Girder Stability in Erection & Demolition

2015 Western Bridge Engineers Seminar

Reno, Nevada

Michael J. Garlich, S.E., P.E. COLLINS ENGINEERS

Problem

- It is unacceptable for bridges to collapse at any time
- Such events (and near misses) are too common during erection and/or demolition
- The majority of engineering effort in projects is being placed in design rather than construction
- There is a general lack of criteria and guidance
- Stability is a complicated issue

Cantilever Arm Under Construction

Collapsed Bridge

Girder Buckling Mode: Lateral-Torsional

- Tensile and compressive stresses produced by bending
- Result: lateral translation and twisting of cross-section
 - Compression flange buckles & laterally translates
 - Tension flange doesn't buckle so shape must twist

AASHTO Equation for Lateral Torsional Buckling

$$F_{cr} = \frac{C_b \pi E}{\left(\frac{L_b}{r_t}\right)^2} \sqrt{1 + 0.078 \frac{J}{S_{xc} h} \left(\frac{L_b}{r_t}\right)^2}$$

- 1st term under radical: Warping torsional stiffness
- 2nd term under radical: Saint-Venant torsional stiffness
- Applicable to doubly-symmetric and singly-symmetric shapes

Temporary Lean-on Brace

Bracing

- Load distribution
 - Live load
 - Wind
- Girder stability
- Combined wind and stability

Torsional Bracing

•
$$M_{br} = \frac{0.005 L_b L M_u^2}{n E I_{eff} C_b^2 h_o}$$
 (Str)

•
$$\beta_t = \frac{2.4 L M_u^2}{n E I_{eff} C_b^2}$$
 (Stif)

Holding Crane

Holding Crane Effect

Setting Girder Pairs

System Buckling of Girders

(b) Global system buckling

SECTION A-A (c) System cross section

System Buckling

•
$$M_b = \frac{\pi^2 SE}{L_g^2} \sqrt{I_x I_y}$$
 (2 girders, symmetric)

- S = girder spacing
- ΦM_b > 1.5 M_o
- Non-symmetric; 3- and 4-girder equations available

Eigenvalue (a.k.a. critical load) Buckling Analysis

- Evaluate global and potentially local stability
- Analysis program can solve for...
 - Buckling mode shape (eigenvector)
 - Buckling mode value (eigenvalue)
- Analysis provides elastic buckling capacity
 - Material inelasticity is not considered, but...
 - Stresses during construction in elastic range anyway
- Most commercial software tools can do eigenvalue buckling
- Straight bridges

Eigenvalues

- Eigenvalue λ: factor applied to reference load
- This determines critical buckling load
- $P_{cr} = \lambda P_{ref}$
 - $P_{cr} = corresponding buckling load (k)$
 - $-\lambda$ = eigenvalue
 - P_{ref} = magnitude of applied force (k)
- Target, $P_{cr} \ge 1.75 \times selfweight$

Contractor's preferred erection method

- Complete 1st splice on ground
- Erect Span 1 with cantilever portion

ENGINEERSZ

- Eigenvalue analysis of Case 1 (Span 1)
 - Girder 1 erected with no intermediate bracing
 - Eigenvalue on unfactored selfweight = 0.48 < 1
 - Buckled shape shown; girder clearly inadequate (LTB)

- Eigenvalue analysis of Case 2 (Span 1)
 - Girders 1 & 2 erected with 50% cross-frames
 - Eigenvalue on unfactored selfweight = 1.57
 - Buckled shape shown; case borderline (1.25<λ<1.75)

- Contractor's erection method (continued)
- Erect Span 2 with air splice
- Erect remaining cross-frames
 - 50% of intermediate cross-frames installed originally
- Evaluate each case's stability with UT Bridge
- Eigenvalue analysis using unfactored self-weight

Case	Eigenvalue		
1	0.48		
2	1.57		
3	1.84		
4	1.96		
5	1.32		
6	2.36		
7	3.15		
8	3.55		

Setting Girder with Bracing Attached

I-394 Erection

Collapsed Girders

Bent Diagonal Brace for shoring fascia

ale.

1

Then

Roll Stability of Concrete Girders

- Rollover caused by:
 - Initial girder rotation compounded by:
 - Lack of flatness of PPC bottom flange
 - Roll flexibility of bearings...

FN(TINFFR

 Leading to increased girder rotation

Note: Figure adapted from Mast (1993)

Roll Stability of Concrete Girders

- Girder rollover stability can be influenced by:
 - Bearing slope and bearing type
 - Bearing skew relative to girder centerline
 - Girder imperfections (sweep)
- Rollover controls stability, not lateral-torsional buckling
 - PPC girders designed to not crack under selfweight
 - Relatively large $I_{\rm y}$ and J: no LTB

Concrete Girders X-Bracing

Demolition Load Changes

Courtesy of Dr. D. Jauregui

Bridge Demolition Failure

Courtesy of Dr. D. Jauregui

Engineering for Structural Stability in Bridge Construction

- FHWA has initiated effort to develop comprehensive manual and training course
- Product will attempt to provide
 - Summary of lessons learned
 - Understanding and analysis of global stability
 - Design criteria for erection
 - Guidance and best practices
 - Design examples

Wind Loads

- AASHTO
 - 300 PLF
- ASCE 7-10

ENGINEERSE

- $F = .00256 k_z k_{zt} k_d G C_f A V^2$
- Load factor in velocity
- ASCE 37 Reduction Factors

Wind Distribution-Open Structure

- ▶ C_f=2.2 (min)
- $C_f = 2(1 + 0.05 \text{ s/d}) \le 4.0$

Wind

ENGINEERSZ

- One day, design velocity = 20 mph
- Velocity modification factors (Vmod=FV)

Duration	Factor
0 – 6 weeks	0.65
6 weeks – 1 year	0.70
1 year – 2 years	0.8
2 years – 5 years	0.85

Load Factors

Load Combinations and Load Factors	DC	C _{DL}	C _{LL} , C _R	C _w
Strength I	1.25	1.25	1.75	—
Strength III	1.25	1.25	—	1.0
Strength V	1.25	1.5	—	1.0
Strength IV	1.40	1.40	1.50	—
Service	1.00	1.00	1.00	1.0

Questions