Seismic Performance of Bridge Systems with Innovative Design- Deployment of Research

M. Saiid Saiidi¹, Jed Bingle², Brian Nakashoji¹, and Bijan Khaleghi²

1- University of Nevada, Reno

2- WashDOT

Importance of Innovative Materials

Primary Seismic Performance Objective:

Collapse Prevention

"Failure"

"Success"

Collapse prevention– Necessary; not Sufficient

- Bridge closures
 - Limited access; may or may not allow even emergency response vehicles
- Extensive Repairs
 - Disrupts public transportation
 - Major economic impact

Improving Seismic Design

Performance Based Design

- Keep bridges operational
- Minimize repair need
 - Minimize residual drift
 - Reduce damage to plastic hinges
- May use a number of different approaches
 - Base isolation
 - Advanced materials (not familiar to civil engineering structures)

Use of Innovative Materials

Superelastic Nickel-Titanium Shape Memory Alloy (SMA) Bars

Reduce residual displacements

Engineered Cementitious Composites (ECC)

Reduce damage to hinge

4-Span Bridge with Innovative Materials

- ¼ Scale, 4 Span Bridge, Total Length=110ft
- Innovative Materials in Bottom Plastic Hinges

NEES

Conventional RC in Top Plastic Hinges

Results after Final Motion

Top Conventional RC Hinge

Bottom SMA/ECC Hinge

Experimental Studies for Seattle SR-99 Piers

Three - 0.3 Scale Columns

- 2 Incorporating SMA and ECC
- I Conventional RC
- 62 in clear height
- 18 in x 18 in cross section
- Reversed cyclic loading

Objectives: Determine

- Effectiveness of HRC couplers for SMA bars
- Self-centering characteristics of column models
- Damage to the plastic hinge area
- Effects of shortening SMA bar length
- Adequacy and refinement of analytical models

Test Models

- SR99-RC: Conventional RC Reference Model
- SR99-LSE: Long SMA with ECC Column
 - 18 in (one x col. side dim.) SMA in plastic hinge
- SR99-SSE: Short SMA with ECC Column
 - 13.5 in (0.75 x col. side dim.) SMA in plastic hinge

Damage Comparison

Damage at 6% Drift

SR99-LSE

SR99-RC

SR99-SSE SR 99 - RC SR99-LSE 3 LOAD LOAD 0 55

SR99-SSE

Damage Comparison

Damage at End of Testing

SR99-RC (8% Drift)

SR99-LSE (12% Drift)

SR99-SSE (10% Drift)

SR99-RC Force-Displacement Hysteresis

Average Force-Displacement Envelopes

Residual Drifts

Measured Residual Drift Ratios

Comparison of Analytical and Experimental Results

Conclusions from Research

- HRC couplers were effective
- Drift capacity of SMA/ECC columns was at least 33% higher than conventional RC column
- Average residual drift ratio of SMA/ECC columns was 80% less than RC column
- Plastic hinge damage was minimal in the SMA/ECC columns. Damage limited to a single repairable crack at the base
- Short SMA bars are recommended for use in the SR-99 Bridge
- Analytical modeling closely matched the test results when tensile strength of ECC was ignored.

- Alaska Way Viaduct Replacement, Seattle, WA
- Three Spans (110ft; 180ft, 110ft)
- Precast Post-Tensioned Splice Tub Girder
- Single Column Piers
- Square Columns (5ft x 5ft) w/ Circular Core
- ECC Full Length of Column

BRIDGE ROADWAY

ent of Transportatio

- Limitation of research funding
- Shape Memory Alloy used in hinges at top of column
- Approximately 50 ft.
 liquefiable soil below existing ground line
- Ductility demand is greatest at the top of the column

- Strength Limit state dictates design of column
 - Modulus of Elasticity, E_{SMA} = 5,000 ksi

- Challenges with including SMA in a contract
 - Cost
 - ASTM A706 = \$1 / Ib.
 - SMA = \$87 / Ib.
 - Schedule 6 month delivery, not including process to head bar for mechanical splice
 - Mechanical splice required in hinge region

University of Nevada, Reno

Washington State Department of Transportation

Project Website

http://wolfweb.unr.edu/homepage/saiidi/WASHDOT/index.html Contact: saiidi@unr.edu bnakashoji@gmail.com or binglej@wsdot.wa.gov for link

Washington State Department of Transportation