

GILMANERINE

Western Bridge Engineers' Seminar Reno Nevada, September 9, 2015

UCSD Gilman Bridge - Project Overview

UCSD Long Range Development Plan

Internal Loop Road Concept

UCSD Jacobs Medical Center

UCSD Medical East Campus Projects (Over \$2B New Construction)

- Jacobs Medical Center
- JMC Central Plant
- Altman Clinic & Translational Research

BioMed 2 Building

- East Campus Central Plant Expansion
- East Campus Parking Structure
- East Campus Pavilion
- BioMed 2 Building

ANNONDESIC

• East Campus Office Building

Altman Clinic & Translational Research

SANDAG Mid-Coast LRT

Project History *Advanced Technology Bridge*

Project History *Advanced Technology Bridge*

• 1990's - **Conceptual** Design, Lab **Testing**

- May 2003 65% Design \$12M (\$21M in 2015 dollars)
- Oct 2003 Value Engineering
- Summer 2004 **Discontinued**

Project Limits and Design Concept

- Expand west and north legs of Gilman Drive to accommodate future traffic
- **Tie into existing Medical Center Drive**
- Tie into VA driveway to provide access to VA, but no construction on VA property
- Design is compatible with I-5 and LRT projects

Bridge Typical Section

- Conforms to New Gilman Drive Roadway
- 11 ft through lanes, 10 ft turn lane
- 5 ft bike lanes
- 10 ft sidewalk on north, 6 ft sidewalk on south
- California ST-10 bridge rail modified with architectural details

Initial Bridge Concepts Hand Sketches, Feb 2011

- Which bridge types are feasible?
- Most appropriate for the site?
- What would UCSD want?
- What would Caltrans approve?
- Simple concrete bridge:
	- Economical
	- Durable
	- Low maintenance
	- Proven system
	- Used elsewhere by Caltrans

Standard Two-span Box Girder

a

Haunched Box Girder

Three-span Frame with Inclined Legs

Three-span Arch

 \mathbf{r}

Is Arch Feasible at this Site?

- Geometry is appropriate (40 ft height)
- Formation can support thrust
- Concrete in compression (durable)
- Has been used before by Caltrans locally
	- Adams Ave OC at I-15, 1970 (SR=98.3)
	- Eastgate Mall OC at I-805, 1971 (SR=95.1)
	- W Lilac Rd OC at I-15, 1978 (SR=99.9)

Architectural Features and Site Influence

$\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\sqrt{1+\frac{1}{2}}}}$

Future I-5 Corridor Heading South

Future I-5 Corridor Heading North – View 1

Future I-5 Corridor Heading North – View 2

Photo Simulations

Existing Interstate 5 Northbound

Photo Simulations

Interim Interstate 5 Northbound

Photo Simulations

Ultimate Interstate 5 Northbound

Structural Design

• Low profile arch will have large horizontal thrust on the foundations

Geotechnical Conditions

- Borings at abutments and arch foundations
- Scripps Formation (siltstone/claystone/sandstone)
- Ardath Shale
- Formation can provide required strength
- Stiffness varies and is relatively low

Finite Element Modeling with Plaxis

• Model subsurface geometry and arch footings with 2D plane strain model

- Calibrate soil parameters based on in-situ and lab tests
- Apply footing load
- Check footing displacements against bridge performance requirements

FE Model Mesh (West Profile) Showing Close-Up of Footing

Deformed Mesh (Exaggerated) Showing Close-Up of Footing

Structure and Foundation **Concepts**

- 1. Connect abutment to arch foundation with inclined strut
- 2. Use micropiles in lieu of slurry backfill

Design Refinement

• Struts connect superstructure to foundations to reduce arch thrust

Construction **Sequence**

CONSTRUCTION STAGE 2 - END SPANS NO SCALE

Bridge Layout and **Geometry**

Superstructure **Geometry**

Section A-A: Backspan, constant depth Section B-B: Backspan, variable depth Section C-C: Mainspan, variable depth, stacked cells, arch legs frame into superstructure Section D-D: Mainspan, variable depth

SECTION A-A (Back Spans, Constant Depth)

SECTION B-B (Back Spans, Variable Depth)

SECTION C-C (Main Span, Variable Depth, Arch Legs and Deck Merge)

SECTION D-D (Main Span, Variable Depth, Near Arch Crown)

Arch **Geometry**

• Arch Legs

- Exterior corner of intrados constant (21'-7") from "GIL" Line
- Arch width and depth varies
- Increasing slope at exterior face

SECTION @ SUPERSTRUCTURE

SECTION @ ARCH BASE

 $\overline{}$ GILMA $\overline{\overline{\rm MS}}$ **IDGE**

Foundation Geometry

INCLINED STRUT – PART SECTION

Foundation Geometry

PILE CAP - SECTION

 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6

Structural Model

RM Bridge Software

RM Bridge Overview

All Types of Bridges

- Reinforced and Pre-stressed Concrete
- Steel and Composite
- Arch Bridges
- Cable Supported Bridges
- **Any Erection Method**
	- Span-by-Span
	- Advanced Shoring
	- Incremental Launching
	- Pre-cast Segmental
	- Balanced Cantilever Bridges
	- Cast-in-Place

RM Bridge Modeler Gilman Drive Arch Bridge

Define Bridge Cross **Sections**

• Use construction lines to define every surface of a desired cross sectional shape

Define Reference Sets

- Reference Sets are points defined within a cross section for the definition of:
	- **Spring Locations**
	- **Connection Points**
	- Stress Points

Rebar¹

• Post-Tensioning Path

Connect Segments

سيستمتع وما

Arch legs are connected to the superstructure with rigid links

RM Bridge – Analysis / Design

- Additional Definition
- Set-up activation
- Define load cases
- Define live load cases
- Define scheduled actions
- Design code checks

Live Load Lanes & Live Load Trains

LRFD Design Code **Checks**

- Stress Check
- Ultimate Load Check
- Shear Capacity Check
- Reinforced Concrete Design
- Crack Control Check

Complies with Design Code (LRFD, CA Amendments, Caltrans SDC)

Post Processing – Design Report

Design report combines text and graphical data

Seismic Design – Site Seismicity

Caltrans ARS Online (v2.3.06)

This web-based tool calculates both deterministic and probabilistic acceleration response spectra for any location in California based Design Criteria. More...

• Type C Soil**SELECT SITE LOCATION Torrey Pines State** Map Satellite Natural Reserve Mosod Murtault Cristobal **Mark Site** $\overline{\left(\right. }%$ Ω \rightarrow $|S21|$ Overlay Sorietto Valley Blvd **MIRA MESA** Mira Mesa Blvd $S21$ Lusk Blvd SORRENTO VALLEY ÷ **TORREY PINES** $G_{\gamma_{\text{roll}}\text{Rd}}$ $3.7 m i$ **MIRAM CALCULATED SPECTRA** Display Curves: 3 estfield UTC Location: LAT=32.876400 LONG=-117.2289 Vs30=460m/s 805 MCAS Miramar ¹¹ a **3.9 th** Minimum Deterministic Spectrum 1.8 Rose Canuon fault zone (Del Mar section) (With Near Fault Factor Applied) Rose Canyon fault zone (San Diego section) (With Near Fault Factor Applied) **UNIVERSITY CITY** ្ធិ
និ Rose Canyon fault zone (Silver Strand section-Spanish Bight fault) (With Near Fault Factor Applied) Governor Dr in 50 wears hazard (2008) (With Near Fault Factor Applied) eleration, (52) **VILLAGE OF** LA JOLLA ة.. ه (163) LA JOLLA Pho Dr Google **KEARNY/MES** Map data @2015 Google Terms o **RAY HO** $C(A)$ $\theta_{\rm m}$ Longitude: - 117.2289 Latitude: 32.8764 VS30: 460 $m/$ Period, T(sec)

GILMA_{SBRIDGE}

• $Vs30 = 460 \text{ m/s}$

Tabular Data | Envelope Only | Hide Near Fault

Axis Scale

Show Basin

Seismic Design

7.72 3.86 0.00

Calculate Mode Shapes

Seismic Design

- Preliminary design with no Strut
- Plastic hinges form at top of arch legs

Struts Have a Beneficial Effect on the Seismic Performance

• A strut was added between the superstructure and foundation to reduce arch thrust

Seismic Response Including Inclined Struts

- Struts stiffened the bridge in both directions
- Δ_{trans} = 9" (before), 5" (after)
- Superstructure acts as diaphragm (plenty of capacity)
- Arch legs now stay elastic

Seismic Design – Transverse Pushover Results

- **Displacement** Capacity vs. Demand = $14.4/5.2 = 2.8$
- EQ would have to develop 2.8 times the intensity to fail one pile
- 96 micropiles used
- Ductility Demand $= 5.2/5.7 = 0.9$ (Bridge stays elastic, no damage)
- SDC allows Ductility Demand of 5.0

GILMANEB

IDGE

Bridge Renderings

Looking North

Looking East

Rail Transition at Ends of Bridge

Project Team

- UCSD Project Management, Environmental Anka Fabian, Robin Tsuchida, Cathy Presmyk
- Caltrans Design Oversight Arturo Jacobo, Kareem Scarlet, Shahbaz Alvi, Dave Stebbins, Norbert Gee
- Moffatt & Nichol Civil, Roadway & Bridge Engineering Tony Sánchez, Perry Schacht, Victor Tirado, Mitch Duran, Debbie Ramirez, Arash Monsefan, Garrett Dekker, Elena Pleshchuk, Gernot Komar, Jason Hong, Bob Dameron, Al Ely, Patrick Chang, Amanda Del Bello
- Safdie Rabines Architects Architecture Eric Lindebak, Brer Marsh, Ricardo Rabines
- Earth Mechanics Geotechnical Engineering

Questions?