

R

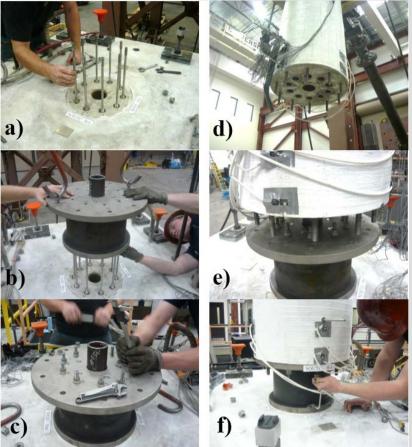
University of Nevada, Reno

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Novel materials: CFRP shells

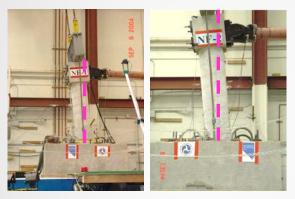
<u>N</u> "

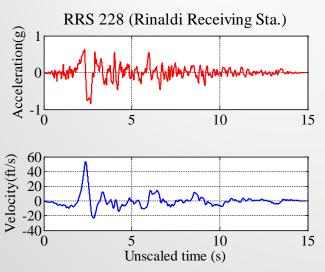
University of Nevada, Reno

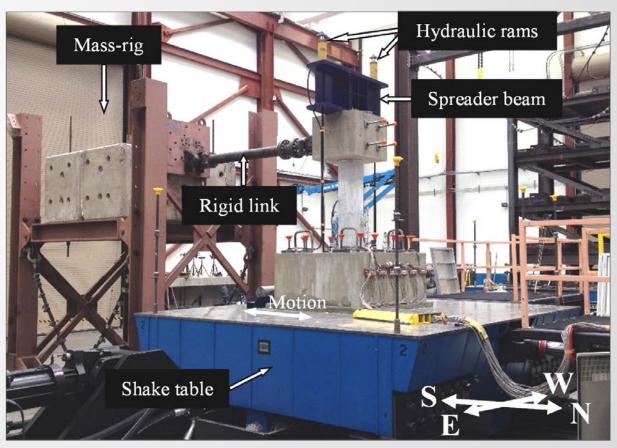

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Tests on ¼ scale single column models

Plastic	SMA inside the plastic				
hinge	hinge element				
element	NiTi	CAM			
ECC	NE / NE-R	CE / CE-R			
Rubber	NR / NR-R	CR/CR-R			




partnerships for innovation academe + partners → from scientific discoveries to practical use



Test setup and procedure

RC columns under NF motions: Phan et al. '07

N

University of Nevada, Reno

partnerships for innovation academe + partners -> from scientific discoveries to practical use

NE-R model: 1.0x Rinaldi =290% x DE

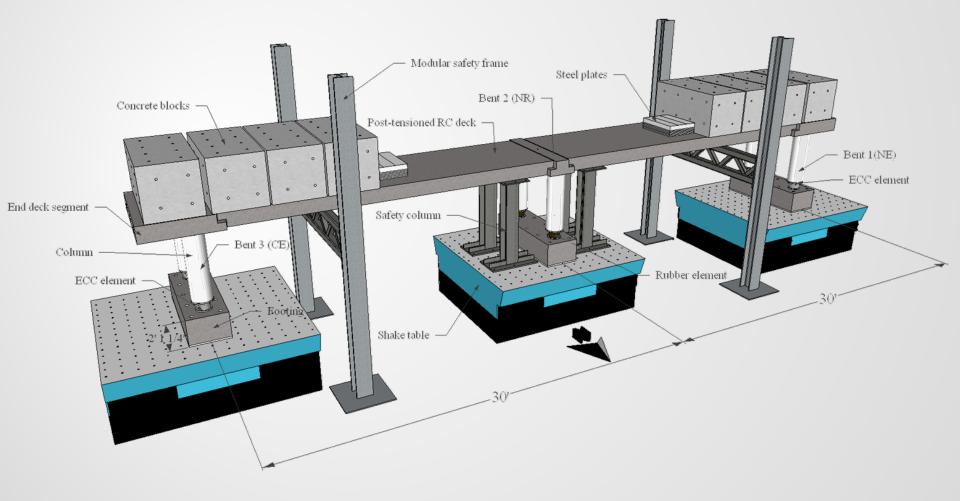
partnerships for innovation academe + partners -> from scientific discoveries to practical use

DfD columns: key observations

partnerships for innovation academe + partners → from scientific discoveries to practical use

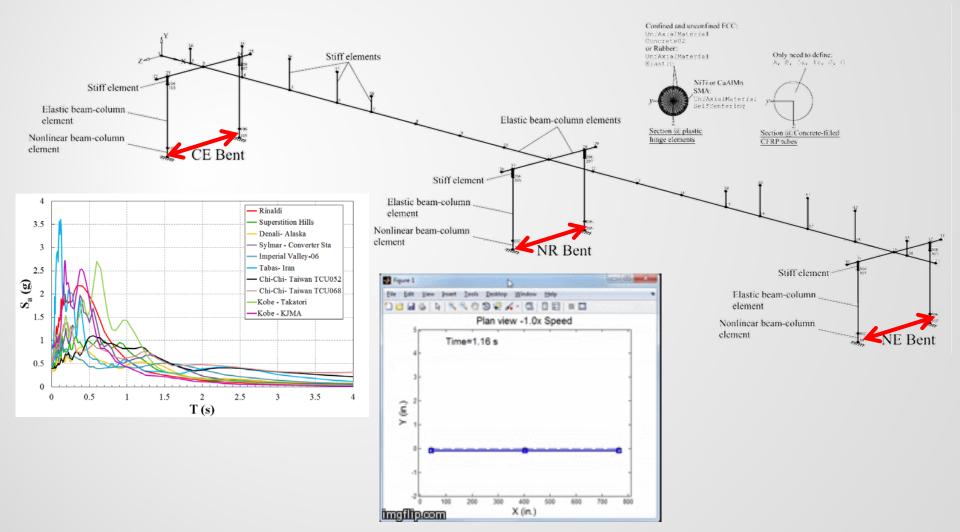
DfD columns: key results

Column	Run No.	Max.	Res.	
model	[PGA (g)]	Drift	Drift	
NE	5 [0.76]	5.7%	0.02%	
NE-R	6 [0.83]	6.7%	0.18%	
NR	6 [0.95]	6.0%	0.24%	
NR-R	7 [1.02]	6.7%	0.29%	
CE	5 [0.76]	5.8%	0.22%	
CE-R	6 [0.83]	7.0%	0.13%	


- Easy assembly/disassembly
- High self-centering capabilities

partnerships for innovation academe + partners -> from scientific discoveries to practical use

2-span bridge models (bridges 1&2)



partnerships for innovation academe + partners -> from scientific discoveries to practical use

Pre-test analytical studies

partnerships for innovation academe + partners -> from scientific discoveries to practical use

Assembly/disassembly time-lapse

partnerships for innovation academe + partners - from scientific discoveries to practical use

Overview - Shake table test of a reassembled precast modular 2-span bridge model with innovative materials (Bridge #2)

2/6/2015 Run 7 - 1.225 x Rinaldi (PGA=1.2 g)

PI: Dr. M. 'Saiid' Saiidi Graduate Assistant: Sebastian Varela, PhD student University of Nevada, Reno

partnerships for innovation academe + partners → from scientific discoveries to practical use

Preliminary results – 2-span bridges

Bridge 1:

			Max. drift			Res. drift		
Run #	x Rinaldi	x DE	NE Bent	NR Bent	CE Bent	NE Bent	NR Bent	CE Bent
1	0.10	20%	0.86%	0.87%	0.80%	0.03%	0.02%	0.01%
2	0.35	75%	2.44%	2.49%	3.64%	0.11%	0.13%	0.13%
3	0.60	130%	4.01%	4.09%	4.63%	0.15%	0.15%	0.10%
4	0.85	180%	5.60%	5.68%	5.58%	0.26%	0.18%	0.07%

Bridge 2:

			Maximum drifts			Residual drifts		
Run #	x Rinaldi	x DE	NE Bent	NR Bent	CE Bent	NE Bent	NR Bent	CE Bent
1	0.10	20%	0.72%	0.74%	0.96%	0.02%	0.01%	0.01%
2	0.35	75%	2.49%	2.51%	3.58%	0.04%	0.03%	0.03%
3	0.60	130%	4.33%	4.25%	5.14%	0.09%	0.06%	0.03%
4	0.85	180%	6.06%	5.77%	5.46%	0.21%	0.11%	0.03%
5	0.47	100%	3.44%	3.37%	4.18%	0.21%	0.12%	0.04%
6	1.10	235%	8.38%	7.86%	7.18%	0.32%	0.17%	0.06%
7	1.23	260%	9.95%	8.95%	7.90%	0.26%	0.15%	0.08%

Conclusions

- Innovative concept for resilient DfD-ABC columns was successfully developed and tested dynamically on ¼ scale single column and 2-span bridge models.
- Damage to the plastic hinge elements was limited and could be easily repaired, while broken SMA bars could be replaced.
- Very low residual drifts and loss of capacity: increased functionality after an intense earthquake.
- DfD concept developed facilitates reuse and recycling of column components, thereby reducing energy consumption and CO₂ footprint during material extraction and manufacture.

Thank you!

Acknowledgments

- NSF funding support through grant IIP-111406.
- Dr. Sara Nerlove PFI program director at NSF.
- Dr. Salem Faza MMFX Steel Corporation of America.
- Furukawa Techno Material Co., Ltd. Japan.
- Messrs. Christian Dahl and Joseph Morente HRC Corp.
- Mr. Greg White Disc-Lock Inc.
- AVAR-SAS.
- Messrs. Aaron Holmes and Troy Olson NDOT Materials Lab.
- Earthquake Lab Personnel University of Nevada, Reno.