

US 65 Oak Street Bridge DESIGN, CONSTRUCTION & STRUCTURAL HEALTH MONITORING OF A STEEL ARCH BRIDGE

Iowa Falls, Iowa

Location of Project

Part of City of Iowa Falls, Iowa

HARDIN

х

Introduction

- » Demolition Concepts
- » Concept Design
- » Final Design
- » Construction
- » Health Monitoring

Existing Bridge

- » Built in 1928
- » 255-foot Open Spandrel Concrete Arch Bridge
- » 24-foot Roadway and Two Sidewalks
- » Deck Supported by R/C Floor Beams

HDR | IOWA DEPARTMENT OF TRANSPORTATION

Existing Bridge

- » Rehabilitated 7 Different Occasions
- » Needed Widening and Strengthening
- » Replace Rather than Rehabilitate

HDR | IOWA DEPARTMENT OF TRANSPORTATION

Concept Stage Type Study

- » Identify Constraints and Constructability Concerns
- » Identify Feasible Demolition Concepts
- » Identify Feasible Replacement Alternatives
- » Cost
- » Timeline for Construction

Constraints and Constructability Issues

» Site Access

》

Constraints and Constructability Issues

- Historic Church
 - NW Corner of Bridge
 - Listed on the National Register of Historic Places

Constraints and Constructability Issues

- » Dam
 - Maintain Water Level

Demolition Concepts Assumptions

- » No Environmental Restrictions
- » Access to River is Available
- » No Prohibition on Use of Engineered Explosives
- » Vibration Monitoring Required
- » Cost versus Clean up

Actual Demolition

- Started mid October 2010 and Finished mid December 2010.
- » Lowered the Iowa River with Cooperation of the Downstream Dam
- Constructed an Access Road and Causeway Utilizing a System of Steel Bridge Beams and Crane Mats over the Open Water

Actual Demolition

- » Constructed a System to Protect the Sanitary Sewer Lines
- Demolished the Bridge using the Causeway
- » Deck and Columns were Demolished using two Excavators with Hydraulic Breakers
- » Each excavator started at the Center of the Bridge

Actual Demolition

- Demolished the Arches Using the same Excavators with a Mounted Hammer
- Arch Pieces were Broken Down and Hauled Off-Site by Truck
- » Vibration Monitoring was Provided at the Adjacent Church and Residences

Bridge Replacement Alternatives

- » City of Iowa Falls
 - Scenic City
 - River Cruises is a Major City Attraction
 - Several Types of Bridges that Span Across Iowa River

Bridge Replacement Alternatives Washington Avenue Concrete Arch Bridge

Bridge Replacement Alternatives Assumptions

- » No Environmental Restrictions
- » Access to River
 - Launch Segmental Barges
 - Erect a Suitable 150-ton Crane
- » Vibration Monitoring Required

Bridge Replacement Alternatives Two Span Prestressed Concrete Alternative

- » Easiest to Construct
- » Drilled Shaft at Pier Eliminates Need for Cofferdam
- » Drilled Shaft at Abutments Reduces Vibration Impacts
- » Less Rock Excavation than other Alternatives
- » Most Economical Option

Bridge Replacement Alternatives Simple Span Haunched Girder Alternative

- » Non-conventional Super Type
- » Heavy Girder Pieces
- » Require Temporary Bents or Falsework
- » Substantial Rock Excavation
- » Require Lead Time for Fabrication

Bridge Replacement Alternatives Partial Thru Steel Arch Alternative

- » Easier to Construct Relative to Concrete Arch
- » Shorter Construction Period than Concrete Arch
- » Require Temporary Bents, Falsework or Tied-Back Systems to Construct
- » Additional Inspection and Maintenance of Suspenders
- » Requires Construction Engineering

Bridge Replacement Alternatives Concrete Deck Arch Alternative

- » Most Difficult/Complex to Construct
- » Rib Shortening Issues
- » Requires Temporary Bents or Falsework or Tied- Back Systems
- » Longest Construction Period
- » Requires Construction Engineering

Bridge Replacement Alternatives The Alternatives

New Bridge – Aerial View

Final Design Considerations

- » Tight Geometrics
- » Bridge Footprint
- » Retaining Walls and Rock Cuts
- » Substructure Sizing and Sustainability
- » Protection of the Superstructure

Tight Geometrics

Existing Church Retaining Wall

HDR | IOWA DEPARTMENT OF TRANSPORTATION

Micropile Retaining Wall

Rock Cut Support Walls

Rock Cut and Concrete Fascia Walls

Aesthetics and Renderings

- » Kimball Olson
 Aesthetics coordinator Iowa DOT
- » Used to convey
 - Size
 - Perspective
 - Spatial relationships
- » Useful in Design and Presentation to the General Public

Rendering – Showing Trail

Actual Bridge

Deck and Hanger Cables

- Floor Beam and Stinger system suspended from the Arch Rib
- » End Floor Beams frame directly into the Arch Rib
- » Deepened Exterior Stringer / Stiffening Girder
 - Distributes vehicular loads from deck to multiple hanger cables
 - Minimize local live load deflections

Arch Design

- » Grade 50 Weathering Steel with Protective Coatings
- » Built in Replacement of Hanger Cables
- » Pinned Bearings
- » Wide aspect ratio
 - Length to Width ratio = 4
 - No trussed sway bracing.

Interior Floor Beam and Hangers

End Floor Beam

(LOOKING NORTH)

>>

Pinned Bearings

- Net Zero Change in Steel Weight from a Fixed Connection
- » Reduced Footing Size
 - Minimized Impacts to Surrounding Properties

Foundations

Issues:

>>

>>

- Existing Bridge Showed Signs of Undermining
- Arch Skew Back Behave Differently than the Retaining Wall Abutment.

Solutions:

- High Capacity Micropiles
- Separate Foundations
- Tied-back Abutment
- Lightweight Backfill

Foundation Issues

» Existing Bridge Undermining

HDR | IOWA DEPARTMENT OF TRANSPORTATION

Micropiles

Abutment and Micropile Schematic

Pin and Hanger Steel Tolerances

- » Construction tolerance issues during fabrication of the Pins and Hangers:
 - ASHTO 6.8.7.3
 - Requirement: 0.031"
- » Maximum Difference
- » As Fabricated
- » Pin to Pin Plate: 0.04"
- » Pin to Socket: 0.14"

Pin and Hanger Steel Tolerances

- Resolution Perform additional tests on the Pin to Socket connection to quantify permanent deformation under load.
 - 55% Proof load No permanent deformation allowed as measured to nearest 0.001"
 - Contractor also tested two connections to 100% load

Pin and Hanger Steel Tolerances

- Observed Deformations
 - Proof load = 0.00"
 - 100% load = 0.04"
- Contractor was allowed to use the pins and sockets as fabricated.

Fabricated Bearing Tolerances

- **Bearing Side Plates**
 - Warped out of tolerance
 - Would not allow upper unit to fit with the lower unit
- » Masonry Plate
 - Curved upward on the edges
 - Would not allow full bearing on the concrete skew back

Fabricated Bearing Tolerances

- Bearing Side Plates
 - Total conflict 1/4"
 - Fabricator milled
 1/8" from upper
 and lower units
 - Difference was evaluated and deemed acceptable
 - Complicated fit

Fabricated Bearing Tolerances

- Masonry Plate
 - Maximum gap of 3/4" at the edge
 - Steel erection allowed to proceed
 - Jacked and grouted prior to pouring the concrete deck

Health Monitoring

Iowa State University - Dr. Brent Phares

US 65 Oak Street Bridge QUESTIONS?