

Innovative, Accelerated, and Cost Effective Options for Short Span Bridges

Western Bridge Engineers' Seminar

Michael Barker, PE University of Wyoming & SSSBA Bridge Technology Center

Outline of Today's Presentation

- SSSBA & eSPAN140 Design
- Competitiveness of Steel Bridges
- Economics & Bridges Built Using eSPAN140
- Modular Systems
- Training

Short Span Steel Bridge Alliance - What do we do?

- Education (webinars, workshops, forums, conferences)
- Technical Resources (standards, guidelines, best practices)
- Case Studies (economics: steel is cost-effective)
- Simple Design Tools (eSPAN140)
- Answer Questions (Bridge Technology Center)
- Access to Industry Partners (industry contact list)

The New Steel

All FREE for bridge owners & designers

Website

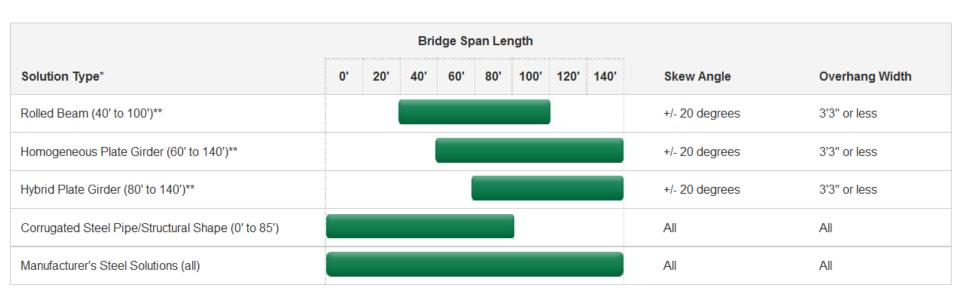
- eSPAN140 Web-based Design Tool
- Bridge Technology Center
- Technical Design Resources
- Catalog of Short Span Steel Solutions
- Project Case Studies
- Video & Photo Gallery
- News Updates & Social Media (Twitter / LinkedIn / Facebook)
- Email Newsletter (sign-up to receive it)
- Calendar of Industry Events

www.ShortSpanSteelBridges.org

Free Online Design Tool for Short Span Steel Bridges

Developed by the Short Span Steel Bridge Alliance

http://www.espan140.com/


Standards for Short Span Steel Bridge Designs

- Goals:
 - Economically competitive
 - Expedite & economize the design process
 - Simple repetitive details & member sizes.
- Bridge Design Parameters:
 - Span lengths: 40 feet to 140 feet (5-foot increments)
 - Girder spacing: 6 feet, 7.5 feet, 9 feet and 10.5 feet
 - Homogeneous & Hybrid plate girders with limited plate sizes
 - Limited Depth & Lightest Weight Rolled Beam Sections
 - Selective cross-frame placement/design (AASHTO/NSBA)

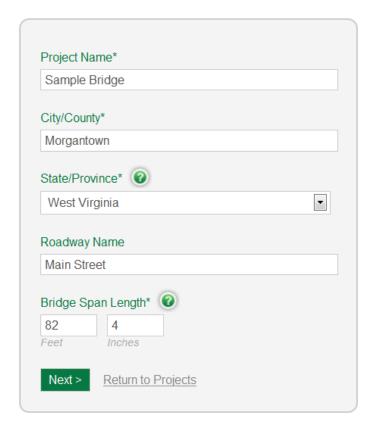
Range of available solutions:

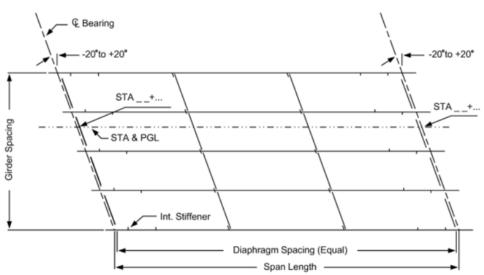
eSPAN140

- eSPAN140 is an easy-touse and <u>free</u> resource for bridge engineers & owners.
- In 3 easy steps, multiple steel solutions are recommended!

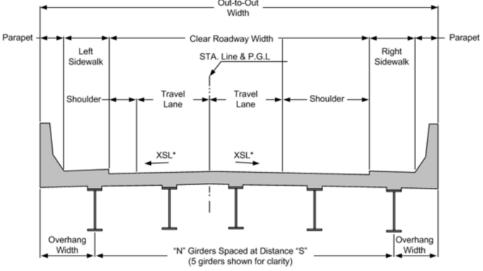
Step 1.
Create a User's Account

Step 2.
Input Your Specific Project Details




Step 3.View Your Instant Customized Solutions Books

• Step 2: Project Information



Step 2: Project Details (general dimensions)

Step 3: Customized Solutions Book is Provided (pdf)

Standard Design and Details of Short Span Steel Bridges Solutions

- Rolled Beam Recommendations
- Plate Girder Recommendations

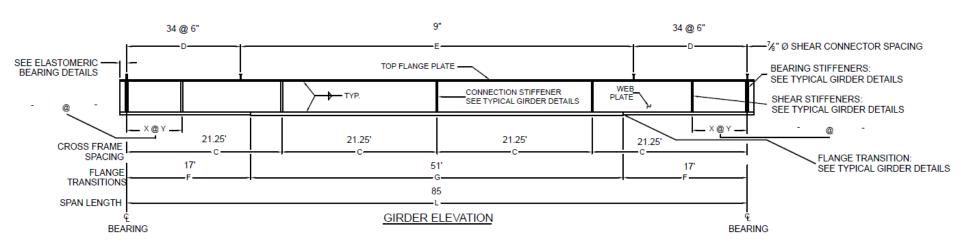
Standard Design and Details of Corrugated Steel Pipe and Structural Plate Solutions

Manufacturer's Steel Solutions (SSSBA Partners)

Customized Solutions from Members of the SSSBA

Durability Solutions (SSSBA Partners)

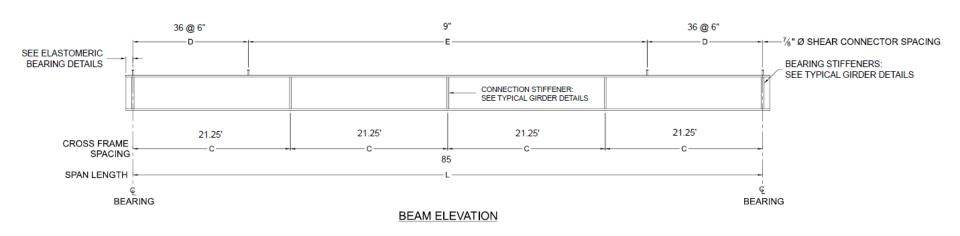
- Galvanized & Paint
- Weathering Steel



Design Example

• Sample plate girder (homogeneous) elevation:

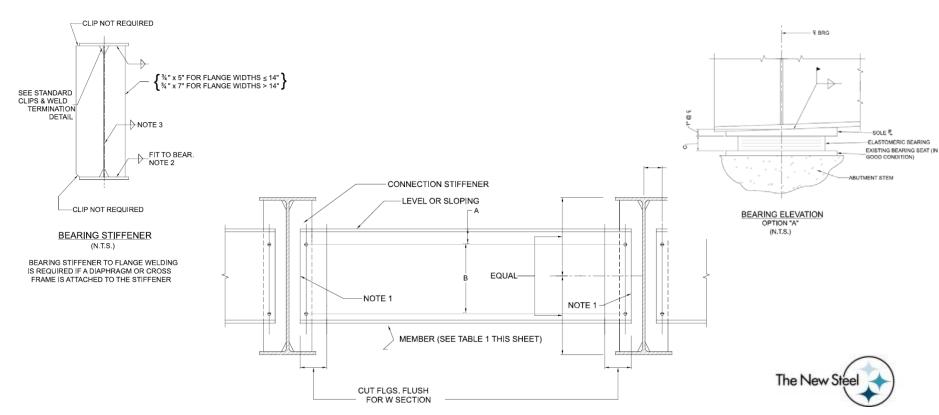
COMPOSITE PLATE GIRDER WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, HOMOGENEOUS



Design Example

Sample rolled beam (lightest weight) elevation:

COMPOSITE ROLLED BEAM WITH PARTIALLY STIFFENED WEB - 4 GIRDERS AT 8' 10" GIRDER SPACING, LIGHTEST WEIGHT



Practical and Economical Detailing

Typical stiffener details

Typical diaphragm details Typical bearing details

Economics Case Study

Steel vs. Concrete Costs Audrain County, MO

The New Stee

Case Study Bridges: Side-by-Side Comparison Steel Concrete

Audrain County, MO Bridge 411
Built 2012
Steel 4 Girders
47.5 ft. Span
24 ft. Roadway Width
2 ft. Structural Depth
No Skew

Audrain County, MO Bridge 336
Built 2012
Precast 6 Hollowcore Slab Girders
50.5 ft. Span
24 ft. Roadway Width
2 ft. Structural Depth
20° Skew

Case Study Bridges: Side-by-Side Comparison Total Cost of Structure

Steel Concrete

19.3% Total
Bridge Cost
Savings with
Steel

Total Bridge Costs

Material = \$67,450

Labor = \$26,110

Equipment = \$24,966

Guard Rail = \$ 6,603

Rock = \$7,571

Engineering = \$21,335

TOTAL = \$154,035 (\$120.83 / sq. ft.)

The New Stee

Total Bridge Costs

Material = \$41,764

Labor = \$24,125

Equipment = \$21,521

Guard Rail = \$ 7.895

Rock = \$8,302

Engineering = \$ 8,246

TOTAL = \$111,853 (\$97.48 / sq. ft.)

Case Study Bridges:

Side-by-Side Comparison SuperStructure Only Costs

(Remove Site Prep, Abutment, Grading & Finishing, Guardrail, Engineering, Rock, Etc)

Steel: Superstructure \$37.54 per sq. ft. Concrete: Superstructure Cost \$50.61 per sq. ft.

Same bridge conditions:

- Structural Depth = 2 ft. (No Difference in Approaches)
- Roadway Width = 24 ft.
- Same Abutments for Both Can be Used (Steel Could Use Lighter)

 The New Steel

 The New Steel
- Same Guard Rail System
- Same Work Crew

Case Study Bridges: Other Bridges in MO

Superstructure	Steel				Concrete						
Bridge Number	061	140	149	152	710	AVG	028	057	069	520	AVG
Year Built	2008	2008	2008	2009	2010	AVG	2009	2010	2011	2006	AVG
Span Length	50	50	40	62	64	53.2	36	36	38	40	37.5
Skew	0	0	0	30	35	13	0	15	20	30	16.25
Cost Summary											
- Labor	\$14,568	\$21,705	\$15,853	\$24,765	\$31,949	\$21,768	\$12,065	\$15,379	\$14,674	\$19,044	\$15,291
- Material	\$56,676	\$53,593	\$46,282	\$92,821	\$69,357	\$63,746	\$51,589	\$54,450	\$50,576	\$46,850	\$50,866
- Rock	\$6,170	\$6,216	\$3,694	\$8,235	\$6,501	\$6,163	\$5,135	\$7,549	\$5,378	\$3,621	\$5,421
- Equipment	\$7,487	\$12,026	\$7,017	\$19,579	\$15,266	\$12,275	\$5,568	\$10,952	\$11,093	\$14,742	\$10,589
- Guardrail	\$4,715	\$7,146	\$3,961	\$7,003	\$7,003	\$5,966	\$4,737	\$4,663	\$5,356	\$3,323	\$4,520
Construction Cost	\$89,616	\$100,686	\$76,807	\$152,403	\$130,076	\$109,918	\$79,094	\$92,993	\$87,077	\$87,580	\$86,686
CONST. COST PER FT ²	\$74.68	\$83.91	\$80.01	\$102.42	\$84.68	\$86.09	\$91.54	\$107.63	\$95.48	\$91.23	\$96.32

eSPAN140 Designed Bridges

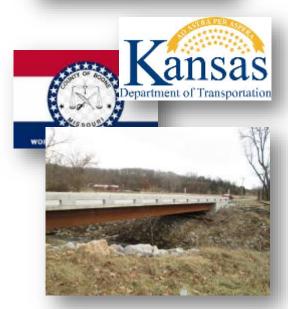
1st Direct Application of eSPAN140 – start to finish

Jesup South Bridge, Buchanan County, Iowa

- Buchanan County Iowa
- Count Crew Built Bridge
- Replacement using W36x135 rolled beams
- 65 feet length, 40 width
- Better Roads (February 2014)

County Crew Accomplishments:

- Longest Bridge Built
- First Steel Bridge Built
- First Concrete Deck
- First Integral Abutment
- Galvanized Steel
- Galvanized Rebar
- County Equipment



Other eSPAN140 Bridges

- Boone County, Missouri (Local)
 - High Point Lane Bridge
 - 102 feet (2 lane rural road plate girder bridge)
 - 44" weathering steel plate girders (4 lines)
 - Constructed in summer 2013
- Kansas Department of Transportation (State)
 - Shawnee County
 - 112 feet (5 plate girder bridge)
 - Competitive bid process (steel vs. concrete)
 - DOT used eSPAN140 for preliminary design
 - Constructed in summer 2014

One More - Boggs Road Bridge Replacement

Muskingum County, OH

Open to traffic in 21- working days

Before: 33-foot Span 22'-7" Wide

44 - Foot Span Composite Design:

5 - W24 x 76 GR 50, Galvanized Steel Beams on 5-Foot spacing w/ 2-FT Overhang

Why 21 Days?

- eSPAN140 related design / used "inhouse" engineering
- Local crew installed the bridge
- "Light" crane / light weight and handling
- Stay-in-place forming / shear studs were installed through decking
- Traditional Abutments

BOGGS ROAD BRIDGE REPLACEMENT STEEL VS. CONCRETE

Material Costs Steel:

1.	Bolt Together Steel S	Structure	\$26,016
	•		. ,
2.	Decking (1.5C – 18 g	ja. Decking	-
3.	Shear Studs		\$1,680
4.	Bridge Railing and G	uard Rail	\$14,590
5.	Reinforcing Steel		\$7,490
6.	Concrete /Forms (18	0.5 CYs)	\$27,026
7.	Asphalt Repair		<u>\$11,500</u>
		Subtotal	\$90,524

Material Costs Concrete:

1.	Concrete Box Beams (6 Beams)	\$59,400
2.	Bridge Railing and Guard Rail	\$11,500
3.	Reinforcing Steel	\$5,000
4.	Concrete/Forms (160 CYs)	\$24,000
5.	Asphalt Repair	\$11,500
6.	Crane Rental	<u>\$2,500</u>

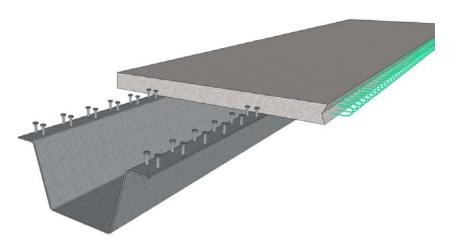
Subtotal \$113,900

Labor and Equipment Costs:

1. Labor (, ,	\$19,562	
2. Equipm	nent	<u>\$21,679</u>	

Grand Total = \$131,765 = \$124.77 /ft²

Labor and Equipment Costs:

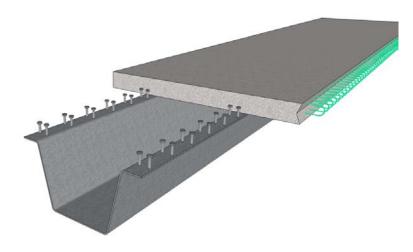

		= \$142 36 /ft ²
		Grand Total = \$150,336
2.	Equipment	<u>\$21,679</u>
1.	Labor (18 days)	\$14,757

Difference Between Steel Beams and Concrete Box Beams \$18,571

SSSBA Modular ABC Design Press-Brake Tub Girders

Press Brake Tub Girders

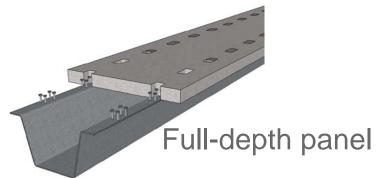
- Modular shallow trapezoidal boxes fabricated from cold-bent structural steel plate (weathering steel or galvanized).
- Economy through a significant reduction in fabrication costs due to coldbending versus welding of the section.
- Reduces need for stiffeners and cross frames.
- Allows for a variety of owner-specified decking.
- Advantages include:
 - Accelerated (install in 1 or 2 days)
 - Modular
 - Cost-effective
 - Simple to fabricate and install

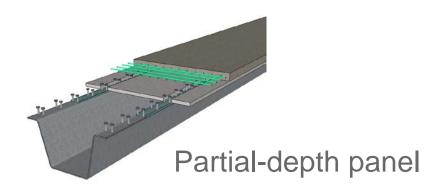


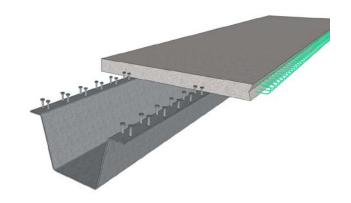


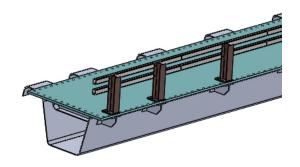
Standardization

- Standardized girders are proposed:
 - PL 72" × 1/2"
 - Applicable for spans up to 40 feet
 - PL 96" × 1/2"
 - Applicable for spans up to 60 feet
 - PL 120" × 5/8"
 - Applicable for spans up to 80 feet
 - Double PL 60" × 1/2"
 - Applicable for spans up to 65 feet








Decking Options

Sandwich plate

2015 Press-Brake Tub Girder

Continuing PBTG Research

Michaelson, G., Barth, K., and Barker, M., "Development and Experimental Validation of Composite Press-Brake-Formed Modular Steel Tub Girders for Short-Span Bridges," Accepted to Bridge Engineering Journal, ASCE.

- Ohio Standard Designs
- First PBTG Built (Almost)
 - lowa
 - September Start
- PBTG in Ohio and West Virginia Designs for 2016

Training and Education

Resources & Contact Info

Training & Education Available

- Format
 - Half-day workshops (county engineers/LTAPs)
 - Webinars (online training / presentations)
 - Steel Bridge Forums (DOTs)
 - Conferences/Trade show presentations
- Topics
 - Bridge Engineering-101
 - Steel bridge economy & cost-effective design
 - Standard designs (rolled beam, plate, CSP, structural plate)
 - Innovative bridge systems
 - Case studies/cost analysis

"Hand-outs" at SSSBA Booth

- USB Flash Drive
 - Member information
 - Research materials
 - eSPAN140 information
 - Myths & Realities brochure
- eSPAN140 & SSSBA info

All this and other information at: www.ShortSpanSteelBridges.org

Thank You

