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Problem

» It is unacceptable for bridges to
collapse at any time

» Such events (and near misses)
are too common during
erection and/or demolition

» The majority of engineering
effort in projects is being placed
in design rather than
construction

» There is a general lack of
criteria and guidance

Stability is a complicated issue
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Cantilever Arm Under Construction




Collapsed Bridge
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Girder Buckling Mode: Lateral-Torsional

» Tensile and compressive stresses produced by bending
» Result: lateral translation and twisting of cross-section

— Compression flange buckles & laterally translates
— Tension flange doesn’t buckle so shape must twist

Vertical Uniform Loading




AASHTO Equation for Lateral
Torsional Buckling
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e 1st term under radical: Warping torsional stiffness
» 2" term under radical: Saint-Venant torsional stiffness
e Applicable to doubly-symmetric and singly-symmetric shapes
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Temporary Lean-on Brace




Bracing

» Load distribution
— Live load
— Wind
» Girder stability
» Combined wind and stability




Torsional Bracing
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Crane

Holding




Holding Crane Effect
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Setting Girder Pairs




System Buckling of Girders
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System Buckling

—
b Mb=“i EE v l, 1, (2 girders, symmetric)
g

» S =girder spacing

» ®M, > 1.5 M_

» Non-symmetric; 3- and 4-girder equations available
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Eigenvalue (a.k.a. critical load)
Buckling Analysis

» Evaluate global and potentially local stability
» Analysis program can solve for...
— Buckling mode shape (eigenvector)
— Buckling mode value (eigenvalue)
» Analysis provides elastic buckling capacity
— Material inelasticity is not considered, but...
— Stresses during construction in elastic range anyway

» Most commercial software tools can do eigenvalue
buckling

» Straight bridges
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Eigenvalues

» Eigenvalue A: factor applied to reference load
» This determines critical buckling load
» P, = AP
— P_, = corresponding buckling load (k)
— A = eigenvalue
- P, = magnitude of applied force (k)
» Target, P_, = 1.75 x selfweight
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Critical Erection Stages

Contractor’s
preferred
erection method

» Complete 1st
splice on
ground

» Erect Span 1
with cantilever
portion

Case

Erected Girders

Case

Erected Girders
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Critical Erection Stages

» Eigenvalue analysis of Case 1 (Span 1)
— Girder 1 erected with no intermediate bracing
Eigenvalue on unfactored selfweight =0.48 < 1
Buckled shape shown; girder clearly inadequate (LTB)
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ritical Erection Stages

» Eigenvalue analysis of Case 2 (Span 1)
— Girders 1 & 2 erected with 50% cross-frames
Eigenvalue on unfactored selfweight = 1.57

Buckled shape shown; case borderline (1.25<A<1.75)

Analysis Cases: 2/

Hax Displacement: 1.0000 =t node: 14722

Eigenmode: 1/1

Eigenvalue: 1.5716
out of plane: Top( -0.03
out of plane: Top{ -0.03

Max D=1.184: Dx=-1.180, Dy

.Fixed in Z : Fz=18.999
: Fz=20.623

.Fixed in X¥Z : F%=0.007 Fy=-3.344 Fz=35.128
n XYZ : Fx=—D.DD% Fy=-3.580 Fz=37.329




Critical Erection Stages

» Contractor’s erection method :
|

(continued)

1 0.48
» Erect Span 2 with air splice 5 157
» Erect remaining cross-frames 3 1.84
— 50% of intermediate cross-frames 4 1.96
installed originally > 1.32
) . : 6 2.36

» Evaluate each case’s stability with
, 7 3.15

UT Bridge

8 3.55

» Eigenvalue analysis using
unfactored self-weight
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Setting Girder with Bracing Attached
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Collapsed Girders
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Roll Stability of Concrete Girders

» Rollover caused by:

— Initial girder rotation
compounded by:

Lack of flatness of
PPC bottom flange

Roll flexibility of
bearings...

Leading to increased
girder rotation
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Note: Figure adapted from Mast (1993)




Roll Stability of Concrete Girders

» Girder rollover stability can be influenced by:
— Bearing slope and bearing type
— Bearing skew relative to girder centerline
— Girder imperfections (sweep)
» Rollover controls stability, not lateral-torsional buckling
— PPC girders designed to not crack under selfweight
— Relatively large |, and J: no LTB
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Concrete Girders X-Bracing




Demolition Load Changes
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Bridge Demolition Failure

Courtesy of Dr. D. Jauregui




Engineering for Structural Stability in

Bridge Construction

» FHWA has initiated effort
to develop comprehensive
manual and training course

» Product will attempt to
provide

— Summary of lessons learned

— Understanding and analysis
of global stability

— Design criteria for erection
— Guidance and best practices

— Design examples
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Wind Loads

» AASHTO
— 300 PLF

» ASCE 7-10
~ F=.00256 k, k,, k, G C; A V2
— Load factor in velocity

» ASCE 37 Reduction Factors
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Wind Distribution—Open Structure

» C=2.2 (min)
» C=2(1+0.05s/d)<4.0
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wWind

» One day, design velocity = 20 mph
» Velocity modification factors (Vmod=FV)

Duration Factor
0 — 6 weeks 0.65
6 weeks — 1 year 0.70
1 year — 2 years 0.8

2 years — 5 years 0.85




Load Factors

Load Combinations
and Load Factors Cw, C

Strength | 1.25 1.25

Strength 11| 1.25 1.25 = 1.0
Strength V 1.25 1.5 — 1.0
Strength IV 1.40 1.40 1.50 —

Service 1.00 1.00 1.00 1.0




Questions
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