DECK REPLACEMENT ON PC CONCRETE BULB-T GIRDERS WITH SACRIFICIAL FLANGE TECHNIQUE LOWER PERRY BRIDGE

Tanarat Potisuk, PhD, PE, SE

Prestressed Concrete Standards Engineer

PRESENTATION OUTLINES

Background – Motivation

Project Information

Construction Cost – Schedule

Lessons Learned

Bar Although anns B

PROJECT LOCATION

PROJECT LOCATION

Total Construction Contract Cost = \$40.2 Million

PROJECT LOCATION Lower Perry Bridge in Region 5 – STR No. 19230

PROJECT LOCATION Lower Perry Bridge in Region 5 – STR No. 19230

Grande Ronde R

Lower Perry Bridge in Region 5 – STR No. 19230

Lower Perry Interchange BR# 19230 HWY 6 - 1-84 - MP 257.22 WB

> Rt. Side Profile 12/17/03

2013 – Full deck replacement after 10 years

Original Plans – Remove deck, preserve and jack girders

Original Plans – Remove deck, preserve and jack girders

Original Plans – Remove deck, preserve and jack girders

Remove deck, preserve and jack girders

Remove deck, preserve and jack girders

Original Plans –

Contractor's Proposal –

Remove deck cutting girder flanges and extended stems

Contractor's Proposal – Remove deck cutting girder flanges and extended stems

Contractor's Proposal – Remove deck cutting girder flanges and extended stems

Positive Bending Moment at Bents

Deflection due to super-imposed dead loads with continuous span configuration

Section Capacity

Section Capacity

Section Capacity

- 57

CONSTRUCTION SCHEDULE – 2013

Mid July –

Reviewed and approved repair calculations, plans

August –

Completed demolition and formed stems, diaphragms

September –

Cast stems, tied deck rebar, poured new RC deck

October –

Finished deck pour, end panels, deck surface texturing

November –

Opened to traffic

CONSTRUCTION COST – BID TAB

					1st	11	2nd		3rd	
Item Description	Unit	Quantity	Unit Price	Actual Unit Price	Amount	%	Amount	%	Amount	%
 Remove and replace girders 	LS	1.0	\$408,750.0	\$408,750.0	\$408,750.0	19.7	\$168,000.0	12.8	\$175,000.0	13.3
- Bridge removal work	LS/SQFT	17600.0	\$993,750.0	\$56.5	\$993,750.0	48.0	\$460,000.0	35.0	\$475,000.0	36.0
Granular structure backfill	LS/CUYD	4.0	\$1,000.0	\$250.0	\$1,000.0	0.0	\$7,500.0	0.6	\$1,000.0	0.1
Reinforcement	LS/LB	8900.0	\$15,000.0	\$1.7	\$15,000.0	0.7	\$15,400.0	1.2	\$15,000.0	1.1
Coated reinforcement	LS/LB	115060.0	\$140,000.0	\$1.2	\$140,000.0	6.8	\$143,000.0	10.9	\$140,000.0	10.6
Deck concrete, HPC5000	LS/CUYD	435.0	\$270,000.0	\$620.7	\$270,000.0	13.0	\$275,000.0	21.0	\$270,000.0	20.5
General structural concrete, Class3300	LS/CUYD	16.0	\$20,000.0	\$1,250.0	\$20,000.0	1.0	\$20,500.0	1.6	\$20,000.0	1.5
General structural concrete, Class5000	LS/CUYD	87.0	\$60,000.0	\$689.7	\$60,000.0	2.9	\$61,400.0	4.7	\$60,000.0	4.5
Saw cut texturing	SQYD	1860.0	\$4.5	\$4.5	\$8,370.0	0.4	\$8,556.0	0.7	\$8,370.0	0.6
Reinforced concrete bridge end panels	LS/SQYD	278.0	\$250.3	\$250.3	\$69,569.5	3.4	\$66,998.0	5.1	\$69,500.0	5.3
Asphaltic plug seals	LS/FT	82.7	\$10,000.0	\$120.9	\$10,000.0	0.5	\$10,230.0	0.8	\$10,000.0	0.8
Type "F" concrete rail	LS/FT	914.0	\$75,000.0	\$82.1	\$75,000.0	3.6	\$76,000.0	5.8	\$75,000.0	5.7
and the second secon				2 · · · ·	\$2,071,439.5	100.0	\$1,312,584.0	100.0	\$1,318,870.0	100.0

	and the second				CAN L	
В	ridge area	SQFT 176	27.25	\$117.51	\$74.46	\$74.82
		N. C.		total and the second second		
	and the second se					
LESSONS LEARNED

Complete deck replacement on PS/PC concrete girders is possible.

Deck removal by cutting through girder flanges can be done.

Girder sweep can occur where intermediate diaphragms do not exist.

Careful attention to behavior at girder ends is required.

Crack control reinforcement is needed to reduce cracking at interface between PC and CIP concrete near end diaphragms.

