The First Thermoplastic Bridges Located in U.S. Highways

Vijay Chandra, PE, Director of Structures, Parsons Brinckerhoff John S. Kim, PhD, PE, Senior Professional Associate, Parsons Brinckerhoff

> Western Bridge Engineers' Seminar September 5, 2013

Plastic Waste out of Landfills

Plastic waste is a global problem

- Over 100 million tons are placed in landfills every year worldwide
- Most plastics take several decades to degrade
- Less than 30% of the plastic waste in the U.S. is recycled and remanufacture

From Wasteful Material to Useful Solutions

Excellent Structural Performance Lower Total Life-Cycle Costs Tangible Sustainability Factors

Seminar

What is Axion Thermoplastic?

Recycled Structural Composites

- High Density Polyethylene with Polystyrene or Polypropylene coated glass fibers
- Unique combination of durability and strength
- 100% recycled plastic composites

Product Advantages

- Green Product (Recycled Plastic)
- No Corrosion, Rotting or Insect Infestation
- Reduced Landfill Dumping
- Good Toughness Characteristics
- No Chemical Additives
- Green House Gas Savings
- Reduced Maintenance
- Sustainable & Durable
- Cost Competitive: Initial and Life Cycle

Properties

- Weight: 55pcf (Timber: 60pcf; Concrete:150pcf)
- Specific Gravity: 0.85 0.90
- Elastic Modulus: 250,000 psi
- > Allow. Flex. Stress: 600 psi (Ult.=3 ksi)
- Allow. Comp. Stress: 600 psi (Ult.=2.5 4.3 Ksi)
- Allowable Shear Stress: 350 psi (Ult.=1.5 Ksi)
- Coef. of Thermal Exp.: 0.0000282 in/in/deg F

Design Considerations

- Ultraviolet Degradation 0.003 in/yr (full sunlight)
- Creep Low (high Safety factor to Ultimate)
- Thermal Resistance Heat Deflection +/- 250 deg F
- Skid Resistance Coefficient Of Friction = 0.5 with tire
- Acid Resistance To most acids & salts
- Moisture Absorption Virtually impervious
- Abrasion High resistance to sand & salts
- Color Graphite

Bridge Applications

Fort Leonard Wood, MO

1998

Wharton State Forest, NJ

* Length - 56 feet* Live Load - HS 20

Fort Bragg, NC

Load Bearing Capability

M1 Abrams Tank on the Bridge

2009

Fort Bragg Construction

Pile Cap Installation

Military Rail Bridge Ft. Eustis, Virginia

Fort Eustis, VA

Bridges 3 and 7

- Live Load: Cooper E60 and 260 Kip alternate loading with 20% impact
- Deflection: L/600
- Length of Piles: about 45 feet
- Capacity of piles: 17 20 tons in end bearing per Pile
- > Abutments: Existing timber abutments retained
- RSPC Elements: Railroad Ties, Curbs, Girders, Shear Blocks, Pier Caps, Piles and Transverse Connectors

ELEVATION

Fort Eustis, VA Bridge No. 7

Fort Eustis, VA Typical Section

Fort Eustis Construction

Splicing

Driving RSPC Piles

Pile Cap Installation

Fort Eustis Construction

Western Bridge Engineers' Seminar

Fort Eustis, VA Competed Bridge No. 3

Fort Eustis, VA Live Loads for Testing

Fort Eustis, VA Live Load Testing

Fort Eustis, VA Deflections

Bridge No. 3

Estimated Deflection = 0.32"

Measured Deflection = 0.29"

Bridge No. 7

Before (3 ft Opening)

Onion Ditch Bridge West Liberty, OH

Onion Ditch Bridge West Liberty, OH

Onion Ditch Bridge West Liberty, OH

Project Team

- Client: Logan County Ohio
- Engineer: Parsons Brinckerhoff

- Fabricator: Axion International
- Installer: Logan County Ohio

General Information

- Year Built: 2012
- Total Length: 25' 2"
- ✤ Max Span: 24' 0"
- Live Load: HL93
- Installation Time: 6 weeks

Other Applications

Floating Docks

Pier Fenders & Pilings

Pipe Supports

Railroad Ties and Switch Set

- ECOTRAX® Railroad Ties Over 12 years of successful in-line testing
- Complete series of AREMA and ASTM testing
- Expanding customer base in U.S. & Internationally
- Direct sales to Class 1 Railroads, Transit, Regional Short Line, Private Sidings
- Core Applications Street Crossings, Switch Ties, Wet Track Areas, Transit Platforms

STRUXURE® Heavy Construction Mats

Energy & Mining

- Ideal for >100,000# active equipment with tracks in wet conditions
- Developing line of Laminated Mats for <100,000# equipment</p>

- ♦ Strong & Durable \rightarrow > 5x Life Cycle
- Lighter Weights = Lower Logistics Costs
- Sustainable Product, Recycle AGAIN!
- Sales & Rental Options

Retaining Walls

Sound Walls

More Applications

- > Marinas
- Fenders
- Jetties and Piers
- Platforms and Boardwalks
- > Temporary Reusable Bridges
- Culverts

- Manufacturer:
- * Designer:
- Inventor:

Axion International Parsons Brinckerhoff Rutgers University

Conclusions

Green, Sustainable and Durable
Environmentally Beneficial
Vast Areas of Application
Accelerated Construction
Minimal Maintenance
Cost Competitive

