Western Bridge Engineers Seminar - September 9, 2015 - Reno, NV Mike Bartholomew, PE – Principal Bridge Engineer

ch2m:

DURABILITY DESIGN OF BRIDGES FOR SPECIFIED SERVICE LIFE

Presentation Overview

Durability / Service Life Design – What is it?

Historical Background – What's been done?

Current Status / Gaps – What's being done?

Proposed Research on Service Life Design – What's next?

How Long Will Your Bridge Last?

- The Need to Predict Service Life of Bridge Components

> Mike Bartholomew/CH2M HILL Western Bridge Engineer's Seminar Boise, Idaho September 23-26, 2007

Service Life Background

- Bridge Design has historically focused primarily on structural engineering aspects
 - Selecting materials by their strength properties (f'c, fy) and sizing components to resist loads
 - Extremely important, but does little to ensure that a structure will remain in use for a given period of time

Service Life Background

- When a structure reaches the end of its life
 - The cause is primarily because the material components have begun to deteriorate
 - Not from unanticipated loads
 - But by loss of function from steel corrosion and concrete cracking/spalling, as a result of the environmental exposure conditions

Service Life Background

- Significant research has been completed over the past 25 years on how materials deteriorate with time (particularly reinforced concrete)
- Mathematical solutions have been developed to model deterioration

Service Life Design (SLD)

- Design approach to resist Deterioration caused by Environmental Actions
 - Also called Durability Design & often Design for 100year Service Life
- Similar to design against Structural Failure caused by External Loads
 - What we know as Strength Design

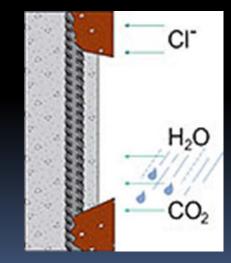
Service Life Design Principles

- All Materials Deteriorate with Time
- Every Material Deteriorates at a Unique Rate
- Deterioration Rate is Dependent on
 - The Environmental Exposure Conditions
 - The Material's Protective Systems

Deterioration

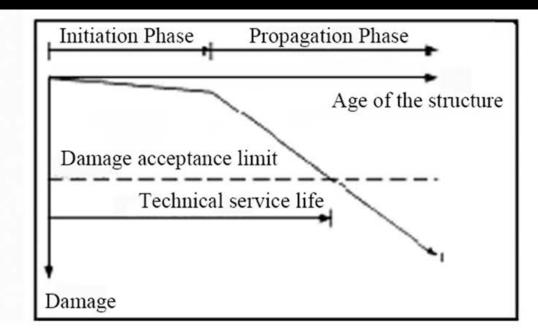
Types of Deterioration

- Reinforcing Steel Corrosion
- Concrete Cracking, Spalling, Delamination
- Structural Steel Corrosion following breakdown of Protective Coating Systems



Environmental Exposure

- Chlorides from Sea Water or Delcing Chemicals
- CO₂ from many Wet/Dry Cycles
- Freeze/Thaw Cycles
- Alkali-Silica Reaction (ASR)
- Abrasion (ice action on piers, studded tires on decks)



Material Resistance

- Reinforced Concrete
 - Adequate reinforcing steel cover dimension
 - High quality concrete in the cover layer
- Structural Steel
 - Chemical composition for corrosion resistance
 - Protective Coatings

Deterioration Modeling

- Reinforcing Steel Corrosion is Defined with a Two-Phase Deterioration Model
 - Initiation No Visible Damage is Observed
 - Propagation Corrosion Begins and Progresses

Service life of concrete structures. A two-phase modelling of deterioration. [Tuutti model (1982)]

Current Specifications for Service Life Design

- *fib* Bulletin 34 Model Code for Service Life Design (2006)
- *fib* Model Code for Concrete
 Structures 2010
- ISO 16204 Durability Service Life Design of Concrete Structures (2012)
- All focus on Concrete Structures only, little available for Steel

fib

fib Model Code for Concrete Structures

Service Life Design Strategies

Avoidance of deterioration – Strategy A

 Design Based on Deterioration from the Environment – Strategy B

- Deemed to satisfy provisions
- Full probabilistic design
- Semi-probabilistic or deterministic design

Avoidance of Deterioration

- Also called the "Design-Out" approach
- Achieved by either:

- Eliminating the environmental exposure actions
 - (e.g., interior of buildings with controlled temperature & humidity)
- Providing materials with resistance well beyond the requirements needed
 - (e.g., stainless steel reinforcement)
- Not always the most cost effective solution

Deemed to Satisfy Method

- Prescriptive approach used in most major design codes
 - e.g., In severe environment, use concrete with f'c=5000 psi, w/c ratio < 0.40, 2¹/₂" cover
- Based on some level of past performance
- No mathematical deterioration modeling
- Simplistic and not quantifiable
- Lowest level of reliability

ACI-318 Durability Requirements

TABLE 4.2.1 — EXPOSURE CATEGORIES AND CLASSES

Category	Severity	Class	Condition			
F Freezing and thawing	Not applicable	F0	Concrete not exposed to freezing- and-thawing cycles			
	Moderate	F1	Concrete exposed to freezing-and- thawing cycles and occasional exposure to moisture			
	Severe	F2	Concrete exposed to freezing-and- thawing cycles and in continuous contact with moisture			
	Very severe	F3	Concrete exposed to freezing-and- thawing and in continuous contact with moisture and exposed to deicing chemicals			
			Water-soluble sulfate (SO ₄) in	Dissolved		
			1001 A.			
permeability	Medar eq.		permeability is requ	uired.		
Corrosion protection of reinforce- ment	Not applicable	C0	Concrete dry or protected from moisture			
	Moderate	C1	Concrete exposed to moisture but not to external sources of chlorides			
	Severe	C2	Concrete exposed to moisture and an external source of chlorides from deicing chemicals, salt, brackish water, seawater, or spray from these sources			
*Percent sulfate by mass in soil shall be determined by ASTM C1580. *Concentration of dissolved sulfates in water in ppm shall be determined by ASTM D516 or ASTM D4130.						

TABLE 4.3.1 — REQUIREMENTS FOR CONCRETE BY EXPOSURE CLASS

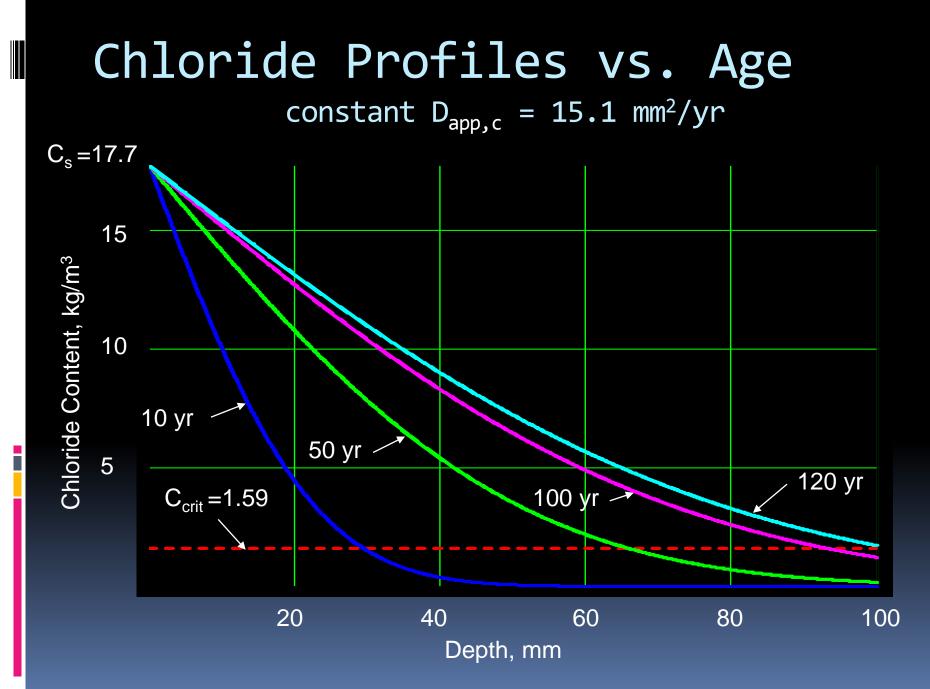
Expo- sure Class	Max. w/cm*	Min. <i>f_c',</i> psi	Additional minimum requirements					
	Air content			Limits cemen tious materia				
F0	N/A	2500		N/A		N/A		
F1	0.45	4500		Table 4.4.1		N/A		
F2	0.45	4500	Table 4.4.1			N/A		
y		Ang. 1	Maximun watu -soruble chloride ion (CI [–]) content in concrete, percent by weight of cement [#]					
			chloride content in percent by	ion (CI [−]) concrete, / wejght of				
			chloride content in percent by cem	ion (CI [−]) concrete, / wejght of	Related p	rovisions		
C0	N/A	2500	chloride content in percent by cem Reinforced	ion (CI [–]) concrete, / weight of ent [#] Prestressed				
C0 C1	N/A N/A	2500 2500	chloride content in percent by cem Reinforced concrete	ion (CI [–]) concrete, / weight of ent [#] Prestressed concrete	Related p			
L			chloride content in percent by cem Reinforced concrete 1.00	ion (CI ⁻) concrete, / weight of ent [#] Prestressed concrete 0.06		ne		

*For lightweight concrete, see 4.1.2.

[†]Alternative combinations of cementitious materials of those listed in Table 4.3.1 shall be permitted when tested for sulfate resistance and meeting the criteria in 4.5.1.

[‡]For seawater exposure, other types of portland cements with tricalcium aluminate (C₃A) contents up to 10 percent are permitted if the *w lcm* does not exceed 0.40.

Full Probabilistic Design


- Uses mathematical models to describe observed physical deterioration behavior
- Model variables are:
 - Environmental exposure actions (demands)
 - Material resistances (capacities)
- Variables represented by mean values and distribution functions (std. deviations, etc.)
- Probabilistic, Monte-Carlo type analysis to compute level of reliability

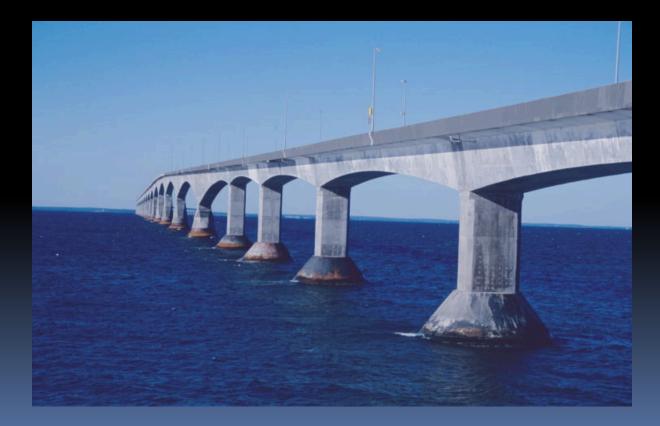
Chloride Ingress Model

 Fick's 2nd Law Models Time to <u>Initiate</u> Corrosion in Uncracked Concrete (Cracks < 0.3 mm or 0.012")

$$C(x,t) = C_{0} + (C_{s} - C_{0}) \cdot \left(1 - erf\left(\frac{x}{2 \cdot \sqrt{D_{app,c} \cdot t}}\right) \le C_{crit}\right)$$

C(x,t)	Chloride concentration at depth & time	kg/m ³
x, t	Depth from surface / time	mm, yr
erf	Mathematical error function	-
C _{crit}	Critical chloride content (to initiate corrosion)	kg/m ³
Co	Initial chloride content of the concrete	kg/m ³
Cs	Chloride concentration at surface	kg/m ³
D _{app,C}	Apparent coefficient of chloride diffusion in concrete	mm²/yr

Full Probabilistic Design


- Reliability based like that used to develop AASHTO LRFD code for structural design
- Sophisticated analysis often considered beyond the expertise of most practicing bridge engineers
- Work effort may be regarded as too time consuming for standard structures
- Has been reserved for use on large projects

Full Probabilistic Method

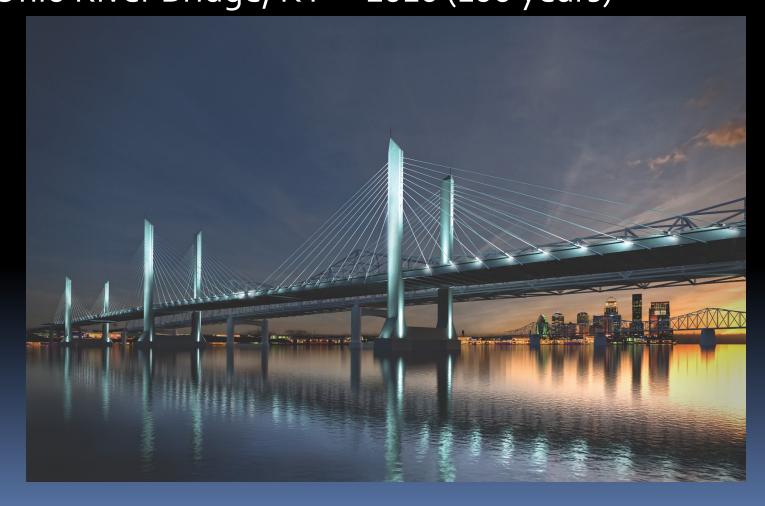
					D _{RCM,0}		(mm²/yr)	
					Trial	rand 0-:	L R	ESOLT
					1	0.20	12	233.9
fib Bulletin	fib Bulletin 34, Section B2 - Full probabilistic design method for chloride induced corrosion - uncracked concrete					0.53	8	286.23
	Fick's 2nd Law			3	0.90		355.22	
					4	0.37		262.51
	$C_{crit} = C(x = a, t) = C_o + (C_{s,\Delta x} - C_o) \left[1 - erf\left(\frac{a}{2\sqrt{1}}\right) \right]$	- Δx	Equation (B2.	1-1)	5	0.11		212.23
	2√1) _{app,C} ·t∕]						223.01
	$D_{app,C} = k_{t} D_{RCM,0} k_{t} A(t)$		Equation (B2.	1-2)		0.15		
					8 9	0.31		253.25
	$k_{e} = \exp\left(b_{e}\left(\frac{1}{T_{ref}} + \frac{1}{T_{real}}\right)\right)$		Equation (B2.	1-3)	10		_	282.85
	$\left(\left(\frac{1}{\text{ref}} - \frac{1}{\text{real}} \right) \right)$				11	0.37	'1	262.37
	(†) α				12	0.49	19	280.75
	$A(t) = \left(\frac{t_o}{t}\right)^{\alpha}$		Equation (B2.	1-4)	13		-++	311.24
	(1)				14		-+-	337.45
					15	0.64	6	301.8
				Normal Dist		tr Coefficients		
							Coe	eff of
			Distribution				Vari	ation,
Parameter	Description	Units	Function	Mean, µ	Std	Dev, σ	a	γ/µ
		m²/sec		8.90E-12	1.	78E-12		0.20
	Chloride Migration Coefficient (from Nordtest NT	mm²/yr		280.9		56.2		
D _{RCM,0}	Build 492 results)	in²/yr	Normal	0.435		0.087		

Service Life Designed Structures

Confederation Bridge, Canada –1997 (100 years)

Service Life Designed Structures

Great Belt Bridge, Denmark – 1998 (100 years)


Service Life Designed Structures

Gateway Bridge, Brisbane – 2010 (300 years)

Service Life Designed Structures Ohio River Bridge, KY – 2016 (100 years)

Service Life Designed Structures Tappan Zee Bridge, NY – 2018 (100 years)

Need More Focus on These

 Representing the majority of the 600,000+ Bridges in the US

Semi-Probabilistic Design

- Uses same mathematical model as Full Probabilistic Design
- Load Factors on Environmental Demands
- Resistance Factors on Material Properties
- Direct solution to model equations
- Not enough data to properly determine appropriate factors and reliability level
- Method expected to be adopted by Codes in the future

Service Life Design Steps

- Identify Environmental Exposure Parameters
- Select a Deterioration Limit State
 - (Corrosion initiation, cracking, spalling, loss of section)
- Select an Expected Service Life
- Select Design Guide / Code & Strategy
- Select a Level of Reliability Level
- Select Materials / Member Dimensions
- Produce Contract Documents

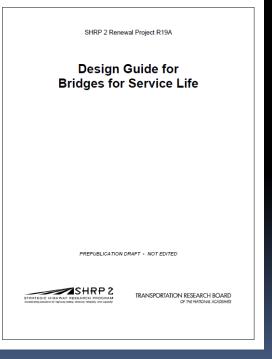
New Contract Requirements

- Identify Additional Tests and Data Collection Requirements
 - Concrete Chloride Migration Coefficient
 - Cover Dimension to Reinforcing Steel
- Incorporate Appropriate Tests in Contract Special Provisions
 - State the Extent of Concrete Test Samples Taken
 - State the Frequency of Cover Dimensions Taken
 - Identify Means to Deal With Variations from Design Intent


Construction Test Requirements

- Concrete Chloride Migration Coefficient Short Term Tests
 - Nordtest Method NT Build 492 Chloride Migration Coefficient from Non-Steady State Migration Experiments (28 day cure, test duration 6 to 96 hours, usually 24 hours)

 ASIM C1202/AASHTOT 277 – Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration (Period Chloride Permeability Test – 56 day cure, ~24 hour conditioning, 6 hour test)


Construction Test Requirements

- Cover Meters for Steel Reinforcement Cover Measurements
- Complete Mapping
 - Min/Max Depth
- Calculate Parameters
 - Mean & Std. Deviation
- ACI 228.2R-2.51
- BSI 1881:204

What's Currently Being Done

Strategic Highway Research Program 2
 Project R19A – Service Life Design Guide

http://www.trb.org/Main/Blurbs/168760.aspx

SHRP2 R19A Team

RESEARCH – TRB

IMPLEMENTATION – FHWA/AASHTO

SUBJECT MATTER EXPERTS / LOGISTICS SME LEAD – CH2M

> TECHNICAL SME's – Buckland and Taylor

SHRP2 R19A Implementation Assistance Program Goals Promote Service Life Design Concepts Marketing, Outreach & Training Target 15% of State DOTs by 2016 Produce Basic Elements for Inclusion in an AASHTO Service Life Design Guide Coordinate with SCOBS and T-9 Build a Strong Technical Foundation Develop Training & Reference Materials Lessons Learned Summaries

Who Are the Lead Agencies?

Oregon

Central Federal Lands (project in Hawaii)

Who Are the Lead Agencies?

Pennsylvania

lowa

Virginia

R19A IAP Funding

- State Agencies were awarded Lead Adopter grants of \$150,000
- FHWA CFL was awarded \$75,000
- Funding for technical assistance from the SME team is through SHRP2, and <u>NOT</u> part of agency grants

R19A Next Steps

- Look for tools from the Implementation Program
- Next Round of Implementation Assistance
 - User Incentive Offering in Round 7 in early 2016
 - Instructions for application on the GO SHRP2 website

http://www.fhwa.dot.gov/goshrp2/ImplementationAssistance

Look for instructions and applications at the SHRP2 websiteUser Incentives / Training

Future Research

- AASHTO T-9 Bridge Preservation Technical Committee sponsoring NCHRP Research Project to Develop
- Uniform Service Life Design Guide Specification
 - Quantify Environmental Exposures
 - Define Deterioration Models for Steel Bridges and Coatings
 - Adopt Construction Testing Specifications
 - Develop Life-Cycle Costing Tools
 - Recommend In-Service Maintenance & Inspection Procedures
 - Assess Remaining Life of Existing Structures
- RFP Due Out in Next 2 Months

Summary

- Durability or Service Life Design is:
 - A Design approach to resist Deterioration caused by Environmental Actions
- Design Guides/Codes are Available:
 - *fib* Bulletin 34 Model Code for Service Life Design
- Current Implementation
 - SHRP2 R19A projects (FHWA CFL, IA, OR, PA, VA)
- AASHTOT-9 Initiated Research
 - NCHRP Uniform Service Life Design Guide

Thank you for your attention

- Mike Bartholomew
 Ch2M^{*}₅₄
- mbarthol@ch2m.com