

ADVANCES IN DESIGN, CONSTRUCTION, INSPECTION & PRESERVATION OF BRIDGES

September 4-6, 2013, Bellevue, Washington, USA

Fracture and Fatigue Properties of Seriously Damaged Steel Bridge Structural Members Repaired through Heat-Straightening

Kaiyuan Liu, PhD, PE Parsons Brinkerhoff in Seattle, email: liuk@pbworld.com David Mukai, PhD, Associate Professor University of Wyoming, email: dmukai@uwyo.edu

Outline

- A brief introduction of heat-Straightening
	- history, how it works, concerns...
- Current research and engineering practices
- Fracture properties of heat-straightened steel plate w/ weak-axis damage
	- methodology, results and discussions
- Conclusions

Brief History

- First publication: 1938
- Into 1980s: half of USA states still didn't allow heat-straightening (for bridge)
- 1970s to 2000s: research into basic material properties

How it works-the V-heat

Mukai

Mukai

How it Works

V-heat starts at the tip, temperature below transition temperature, below 650 C

Mukai

How it Works

The cool material to the sides constrains expansion

How it Works

The material only expands through the thickness

Western Bridge Engineers' Seminar 2013

7

Mukai

How it Works

As it cools, it contracts through the thickness as well as across the width.

How it works - line heats

Schematic of weak-axis damage repair with a jacking force

Western Bridge Engineers' Seminar 2013

Mukai

Combination of…

Concerns . . .

- Heat-straightening may be detrimental to material properties
- Limit of applying heat-straightening not very clear
- Engineers occasionally noticed cracks in heat-straightened steel members…
	- lack of extensive research in fracture

Current Practices-Parameters

- 1st parameter: Degree of damage or strain ratio
- Total angle change across damaged zone

• Strain ratio, μ , Ratio of maximum strain to yield strain

- 2nd parameter:
	- External restraint, further restrain expansion or, called jacking ratio, j

 $j = \frac{J}{\sqrt{J}}$ M_{j,} bending moment due to jacking force $\mathsf{M}_{\mathsf{p}},$ plastic bending moment capacity

• Expedite the repair (j<50%, Fy reduced by 50% at 600 C)

Current Practices - Limit

- [http://www.fhwa.dot.gov////bridge/hs17007.](http://www.fhwa.dot.gov/bridge/hs17007.pdf) [pdf,](http://www.fhwa.dot.gov/bridge/hs17007.pdf) technical guide of heat-straightening
- Strain ratio less than 100
- Jacking ratio less than 50%
- Unknowns: Fracture behavior?

What about μ > 100?

 $j > 50\%$, up to 90%?

Project Objectives

- Simulate steel girder damage and repair
- Investigate steel material properties that relevant to fracture
- Further quantify allowable limits of repair and provide more guides for heatstraightening.

16

Methodology

- Damage and Repair
- Coupons (μ up to 200, j up to 90%)
- Tensile & CVN
- J-R (including fatigue pre-cracking)

Damage and Repair

Heat-straightening repair setup (damage along weak axis)

Coupon Extraction

Coupon extraction scheme for weak-axis specimens.

CVN Toughness

CVN tester and sample.

Tensile Tests

Tension test specimen.

J-R Testing

What is J?

- A parameter characterizing fracture toughness for EPFM
- Energy release rate, crack tip stress and strain condition
- Equivalent to "K" for LEFM
- J-Resistance curve

A path-independent line integral around the crack tip

$$
J = \iint_{\Gamma} \left(Wdy - T_i \frac{\partial u_i}{\partial x} ds \right)
$$

How to measure J?

- Multiple specimens with different starting crack lengths.
- Single specimen and measure crack length as you go (ASTM E1820)

displacement *V*

Test Set-up

Fatigue Pre-cracking

- Assumption of Fracture Mechanics "infinitely sharp" crack tip….
- Ensure valid J-R results.
- Select fatigue load and record cycles until initial pre-crack length is reached

CVN Toughness

CVN vs. Temperature, Weak Axis, $\mu = 65$

CVN vs. Temperature, Weak Axis, $\mu = 150$

CVN vs. Temperature, Weak Axis, $\mu = 200$

Tensile Tests

Stress vs. Strain for original and unrepaired specimens (A36)

Stress vs. Strain for weak axis, $\mu = 197$, $j = 90\%$

Yield Strength

Elongation

J-R Testing

J-R curves for weak-axis $\mu = 65$

J-R curves for weak-axis $\mu = 150$

J-R curves for weak-axis $\mu = 200$

Fatigue Findings…

- The same pre-cracking length to be reached
- *S Bb* $P_f = \frac{0.5 B v_0 v_y}{g}$ $0.5 B b_0^2 \sigma$ • Fatigue pre-cracking load varies $P_f =$
- Recorded loading cycles decreases with μ (not an evidence of fatigue resistance reduction though)
- Paris law expression

$$
\frac{da}{dN} = C\Delta K^m
$$

Typical fatigue crack growth in metals

Crack growth curves from weak-axis J-Integral pre-cracking

Conclusions - Weak Axis Repair -

- Fracture and fatigue resistance decreases with increasing strain ratio
- Strain ratios larger than 150 should not be heat-straightened
- For strain ratios larger than 65, use caution for fracture critical members or non-fracture critical members with extremely low service temperature
- A higher jacking ratio (90% in place of 50%) can be used for strain ratios less than 65, but not recommended for higher strain ratios.