

Western Bridge Engineers' Seminar

PRACTICAL SOLUTIONS TO BRIDGE ENGINEERING CHALLENGES

Slauson Ave Bridge over San Gabriel River Modifications for addition of third rail - *Constructability Review Benefits* -

Presented By: Robert Fish, PE, SE

Special thank to: Caltrans BNSF Railway Hansen and Wilson County of Los Angeles

September 9, 2015

Modification Locations

Modifications to Piers and Abutment Embankment

Project Timeline

Pier 6 - Constructability Review

Original Concept

Pier 6 – Original Steel Cap Beam

Pier 6 – Original Steel Cap Beam

Pier 6 – Original Steel Cap Beam Girder Pedestals – 8 each side of cap

New Cap Beam Installed (existing deck steel inadvertently removed)

Pier 6 - Removal of Steel Bent Cap

Bent 6 Steal Cap Beam (initial replacement details)

4,000 1" HS Bolts 150 hrs. of labor

Preparing for Installation of New Steal Cap Beam

Bent 6 Replacement of Steel Cap Beam During Single Night Closure

Deck Closure (Drill and epoxy bond new bars)

1 Roughen face of existing deck to 1/4" min. amplitude.

Drill and epoxy bond #6 galvanized dowel @ 6" c-c into 11" deep hole. Use Simpson SET epoxy. Prebend bar or bend into closure pour after epoxy is fully cured. Alternative: use 3/4" diameter HS rod, Fy = 60ksi min.

#5 @ 12" 3 per project plans

- If directed by the Engineer, sawcut 1/4"+/-"V" groove after closure pour concrete has cured.
- 5 Closure pour concrete, see Submittal 16.

(4)

New transvers reinforcement not shown, see project plans.

Closure Pour Completed (including restored sidewalks and railing)

Pier 6 – New Steel Cap Beam in Place

Bent 6 New Steel Cap Beam with Seismic Isolation Bearings, Cap to Girder Struts for Stabilization, End of Cap Beam "X" Stiffeners for Rotation Reduction

Pier 6 – Struts used for Stability (locking west side girders to cap + reducing rotation along cap axis)

Pier 6 – Struts used for Stability (locking west side girders to cap + reducing rotation along cap axis)

Pier 6 – Struts used for Stability (locking west side girders to cap + reducing rotation along cap axis)

Pier 6 – Original Plan for Stability (Lateral cross bracing top and bottom)

Steel angle bracing, connecting girder and cap beam flanges, both top and bottom.

O.W.Blodgett "X" Stiffeners to Reduce Axial Rotation

Pier 6 "X" Stiffeners to Reduce Axial Rotation

Reduced rotation from <u>6.0</u> Degrees to <u>0.5</u> Degree at maximum EQ force delivered from Bearing

Seismic Isolation Bearing Benefits in Reducing Seismic Demand

Seismic Isolation Bearing

Friction Pendulum Type disassembled to show inner Concave Slider Bearing

Lead Core Elastomeric Type Cross section to show inner lead core

Seismic Isolation Bearing Lead Core Rubber

PTFE Bearings (Supporting girder ends on new steel cap)

12 inch longitudinal movement capacity

PTFE Bearings (Supporting girder ends on new steel cap)

12 inch longitudinal movement capacity

PTFE Bearings (Supporting girder ends on new steel cap)

Existing External Cap to be Replaced by Cantilevered Internal Cap

Pier 7 - Constructability Review

Existing External Cap to be Replaced by Cantilevered Internal Cap

Bent 7 Replace External Cap w/ Internal Cap (initial replacement details)

Bent 7 Replace External Cap w/ Internal Cap (initial replacement details)

2,500 1" HS Bolts 95 hrs. of labor

Pier 7 – New Internal Bent Cap (Drilled holes through steel girder webs for HS rod placement)

Pier 7 - Continuous HS rods (installed through all 8 steel girders)

Pier 7 – Transfer Reinforcement (to transfer girder forces into new cap Beam)

Pier 7 - Continuous HS rods (Ends – crossing with vertical hold down strut)

Pier 7 – Pipe piles (Extended into footing for full fixity)

Pier 7 – Tie down anchors (Effective continuation of vertical tension strut - HS rods from new internal cap beam)

Pier 7 - Pipe Pile Foundation Designed to Resist Lateral Spreading Forces Including Protection of Tie-Down Anchors

Pier 7 – Highly reinforced

Pier 7 – nearly complete (Half of original 2 column Pier used for temporary construction support)

- Camber Strip
- Initial + Long Term DL Deflection

Pier 7 – complete (32 foot cantilever)

Summary

	Original Concept	Revised Concept
<u>Cost</u> (of Construction)	\$6.4 million	\$ 3.4 million
<u>Risk</u> (to cost & schedule)	High	Low
Safety (during construction)	Of higher concern	Improved - Reduced hours worked over highly active rails
<u>Performance</u> (life cycle)	High maintenance	Reduced maintenance
<u>Architecture</u> ("cleaner look")	Looks like a modification	Cleaner Look - Looks less like a modification

Western Bridge Engineers' Seminar

PRACTICAL SOLUTIONS TO BRIDGE ENGINEERING CHALLENGES

Slauson Ave Bridge over San Gabriel River Modifications for addition of third rail - Constructability Review Benefits -

Thank You

Bob Fish, PE, SE Bob.fish@AECOM.com

(916) 903-8716

September 9, 2015

