CH2MHILL®

Fremont Bridge Wearing Surface

Studies for Selecting a Wearing Surface for Re-Surfacing the Orthotropic Steel Deck of the Fremont Bridge in Portland, Oregon

2,159 foot Orthotropic Steel Deck

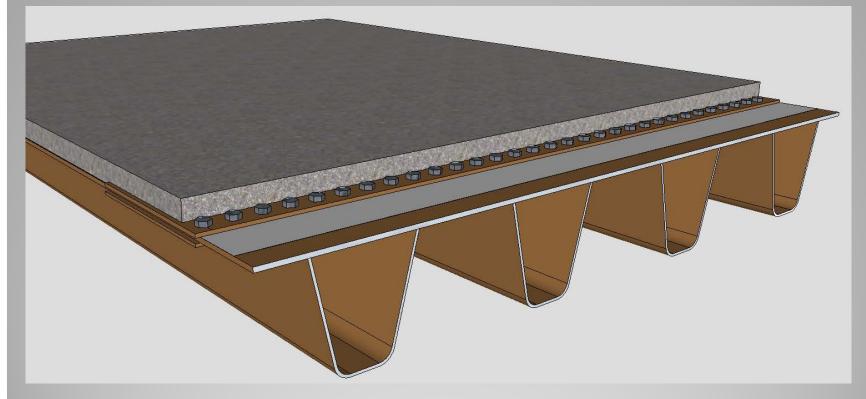
- Opened in 1973
- 68 feet wide
- Bolted Splices

Fremont Bridge

Crest vertical curve with 5% grade at each end

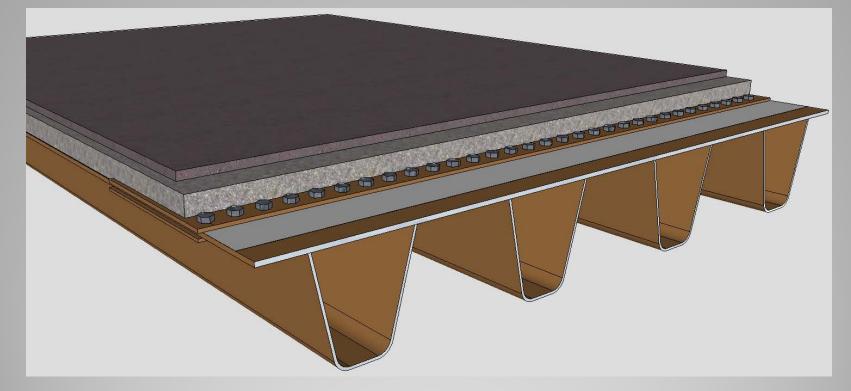
Route splits at west end of bridge

Fremont Bridge



Original wearing surface - Epoxy Asphalt

Original Construction


Original wearing surface - Epoxy Asphalt

Completed in cold weather
Poor compaction
Delayed cure of epoxy
Rutting and Shoving

Issues with Original Surface

1" Asphalt Overlay in 1978 1 ¹/₂" Asphalt Inlay in 1997

Issues with Surface

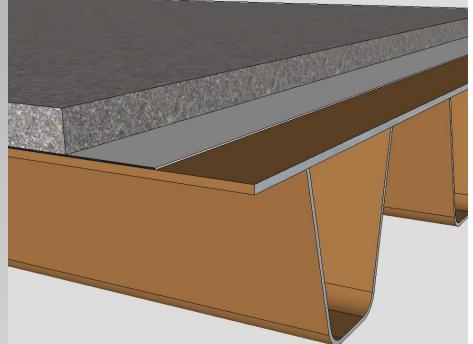
Lane C at west end failed in 2002

ODOT wanted a more durable solution

Issues with Original Surface

 CH2M HILL studied options for repair of wearing surface in 2006

Assisted by Charles Seim


New surface installed in 2011

Selection of New Wearing Surface

Waterproofing Membrane

- Bond Course
- Isolation Course
- Wearing Course

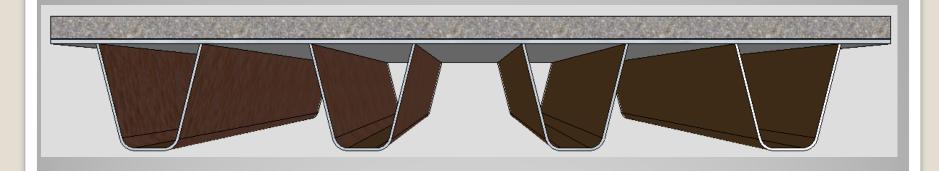
Wearing Surface Requirements

Steel deck plate is integral part of structure

- Corrosion affects strength and stiffness
- Corrosion affects bond of wearing surface

Waterproofing Membrane

Deck plate provides in-plane strength


Bond layer stressed by
 Temperature change
 Flexure
 Braking forces

Distributes wheel loads to deck

Contributes to stiffness of deck

Isolation Course

Resists tire wear
 Studded tires in Oregon
 Heavy truck traffic

Provides traction
 Braking at split in route
 Braking on downgrade

- Epoxy Asphalt
- Polymer-Modified Asphalt
- Stone-Matrix Asphalt
- Poured Asphalt (Gussasphalt)
- Trinidad Lake Asphalt
- Thin Epoxy or Epoxy- or Polymer-Modified Concrete

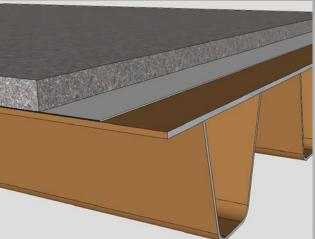
Options Considered

Original surface worked for 33 years

- Uses zinc-rich paint for corrosion protection
- Epoxy asphalt bond course
- Applied in two courses
- Requires careful control of temperature and compaction

Advantages

- Well-known system
- History on this bridge
- Current specs
- Consistent with existing surface thickness



- Disadvantages
 - Sole source supplier
 - No local batch plants
 - Sensitive to weather and compaction
 - Time to cure
 - Painting of deck

- Dense graded asphalt concrete
- Polymer modifiers provide strength
- Zinc-rich paint for corrosion protection
- Modified asphalt for bond course

Polymer-Modified Asphalt

Advantages

- Consistent with existing overlay
- Conventional equipment for mixing and placing
- Some experience on bridge decks

Polymer-Modified Asphalt

- Disadvantages
 - Requires painting the deck
 - Stiffness not known
 - Design guidance not readily available
 - Some reports of short life

Polymer-Modified Asphalt

Low-void asphalt pavement

- Strength from stone-on-stone contact
- Liquid asphalt bond course
- Can use polymer-modified asphalt

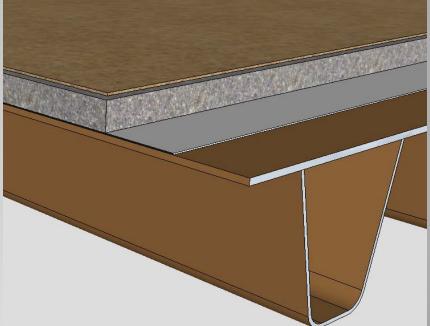
Stone-Matrix Asphalt

- Advantages
 - Consistent with existing surface thickness
 - Current specifications available for roads
 - Contractors are familiar with material
 - Quiet pavement

Stone-Matrix Asphalt

Disadvantages

- Requires zinc-rich paint
- Stiffness not known
- Compaction requires care
- Some poor experience with material


Stone Matrix Asphalt

Stiff bitumen with sand and stone chips

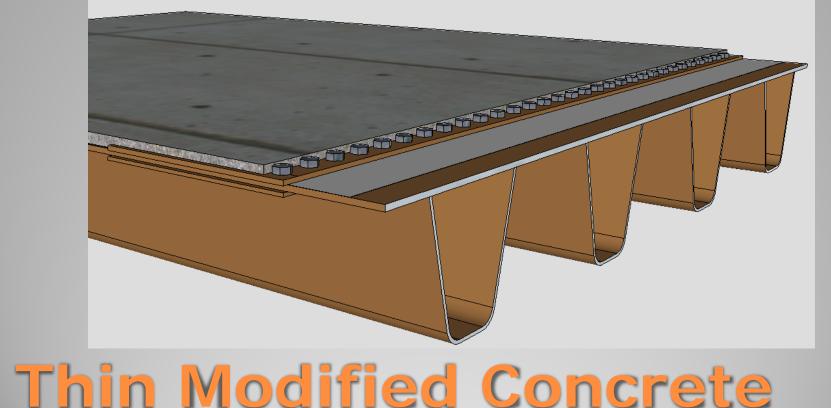
- No voids
- Pourable and floatable without compaction
- Placed hot
- Aggregate rolled into surface

Gussasphalt

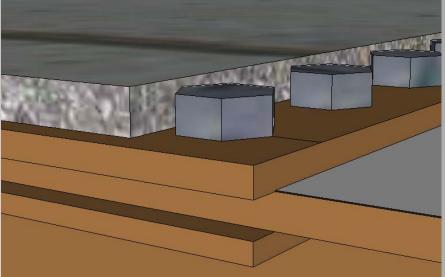
Advantages

- Good performance record in Europe
- Limited set-up costs
- Easy installation

Disadvantages


- Applied hot
- Limited experience and specs in USA
- Poor traction surface

Thin (1") modified portland cement


Very thin (1/4") epoxy

Advantages Very light weight Rapid installation Acceptable performance

 Disadvantages
 Not as effective in distributing loads
 Too thin to cover bolt heads

Thin Modified Concrete

Epoxy Asphalt

- Excellent bond to steel deck
- Good resistance to shoving
- Well-developed specifications
- Polymer-Modified Asphalt
 Lower cost vs lower service life
 Conventional construction process

- Recommended Epoxy Asphalt
 - Installed cost within 5% of polymermodified asphalt
 - Savings over life of wearing surface
 - Less traffic disruption for future wearing surface replacement
 - High level of confidence in performance
- Installed over entire deck in 2011
 Completed over three weekends

CH2MHILL®

Fremont Bridge Wearing Surface

Studies for Selecting a Wearing Surface for Re-Surfacing the Orthotropic Steel Deck of the Fremont Bridge in Portland, Oregon