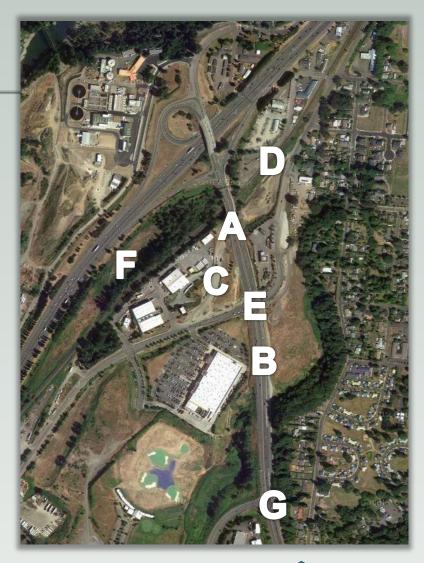

OR213: I-205 TO REDLAND ROAD

Project Team



- Kittelson & Associates
- Mason, Bruce & Girard
- GreenWorks
- Shannon & Wilson, Inc.
- Heritage Research Associates
- David Place
- Michael Minor & Associates
- Universal Field Services

- Project Overview
- Bridge Construction Staging Alternatives
- Designing for ABC
- Constructability



Key Project Elements

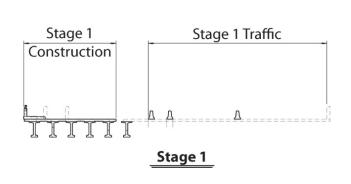
- A. Construct new OR213 bridge using rapid bridge construction
- B. Widen OR213
- C. Realign Washington Street
- D. Construct new roundabout
- E. New traffic signals
- F. Environmental mitigation site
- G. Redland Road intersection upgrades

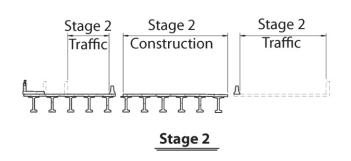
Bridge Construction Staging Alternatives

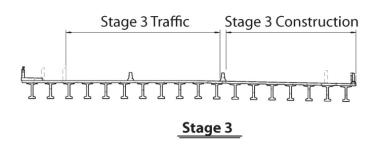
- 1. Road Closure
- 2. Staged Construction
- 3. Accelerated Bridge Construction

Alternative 1 Road Closure

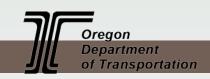
- 9-week closure of OR 213
- Two 10-hour shifts







Alternative 2 Staged Construction



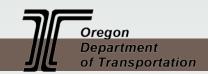
30 weeks of closing a lane on OR213

Alternative 3 Accelerated Bridge Construction

- Construct foundations during nightly lane closures
- One 4-day closure of OR 213
- Build the entire bridge alongside roadway
- Excavation occurs and the bridge is slid into place

Conclusions

Alternative	Traffic Impact	Duration of Traffic Impact	Conclusions
1	Total Road Closure	> 60 Days	Extended OR213 closure is unacceptable
2	Closes 1 lane each way	30 weeks	Long duration of lane closures

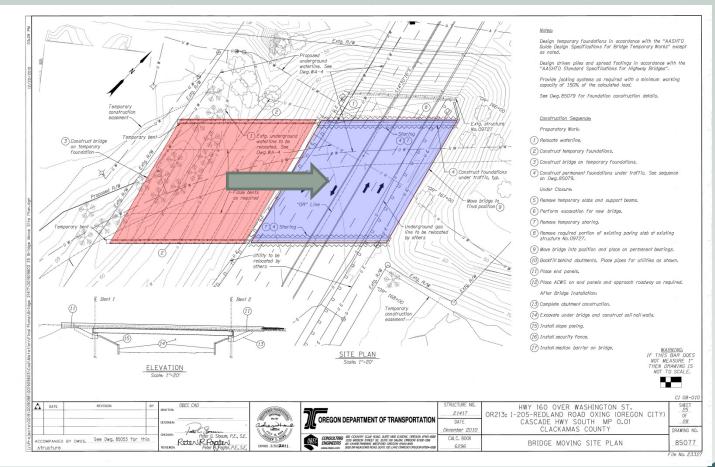


Alternative 3 was selected:

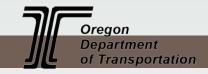
- Shortest overall bridge construction time
- Shortest duration of impacts to the public
- Highest level of safety to the contractor and the public

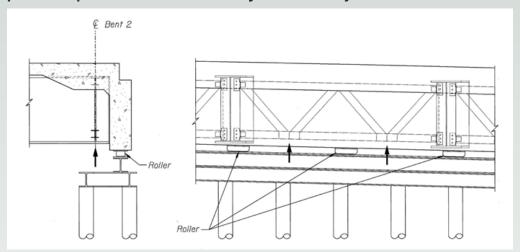
Designing for Accelerated Bridge Construction

- Superstructure (the easy part)
 - Constructed "off line"
 - Consider structure weight
 - Plan to roll
 - Detail for field fit
- Substructure (the hard part)
 - Staged construction? Yes.
 - Night lane closures
 - Constructed "under traffic"

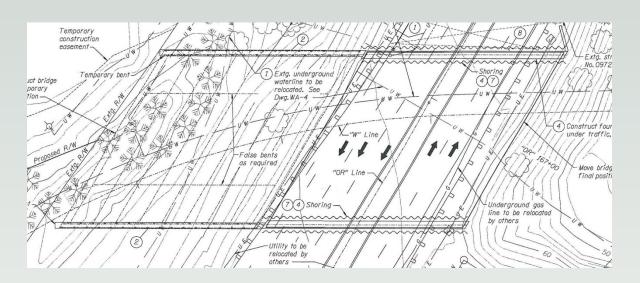


- Conventional construction "off line"
 - Most details are typical
 - Temporary foundations
 - Requires significant staging area
 - 3D Geometric layout can be difficult
 - Build a spiral and superelevation rotation offset 150 feet along a skew
- Structure type Choose light
 - Lighter structure will require less jack and roller capacity
 - Lighter structure will generate less rolling friction
 - Concrete alternative Dead Load = 4000 kips
 - Steel alternative Dead Load = 3200 kips




- Plan to roll
 - Roll uphill and on a plane (no superstructure twisting)
 - Bridge located in a superelevation transition, but rolling surfaces must be planar
 - Varied depth of integral backwall and pile cap to make constant 2% slope
 - Simple details means economy
 - High tech details limit contractor competition and increase cost
 - Allow Contractor flexibility
 - Generic rollers and jacks shown to convey constructible concept
 - Contractor designed system used to lift and move the bridge

- Plan to roll (continued)
 - Design for superstructure and substructure for multiple load paths
 - Steel cross frames for construction stability and jacking points
 - Concrete end diaphragm as backwall and superstructure stiffness/support during roll
 - Design pile cap to be loaded by rollers, jacks, and bearings



Substructure - "Under" Traffic

- Staged Construction
 - Requires excavation into existing roadway
 - Install temporary shoring and bridging
 - Design bridging for durability and ease of removal/reinstallation

Foundation Construction Sequence:

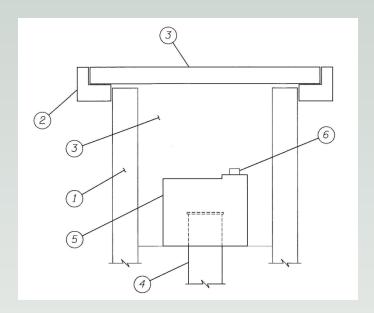
Under nightly lane closures in stages:

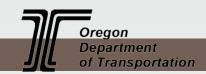
- Install shoring. Remove existing paving slab at existing structure No.09727. Repair pavement as required prior to reopening lane to traffic.
- 2 Install temporary slab support beams. Repair pavement as required prior to reopening lane to traffic.
- (3) Excavate for pile cap and install temporary slabs.* Stagger joints 2'-0" min. from joints between support beam segments.
- (4) Drive piles.*
- 5 Construct pile cap* (excluding west wingwalls and shear blocks).
- (6) Install roller system.*
 - *Remove and reinstall temporary slabs nightly as required.

Substructure - "Under" Traffic

- Night lane closures only
 - Short work shifts
 - Bridging system enables quick removal and access to construction
 - Night excavation and pile driving
- Construction "under" traffic
 - Pile cap construction can be completed under the bridging
 - Preparation for moving can be completed under the bridging
- When it is time for the move, remove bridging and shoring

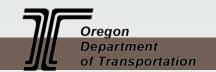
Constructability




Shoring System and Substructure Construction

- Shoring System installed as designed.
- Foundation Construction at night a success.

Temporary Bridge Foundation


- Standard Piling Foundation
- Dual Caps for support and moving system

Designed By: Dick Lindell, PE Mowat Construction

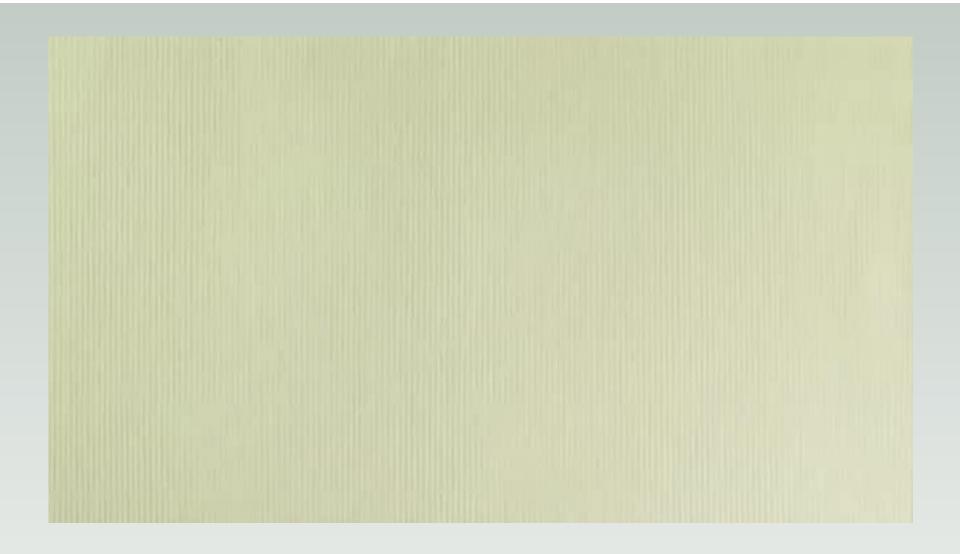
Track and Roller System

- Roller Guide Channels
- Hilman 100/150 Modified Rollers

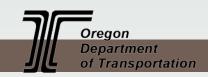
Designed By: Dick Lindell, PE Mowat Construction

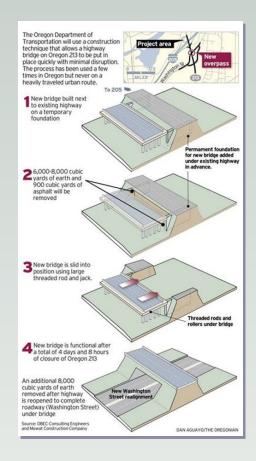
Vertical & horizontal Jacking System

- Central pump and manifold system mounted to the bridge
- Pull rods from new bridge to the Eastern Wing Walls
- Double acting 30T Jacks for Horizontal movement



OREGON





Outreach Plan

JAIME VALDEZ / THE OREGON CITY NEWS
Crews from Mowat Construction prepare to move
a new bridge at the Jughandle Project in Oregon
City by moving it 5 feet during a test haul on
Friday. The bridge will replace a section of
Highway 213.

Questions

