

Field Application of Ultrasonic Phased Array for Structural Evaluation

September 5, 2013

CONVENTIONAL UT

- Reliable application to identify planar defects
- Single sound wave
- Single angle
- Transducer must be orientated in multiple directions
- Time consuming
- Results dependent on operator ability

CONVENTIONAL UT

PHASED ARRAY UT

- Uses a multiple element probe
 - Typically 16 to 64 elements
- Time delays from ultrasonic pulses produce constructive interference
 - Occurs at a specific angle and specific depth
- Time delays are incremented over range of angles to sweep the beam
 - Allows beam steering and focusing

PHASED ARRAY UT

May eliminate most radiographic testing needs

- Especially important for field application due to uncontrolled environment
- Increases resolution and sensitivity over conventional UT
- Allows for cross-sectional "2D" view of indications
 - Sector Scan (S-Scan)

SECTOR SCAN (S-SCAN)

COMMON BRIDGE APPLICATIONS OF PAUT

- ≻ Welds
- ≻ Pins
- > Hangers
- Section Loss
 - Gusset Plates
 - Connections

WELD TESTING

- Locate critical welds
 - Fracture critical welds
 - Electroslag welds
 - A514 "T-1" steel
- Scan along length of weld
- Test both full penetration and partial penetration welds
 - Check for internal discontinuities or cracking

WELD TESTING

Hydrogen cracking of A514 "T-1" web-to-flange welds

WELD TESTING SUCCESSES

Increased sensitivity

- Can even pick up weld prep on electroslag welds
- Need to be careful not to oversaturate with gain

Increased sizing and location data

Help to identify type of flaw

PINS AND HANGERS

Test pins on both ends when possible

- Sectorial view of pin
- Rotate transducer for full coverage

Test hangers and link bars around pin hole

Check for cracking

PINS AND HANGERS

PIN AND HANGER SUCCESSES

- Increased sensitivity
- Clearly distinguish flaws and determine size
- Reduces error from acoustic coupling
 - Distinguish outside pin surface

SECTION LOSS

Gusset plates

- Scan plate along outside edge of connecting members
- Encode thickness profile
- Connections
 - Remaining thickness of outside plies

SECTION LOSS

Corrosion Scanning

Corrosion B-Scan

Corrosion C-Scan

SECTION LOSS SUCCESSES

Gusset plates

- Encoded variable section loss profile
- Plate material
 - Increased sensitivity and ability to size inclusions/stringers

FIELD APPLICATION TECHNIQUES

- Scan plans
 Sound coverage
 Calibration

 Attenuation
 Flaw Size

 Encoding
- Interpretation

SCAN PLANS FOR WELD TESTING

- Sound coverage
 - Scan offset
 - Angle range
 - Single or multiple group of elements
 - Location of first element in array
- Two or more scans for complete coverage with multiple angles

SCAN PLANS FOR WELD TESTING

Account for weld reinforcement

- Sound scattering off reinforcement in 2nd leg
- Cannot scan overtop of weld to cover weld in 1st leg
- Sketches or software are needed in developing weld testing scan plans

SCAN PLANS FOR WELD TESTING

Beam 1 – 2nd leg, 8 elements 35°-55° Beam 2 – 1st leg, 8 elements 45°-70°

20

SCAN PLANS FOR PIN TESTING

Scan coverage

- Testing from both sides, if possible
- Shoulder may block region of pin if testing from one side
- Angle range
- Room on pin end for transducer

CALIBRATION

Larger calibration blocks

- Time Corrected Gain (TCG) requires calibration blocks thicker than tested plate
- Cannot receive signals from multiple reflectors when sweeping through all of the angles
- Often cannot change input gain when performing calibration

CALIBRATION

- Flaw sizing
 - Need test samples with accurately known flaws
 - Need to closely represent actual indications in shape

ENCODING & TEST FIXTURE

Need to encode transducer location

- Section loss requires X-Y location
- Weld scan requires location along weld
- Pin requires rotation θ
- Test fixture needed for consistent and documented scanning
 - Magnetic guide
 - External frame

ENCODING & TEST FIXTURE

Needs to function on rough surface

- May need to rescan to get skipped data
- Bolts and rivets in the way
- Couplant on surface
 - String encoders better than wheel encoders

INTERPRETATION & ACCEPTANCE CRITERIA

≻ Welds

- AWS currently based on amplitude of response at only given angles
- Maximum amplitude from PAUT will often occur at an angle different than conventional UT
- Flaw sizing from PAUT
- Comparison to calibration and flaw sizing blocks

INTERPRETATION & ACCEPTANCE CRITERIA

➢ Pins

- No standard acceptance criteria
- Often too long for TCG calibration blocks in the field

CRITICAL INFORMATION

Section loss profile

- Calculate percentage of remaining section
- Perform structural capacity check
- Flaw size and location
 - Flaw height and length
 - Location and depth in member

APPLICATION TO ENGINEERING EVALUATION

Fitness-for-service (FFS)

- Quantitative evaluation accounting for flaw
- Requires stress, material properties, and flaw characterization
- Considers fracture potential and fatigue life

APPLICATION TO ENGINEERING EVALUATION

Flaw characterization for FFS

- Interaction of nearby flaws
- Size and shape
 - Height, Length
- Flaw location & type

- Location along length of member
- Location within the thickness of the member
- Classifications: Surface flaw, Edge flaw, Embedded flaw, Through-thickness flaw

APPLICATION TO ENGINEERING EVALUATION

Sensitivity to error in flaw sizing

- Fracture potential
 - Error in flaw size is not as sensitive as errors in stress and material properties
- Fatigue crack growth
 - Error in flaw size effects fatigue life through initial size and crack growth rate calculations

CURRENT RESEARCH PROJECT

Artificial flaws in butt weld samples

- Lack of sidewall fusion
- Lack of penetration
- Inclusion
- Internal weld crack
- Break plates open and compare results to PAUT

SAMPLE 1: LACK OF FUSION

33

SAMPLE 1: LACK OF FUSION

QUESTIONS?

Curtis Schroeder 608-831-3238 cschroeder@fishassoc.com

