Slide-In Bridge Construction (SIBC)

FHWA SIBC Cost Estimation Tool Western Bridge Engineers Seminar

Presented By: AJ Yates, PE, CBI

Michael Baker International

September 9, 2015

INTRODUCTION

Project Team

- Leidos and Michael Baker International
 - AJ Yates Lead Investigator
 - Eric Perry Program Manager
- Federal Highway Administration
 - Laura Lawndy Contracting Officer Representative
 - Romeo Garcia Technical Representative

INTRODUCTION

Project Team

- Technical Working Group
 - James Nelson Iowa DOT
 - Tony Lesch Minnesota DOT
 - Albert Nako Oregon DOT
 - Becky Nix Utah DOT
 - James Luebke Wisconsin DOT

OVERVIEW

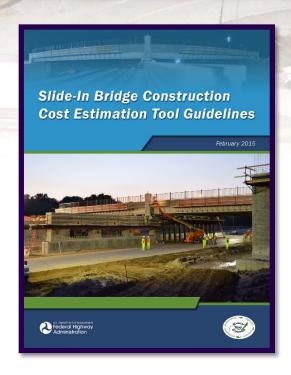
Project Scope

Develop a cost estimation tool to facilitate the preparation of construction cost estimate for SIBC Projects

Deliverables

- Spreadsheet (xlsx)
- Guidelines (pdf)

OVERVIEW


FHWA SIBC Cost Estimation Tool

Guidelines

http://www.fhwa.dot.gov/construction
/sibc/pubs/costest/sibc_costest.pdf

Spreadsheet

http://www.fhwa.dot.gov/construction
/sibc/pubs/costest/sibc_costest.xlsx

BACKGROUND

Slide-In Bridge Construction Overview

Michael Baker

INTERNATIONAL

BACKGROUND

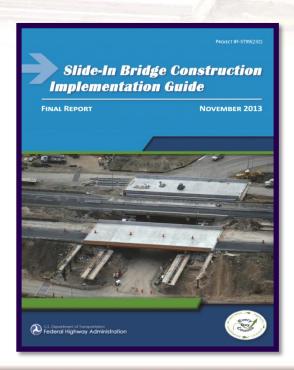
Slide-In Bridge Construction Overview

- Benefits
 - Enhanced safety to both construction crews and traveling public
 - Shortened on-site construction time
 - Reduced mobility impacts
 - Improved quality
 - Improved constructability

BACKGROUND

Slide-In Bridge Construction Overview

- Limitations
 - Limited right-of-way (ROW) for staging
 - Geometric constraints
 - Lack of SIBC experience
 - Profile changes
 - Utility impacts

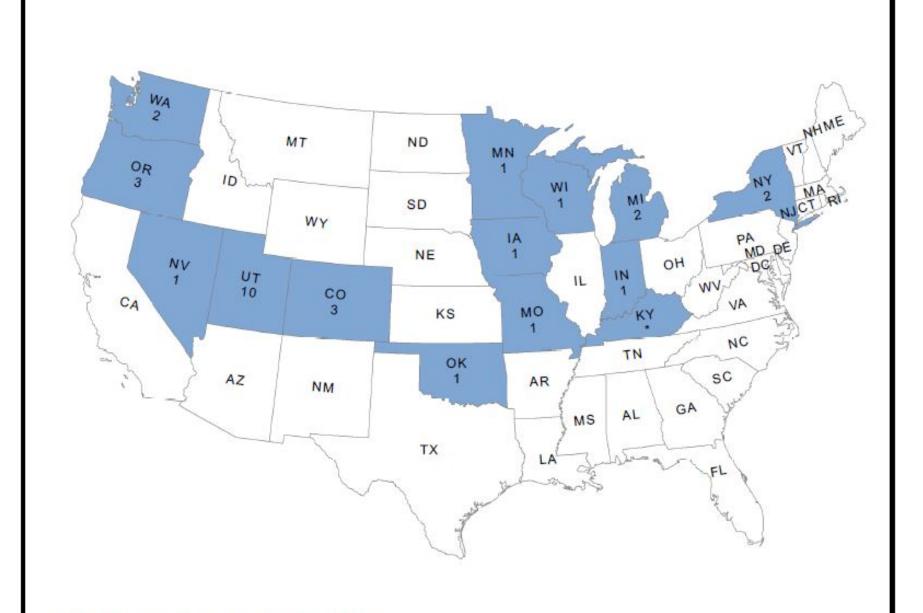

OVERVIEW

FHWA SIBC Implementation Guide

http://www.fhwa.dot.gov/construction/sibc/pubs/

sibc guide.pdf

- Development Team
 - Utah Department of Transportation
 - Michael Baker International
 - H. Boyle Engineering
 - Ralph L. Wadsworth


DATA COLLECTION

Data Collection

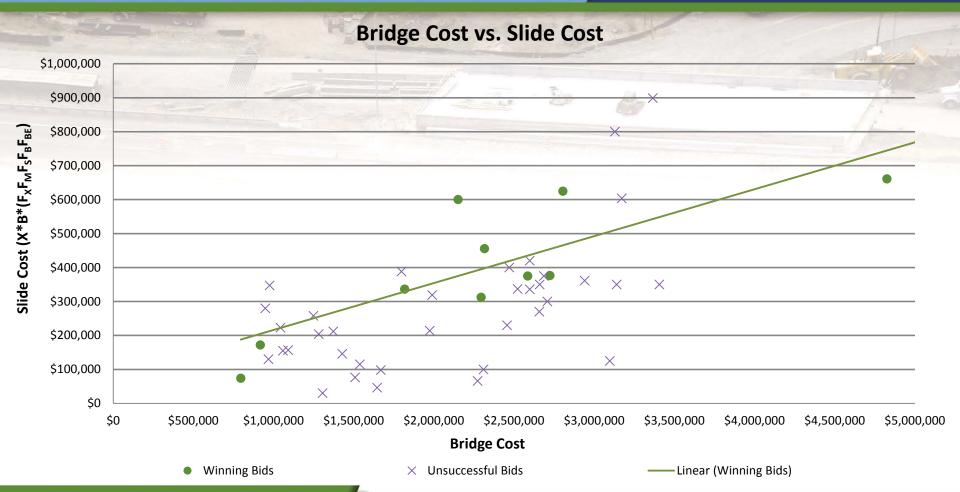
- Identified 29 completed SIBC projects nationwide
 - 22 D-B-B, 7 D-B
 - Project Cost Forms
- Data Reliability

*Milton-Madison Bridge Shares a Border With Kentucky No SIBC Projects in Alaska or Hawaii

DATA COLLECTION

Criterion	Range of Values	Average
Year Constructed	2009 to 2014	N/A
Project Duration (months)	2 to 19	9
Closure Duration (hours)	14 to 1,128	178
Estimated Bridge Cost without SIBC (\$)	\$795k to \$25M	\$4.8M
Slide Cost (\$)	\$74k to \$2.7M	\$475k
Ratio of Slide Cost to Estimated Bridge Cost without SIBC (%)	1.2% to 28.4%	15.6%
Schedule Reduction (Days)	36 to 365	151

INTERNATIONAL


Estimation Approaches

- Statistical Modeling
 - ax + by + cz ... = E
- Summation of Costs

- Factored Bridge Cost
 - $XB(f_1f_2f_3 ... f_n) = E$

DATA COLLECTION

Estimated Slide Cost

$$(1 + C) * X * B * (F_X F_M F_S F_B F_{BE})$$

C = Construction Contingency (%)

X = Estimated Bridge Cost Without SIBC (\$)

B = Base Slide Cost Factor

F = Cost Adjustment Factor Based on Slide Characteristics

Additional Construction
Cost Inputs

S + D

S = Additional Site Costs Required for SIBC (\$)

D = Additional
Bridge
Construction
Costs Required
for SIBC (\$)

Additional Project
Cost Inputs

A + I

+

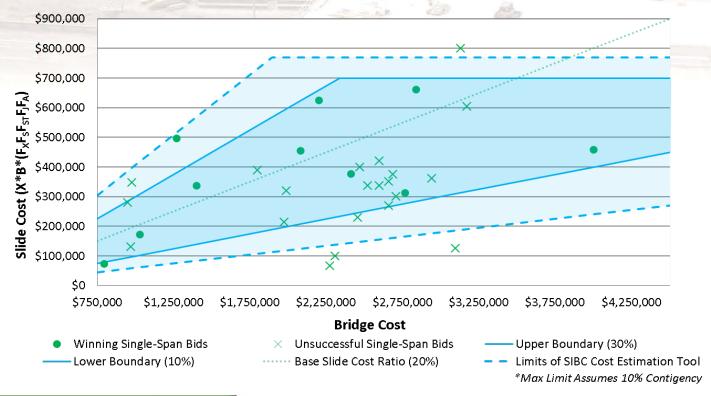
A = Additional Administrative Costs Required for SIBC (\$)

I = Incentives/
Disincentives (\$)

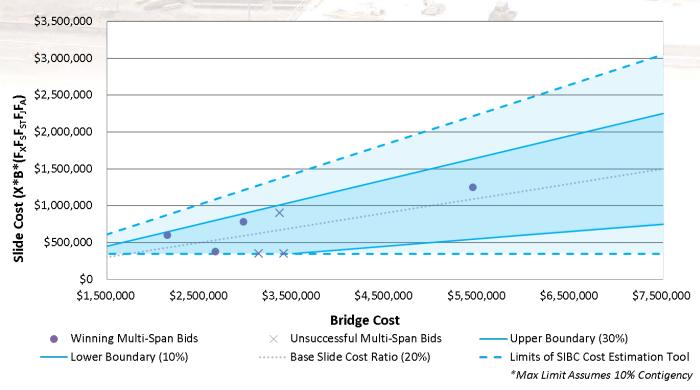
Total Estimated SIBC Cost

E

E = Estimated
Cost of SIBC (\$)



Single Span Bridges



Michael Baker

Multi-Span Bridges

Cost Adjustment Factors

- Agency Experience
- Materials
- Site Complexity
- Bridge Complexity
- Bidding Environment

Estimated Slide Cost

$$(1 + C) * X * B * (F_X F_M F_S F_B F_{BE})$$

C = Construction Contingency (%)

X = Estimated Bridge Cost Without SIBC (\$)

B = Base Slide Cost Factor

F = Cost Adjustment Factor Based on Slide Characteristics

Additional Construction Cost Inputs

S + D

S = Additional Site Costs Required for SIBC (\$)

D = Additional
Bridge
Construction
Costs Required
for SIBC (\$)

Additional Project
Cost Inputs

A + I

+

A = Additional Administrative Costs Required for SIBC (\$)

I = Incentives/
Disincentives (\$)

Total Estimated SIBC Cost

E

E = Estimated
Cost of SIBC (\$)

SAMPLE CALCULATIONS

