Socket Connections for Rapid Construction of Bridge Bents with Spread Footings.

Olafur Haraldsson

Todd Janes, Hung Viet Tran, John Stanton, Marc Eberhard

Dept. of Civil and Environmental Engineering University of Washington

2013 Western Bridge Engineers' Seminar

Acknowledgments

- Federal Highway Administration
- Pacific Earthquake Engineering Research Center
- Washington State DOT
- TransNow Center
- Valle Scholarship Foundation

Conventional Bridge Bent

Slow to construct

Background

- Have developed a family of connections
- Mix and match to suit conditions
 - Large bars in grouted ducts (column to cap beam)
 - Socket connections (column to footing)

1) Excavate footing.

2) Position and brace precast column.

3) Place footing reinforcement and cast.

4) Set cap-beam, grout bars into ducts.

5) Place girders, diaphragms and deck.

Cap-Beam Connection Large bar in ducts

Failure occurs in the column.

Large-bar precast connection behaves the same as a cast-in-place connection.

Footing Connection - Construction

Footing Connection – Failure Modes

Potential pushthrough failure

Footing Connection

Footing Connection

Footing Connection - Headed Bars

Footing Connection

Hooked bars facing out (Conventional cip configuration)

Load transfer is tangential to hook.

Socket Connection Test Program

Specimens – Test Matrix

Specimen	hf/Dc	Column slots	Diagonal bars	Stirrups
SF-1 (reference)	1.1	Yes	Full AASHTO shear friction	AASHTO prescriptive
			1/3	
SF-2	1.1	No	AASHTO shear friction	1/2 AASHTO prescriptive

Socket Connection Reinforcement - SF-1

Diagonal "shear friction" steel. Vertical stirrups.

Lateral load Test

After testing to 10% drift

Footing undamaged – SF-2

SF-1/SF-2 Seismic Test

➢Failure in column.

➤Footing undamaged.

Behavior identical to conventional c.i.p. system.

> Seismic performance exactly as wanted.

SF-1/SF-2 Gravity Load Test

Column crushed at: 850 kips = 3.5 * (1.25DL + 1.75LL). No damage to footing. No sign of punch-through failure

SF-3 Geometry

SF-3 during its last cycle (10% drift)

SF-3's Punching Shear and Moment Transfer Failure

Quasi-static Test Results

SF-1

SF-2

SF-3

Combined punching shear and moment transfer in the last cycle

Field Deployment

Socket Connection

Large-bar, Large-duct Connection

Final Product

Conclusions

Accelerated Construction:

- Shorter construction time, especially if used together with large-bar, large-duct connection.
- Simple to fabricate, transport and erect on site.

Seismic Performance:

- Terminators provide better anchorage than hooked bars facing outwards.
- Footing undamaged in lateral load and vertical load tests.
- Connection works as well as, or better than, conventional cast-in-place construction.

Thank You

References:

- 1. Pang, J.B.K., Eberhard, M.O., and Stanton, J.F. (2010). "Large-bar Connection for Precast Bridge Bents in Seismic Regions," *Journal of Bridge Engineering, ASCE,* pp. 231-239
- Khaleghi, B., Schultz, E., Seguirant, S., Marsh, L., Haraldsson, O., Eberhard, M. and Stanton, J. (2012). "Accelerated Bridge Construction in Washington State -- From Research to Practice," *PCI Journal*, Autumn, pp. 34-49
- Haraldsson, O.S., Janes, T.M., Eberhard, M.O. and Stanton, J.F. (2013).
 "Seismic Resistance of Socket Connection between Footing and Precast Column," *Journal of Bridge Engineering, ASCE,* Autumn, pp. 910-919

US 12 Grand Mound over I-5

Two spans, tall abutments at ends, and a four column bent at center.

Socket connection used with large-barlarge-duct column-to-beam connection

New Footing Connection - Test

Spread Footing Cast - SF-1

Footing Connection

Spread Footing Connection

Constructability

Column has no projecting bars.
 No "form-savers".
 Easy to fabricate

and transport.

