

ADVANCES IN DESIGN, CONSTRUCTION, INSPECTION & PRESERVATION OF BRIDGES

September 4-6, 2013, Bellevue, Washington, USA

Fracture and Fatigue Properties of Seriously Damaged Steel Bridge Structural Members Repaired through Heat-Straightening

Kaiyuan Liu, PhD, PE Parsons Brinkerhoff in Seattle, email: liuk@pbworld.com David Mukai, PhD, Associate Professor University of Wyoming, email: dmukai@uwyo.edu

Outline

- A brief introduction of heat-Straightening
 - history, how it works, concerns...
- Current research and engineering practices
- Fracture properties of heat-straightened steel plate w/ weak-axis damage
 - methodology, results and discussions
- Conclusions

Brief History

- First publication: 1938
- Into 1980s: half of USA states still didn't allow heat-straightening (for bridge)
- 1970s to 2000s: research into basic material properties

How it works-the V-heat

Mukai

Mukai

How it Works

V-heat starts at the tip, temperature below transition temperature, below 650 \mbox{C}

Mukai

How it Works

The cool material to the sides constrains expansion

How it Works

The material only expands through the thickness

Mukai

How it Works

As it cools, it contracts through the thickness as well as across the width.

How it works - line heats

Schematic of weak-axis damage repair with a jacking force

Western Bridge Engineers' Seminar 2013

Mukai

Combination of...

Concerns . . .

- Heat-straightening may be detrimental to material properties
- Limit of applying heat-straightening not very clear
- Engineers occasionally noticed cracks in heat-straightened steel members...
 - lack of extensive research in fracture

Current Practices-Parameters

1st parameter:

Degree of damage or strain ratio

• Total angle change across damaged zone

Strain ratio, μ ,
 Ratio of maximum strain to yield strain

- 2nd parameter:
 - External restraint, further restrain expansion or, called jacking ratio, j

 $j = \frac{M_j}{M_p}$ M_j, bending moment due to jacking force M_p, plastic bending moment capacity

 Expedite the repair (j<50%, Fy reduced by 50% at 600 C)

Current Practices - Limit

- <u>http://www.fhwa.dot.gov////bridge/hs17007.</u> <u>pdf</u>, technical guide of heat-straightening
- Strain ratio less than 100
- Jacking ratio less than 50%
- Unknowns: Fracture behavior?

What about $\mu > 100$?

j > 50%, up to 90%?

Project Objectives

- Simulate steel girder damage and repair
- Investigate steel material properties that relevant to fracture
- Further quantify allowable limits of repair and provide more guides for heatstraightening.

16

Methodology

- Damage and Repair
- Coupons (μ up to 200, j up to 90%)
- Tensile & CVN
- J-R (including fatigue pre-cracking)

17

Damage and Repair

Heat-straightening repair setup (damage along weak axis)

Coupon Extraction

Coupon extraction scheme for weak-axis specimens.

CVN Toughness

CVN tester and sample.

Tensile Tests

Tension test specimen.

J-R Testing

What is J?

- A parameter characterizing fracture toughness for EPFM
- Energy release rate, crack tip stress and strain condition
- Equivalent to "K" for LEFM
- J-Resistance curve

A path-independent line integral around the crack tip

$$J = \int_{\Gamma} \left(W dy - T_i \frac{\partial u_i}{\partial x} ds \right)$$

How to measure J?

- Multiple specimens with different starting crack lengths.
- Single specimen and measure crack length as you go (ASTM E1820)

displacement \vec{V}

Test Set-up

Fatigue Pre-cracking

- Assumption of Fracture Mechanics "infinitely sharp" crack tip....
- Ensure valid J-R results.
- Select fatigue load and record cycles until initial pre-crack length is reached

CVN Toughness

CVN vs. Temperature, Weak Axis, $\mu = 65$

CVN vs. Temperature, Weak Axis, $\mu = 150$

CVN vs. Temperature, Weak Axis, $\mu = 200$

Tensile Tests

Stress vs. Strain for original and unrepaired specimens (A36)

Stress vs. Strain for weak axis, $\mu = 197$, j = 90%

Yield Strength

Elongation

J-R Testing

J-R curves for weak-axis $\mu = 65$

J-R curves for weak-axis $\mu = 150$

J-R curves for weak-axis $\mu = 200$

Fatigue Findings...

- The same pre-cracking length to be reached
- Fatigue pre-cracking load varies $P_f = \frac{0.5Bb_0^2\sigma_y}{S}$
- Recorded loading cycles decreases with μ (not an evidence of fatigue resistance reduction though)
- Paris law expression

$$\frac{da}{dN} = C\Delta K^m$$

Typical fatigue crack growth in metals

Crack growth curves from weak-axis J-Integral pre-cracking

Conclusions - Weak Axis Repair -

- Fracture and fatigue resistance decreases with increasing strain ratio
- Strain ratios larger than 150 should not be heat-straightened

- For strain ratios larger than 65, use caution for fracture critical members or non-fracture critical members with extremely low service temperature
- A higher jacking ratio (90% in place of 50%) can be used for strain ratios less than 65, but not recommended for higher strain ratios.