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Importance of Innovative Materials 

 Primary Seismic Performance Objective: 
Collapse Prevention 

 

“Failure” “Success” 



Collapse prevention– Necessary; not 
Sufficient 

Bridge closures 
 Limited access; may or may not allow even 

emergency response vehicles 
 Extensive Repairs 
 Disrupts public transportation 
 Major economic impact 

 



Improving Seismic Design  

 Performance Based Design 
 Keep bridges operational 
 Minimize repair need 
 Minimize residual drift 
 Reduce damage to plastic hinges 

 May use a number of different approaches 
 Base isolation 
 Advanced materials (not familiar to civil engineering 

structures) 
 



Use of Innovative Materials 

 Superelastic Nickel-Titanium Shape Memory 
Alloy (SMA) Bars 
 Reduce residual displacements 

 
 

 
 

 Engineered Cementitious Composites (ECC) 
 Reduce damage to hinge 
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4-Span Bridge with Innovative Materials 

¼ Scale, 4 Span Bridge, Total Length=110ft 
 Innovative Materials in Bottom Plastic Hinges 
Conventional RC in Top Plastic Hinges 





Results after Final Motion 
Top Conventional 

RC Hinge 
Bottom SMA/ECC 

Hinge 



Experimental Studies for Seattle SR-99 Piers  

 Three - 0.3 Scale Columns 
 2 Incorporating SMA and 

ECC 
 1 Conventional RC  

 62 in clear height 
 18 in x 18 in cross section 
Reversed cyclic loading 



Objectives: Determine 

 Effectiveness of HRC couplers for SMA bars 
 Self-centering characteristics of column models 
Damage to the plastic hinge area 
 Effects of shortening SMA bar length 
Adequacy and refinement of analytical models 

 
 



Test Models 
 SR99-RC: Conventional RC Reference Model 
 SR99-LSE: Long SMA with ECC Column 
 18 in (one x col. side dim.) SMA in plastic hinge  

 SR99-SSE: Short SMA with ECC Column 
 13.5 in (0.75 x col. side dim.) SMA in plastic hinge 
 



Damage Comparison 
Damage at 6% Drift 

SR99-RC SR99-LSE SR99-SSE 



Damage Comparison 
Damage at End of Testing 

SR99-RC (8% Drift) SR99-LSE (12% Drift) SR99-SSE (10% Drift) 



SR99-RC Force-Displacement Hysteresis 



Average Force-Displacement Envelopes 
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Residual Drifts 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

R
es

id
ua

l D
rif

t (
%

) 

Drift (%) 

Measured Residual Drift Ratios 

SR99-RC
SR99-LSE
SR99-SSE



Comparison of Analytical and Experimental Results 



Conclusions from Research 

• HRC couplers were effective 

• Drift capacity of SMA/ECC columns was at least 33% higher than 
conventional RC column 

• Average residual drift ratio of SMA/ECC columns was 80% less 
than RC column 

• Plastic hinge damage was minimal in the SMA/ECC columns. 
Damage limited to a single repairable crack at the base 

• Short SMA bars are recommended for use in the SR-99 Bridge  

• Analytical modeling closely matched the test results when 
tensile strength of ECC was ignored . 

 



Design Implementation of SMA/ECC 
Alaska Way Viaduct Replacement, Seattle, WA 
 Three Spans (110ft; 180ft, 110ft) 
 Precast Post-Tensioned Splice Tub Girder 
 Single Column Piers 
 Square Columns (5ft x 5ft) w/ Circular Core 
 ECC Full Length of Column 

 
 



Design Implementation of SMA/ECC 
 Limitation of research 

funding 
 Shape Memory Alloy used 

in hinges at top of column 
Approximately 50 ft. 

liquefiable soil below 
existing ground line 
Ductility demand is 

greatest at the top of the 
column 
 



Design Implementation of SMA/ECC 
 Strength Limit state dictates design of column 
 Modulus of Elasticity, ESMA = 5,000 ksi 
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Design Implementation of SMA/ECC 
Challenges with including SMA in a contract 
 Cost   
 ASTM A706 = $1 / lb.   
 SMA = $87 / lb. 

 Schedule – 6 month delivery, not including process 
to head bar for mechanical splice  

 Mechanical splice required in hinge region 



Project Website 

http://wolfweb.unr.edu/homepage/saiidi/WASHDOT/index.html 
Contact: saiidi@unr.edu  bnakashoji@gmail.com or    
     binglej@wsdot.wa.gov for link 
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