---- The 2013 West Bridge Engineers Seminar, September 4-6, 2013, Bellevue , WA ----

Non-linear Seismic Behavior of Highly Horizontally Curved Bridge

A case Study of Yerba Buena Island (YBI) WB On-Ramp, Bay Bridge, San Francisco, CA

> Bill (Yong) Deng, Ph.D, PE Tom Lee, SE Gernot Komar, PE Omar Jaradat, Ph.D, PE

Moffatt & Nichol, 3780 Kilroy Airport Way, Suite 600, Long Beach, CA 90806

CONTENTS

- Objectives
- Introduction
- Two-level Seismic Design Criteria
- Bridge Geometrics & Ground Motion

CONTENTS (continued)

- Non-linear Time History Analysis by SAP 2000
- Non-linear Push-over Analysis by SAP 2000
- Non-linear Capacity Analysis per Caltran SDC

CONTENTS (continued)

- Linear ARS Curve Analysis
- Nonlinear Time History Analysis By OPENSEES
- Comparison of Results and Discussions
- Future Study
- Questions

OBJECTIVES

 Discuss Non-linear behavior of highly horizontally curved bridges in High Seismic Zone

INTRODUCTION

- San Francisco Bay Bridge Project is a current world Famous Project under Construction
- Cost about \$6 billion
- It connects Oakland to San Francisco

Crews have installed the first two (of five) large moving scaffolds, known as "travelers", which will be used to maintain the new East Span. The motorized travelers are suspended from tracks beneath the bridge, providing safe access to the workers who will conduct bridge inspections, repairs and painting operations. The other three travelers are scheduled to be installed in June. The video to the left shows how the travelers were built in and transported from Southern California.

LATEST NEWS

BAY BRIDGE ROD UPDATE

the footbridges the week of April 22.

he nearby Port of Oakland

For the latest on the ongoing investigation into the broken rods on the new East Span of the Bay Bridge, click here.

American Bridge/Fluor has finished painting the SAS main cable, and removed

Watch how crews painted the main cable and its 200 steel-wire suspender ropes. White was selected by architects to reflect the container cranes found at

LANE CLOSURES AND DETOURS

DAILY LANE CLOSURES AND DETOURS

Today's Bay Bridge ramp and lane closure times are APPROXIMATE. Please continue to check this site for the most up-to-date information. This page is updated daily by 4 p.m.

Lane and ramp closure schedule for Friday (04/26/13) night to Monday (04/29/13) morning:

Friday (04/26/13) night to

PELATED LINKS

WEST APPROACH

WEST SPAN

Self-Anchored Suspension Span Update

SAS

SKYWAY

OAKLAND TOUCHDOWN

Plan View of Stand-alone WB On-Ramp
Horizontal Curve of 127.3' (38.8 m) Radius

 Developed Elevation of Stand-alone WB On-Ramp

Depth Varies With Hinges at both Ends

Typical Section of Stand-alone WB On-Ramp

Superstructure Section Properties at 10th spans

Segment	t3	t2	Area	TorsConst	133	122
	in	in	in ²	in ⁴	in ⁴	in ⁴
GD01	79	546	11,249	22,163,259	9,005,645	205,385,933
GD02	79	546	11,234	21,988,641	8,921,477	205,205,944
GD03	78	546	11,220	21,814,023	8,837,310	205,025,956
GD04	78	546	11,206	21,639,405	8,753,143	204,845,967
GD05	78	546	11,192	21,464,787	8,668,975	204,665,979
GD06	77	546	11,178	21,290,170	8,584,808	204,485,990
GD07	77	546	11,163	21,115,552	8,500,640	204,306,002
GD08	77	546	11,149	20,940,934	8,416,473	204,126,013
GD09	76	546	11,135	20,766,316	8,332,305	203,946,025
GD10	76	546	11,121	20,591,698	8,248,138	203,766,036
GD11	76	546	11,107	20,417,080	8,163,971	203,586,048
GD12	75	546	11,094	20,261,871	8,090,710	203,419,538
GD13	75	546	11,081	20,106,662	8,017,450	203,253,028
GD14	75	546	11,068	19,951,453	7,944,190	203,086,518
GD15	74	546	11,055	19,796,244	7,870,929	202,920,008
GD16	74	546	11,042	19,641,036	7,797,669	202,753,498
GD17	74	546	11,029	19,485,827	7,724,409	202,586,988
GD18	74	546	11,016	19,330,618	7,651,149	202,420,477
GD19	73	546	11,003	19,175,409	7,577,888	202,253,967
GD20	73	546	10,990	19,020,200	7,504,628	202,087,457
GD21	73	546	10,977	18,864,991	7,431,368	201,920,947
GD22	72	539	8,438	19,090,204	7,448,185	200,391,875

- Seismic Design Criteria for YBI was prepared by Moffatt & Nichol
- Two-level design Criteria:
 - FEE --- Functional Evaluation Earthquake: Elastical Performance Analysis
 - SEE --- Safety Evaluation Earthquake: Non-linear Analysis
- Expected Concrete Properties used for Analysis

Concrete:		Gi	rder		Column		CIDH Piles				(BBDC 7.11)
		Мра	ksi	Мра	FEE(ksi)	SEE(ksi)	Мра	FEE(ksi)	SEE(ksi)		1
	f _c ' =	40	5.8	25	3.6	3.6	25	3.6	3.6	ksi	1
	f' _{ce} = 1.3f _c '		7.54		4.68	4.68		5	5	ksi	(BBDC 7.9.1)
	ε _{cf} =		0.004		0.004	2/3 x ε _{cu}		0.004	0.01		failure=crash
	ε _{cu} =		0.01		0.005	ε _{cu}		1	1		confined
	Ec =		5003		3942	3942		4074	4074	ksi	1
	fce (KSF)		1085.76		673.92	673.92	Distanti	720	720	ksf	1
	Ec (KSF)		720432		567648	567648		586656	586656	ksf	-

(or use program generated data.)

Expected Steel Properties used for Analysis

Steel:	A706	P	iers	F	Piles	
		FEE	SEE	FEE	SEE	
	$f_{ve} = 1.1 f_v =$	66	66	66	66	k
	f _{ee} =1.25f _v =	75	75	75	75	k
	f _{ue} =	95	95	95	95	k
	ε _{ye} =	0.015	2/3 x ε _{su}	0.0023	0.0023	
	ε _{su} =	0.12	0.12	0.12	0.12	
		0.09	0.09	0.09	0.09	
	ε _{sh} =	0.015	0.015	0.015	0.015	
		0.01	0.01	0.01	0.01	
		0.01	0.01	0.01	0.01	
		0.0075	0.0075	0.0075	0.0075	
		0.005	0.005	0.005	0.005	
	Es =	2900	ksi =	417600	ksf	

(Plastic Hinge) (overstrength)	(BBDC 7.9.1)
	(SDC 3.2.3)
(# 10 and smaller for confinement bar	s)
(#9 and larger for main bars)	
(#8 and smaller)	
(#9)	
(#10 & #11)	
(#14)	
(#18)	

Unconfined Concrete Property

Input Parameters:

Tension Strength:	0 ksi
28 Day Strength:	4.680 ksi
Post Crushing Strength:	0 ksi
Tension Strain Capacity:	0 Ten
Spalling Strain:	5.000E-3 Comp
Failure Strain:	13.33E-3 Comp
Elastic Modulus:	3899 ksi
Secant Modulus:	2340 ksi

Confined Concrete Property

Input Parameters:

Tension Strength:	0 ksi
28 Day Strength:	4.680 ksi
Confined Concrete Strength:	5.868 ksi
Tension Strain Capacity:	0 Ten
Strain at Peak Stress:	4.538E-3
Crushing Strain:	14.86E-3 Co
Elastic Modulus:	3899 ksi
Secant Modulus:	1293 ksi

Reinforcement Property

Column Section and Properties at SEE
 Top of Column Bottom of Column

Column Section Properties XTRACT Output

√Тор

Moment Corveture Bilineerization

Transverse Hinge Summary

XTRACT I	Hinges-Tr	ansverse-S	Strong Axis	(SF*)										
			Pc (kips)	θ _y (rad)	θ _u (rad)	θ _y /SF	M*,(k-in)	M*u(k-in)	M/My	θ _p (rad)	$l_e(ft^4)$	lg(ft ⁴)	I,/I, factor	Ave. le
Bent 7	FEE	Тор	-1711	0.004688	0.023291	4.97	337700	352300	1.043	0.22322888	92.27	207.85	0.444	0.51
Bent 8	FEE	Тор	-1856	0.004399	0.021444	4.87	342600	356600	1.041	0.20454648	93.51	207.85	0.45	0.514
Bent 7	FEE	Bot.	-2574	0.005013	0.018090	3.61	468200	482800	1.031	0.15691294	119.73	207.85	0.576	
Bent 8	FEE	Bot.	-2652	0.004703	0.016852	3.58	470700	484900	1.030	0.14578844	120.10	207.85	0.578	
		a constant	1	PRASTANA SU	Balance Balance	NFD-SRC ST	Section of the sectio	The second second	Home with		2022000	12.400.5	With States and	
Bent 7	SEE	Тор	-1711	0.004919	0.053595	10.9	354300	373200	1.053	0.58411247	80.68	207.85	0.388	0.4455
Bent 8	SEE	Тор	-1856	0.004605	0.049557	10.76	358700	376800	1.05	0.53942304	81.76	207.85	0.393	0.449
Bent 7	SEE	Bot.	-2574	0.005329	0.059387	11.14	497700	526900	1.059	0.64868785	104.58	207.85	0.503	
Bent 8	SEE	Bot.	-2652	0.004994	0.055401	11.09	499700	528600	1.058	0.60489096	105.02	207.85	0.505	
		RACE LOOM	1812591730	State Table	A CONTRACTOR OF THE		Seatest States	Put in the second	Section Street	Steering to shirt	a Marsala	Sec. Sall	STREET, STREET, STREET, ST	
Noto*	CE-Coole	Coolo faci	20											

Longitudinal Hinge Summary

XTRACT Hinges-Longitudinal-Weak Axis

			Pc (kips)	Φ _y (rad/in)	Φ _u (rad/in)	θ _y /SF	M _p (k-in)	M*u(k-in)	M/SF	Φ _p (rad/in)	$I_{\Theta}(ft^4)$	Ig(ft ⁴)	le/lg factor	Ave. le
Bent 7	FEE	Тор	-1711	0.0000038	0.00001873	4.97	337700	352300	1.043	0.06896228	92.27	207.85	0.444	0.51
Bent 8	FEE	Тор	-1856	0.0000038	0.00001841	4.88	342600	356600	1.041	0.06469031	93.51	207.85	0.45	0.514
Bent 7	FEE	Bot.	-2574	0.0000484	0.00017460	3.61	468200	482800	1.031	0.09694957	119,73	207.85	0.576	
Bent 8	FEE	Bot.	-2652	0.0000485	0.00017360	3.58	470700	484900	1.030	0.09005123	120.10	207.85	0.578	
-			Alex Self St	Sector Sciences	A CONTRACTOR OF THE	Contraction of the second	A STATE OF STATE	B1335010234	TANK PARA	12/22/01/20/09/202		10001-2014	and the second second	
Bent 7	SEE	Тор	-1711	0.0000475	0.00051730	10.9	354300	373200	1.053	0.17969262	80.68	207.85	0.388	0.4455
Bent 8	SEE	Top	-1856	0.0000474	0.00051050	10.76	358700	376800	1.05	0.16985226	81.76	207.85	0.393	0.449
-														
Bent 7	SEE	Bot.	-2574	0.0000514	0.00057320	11.14	497700	526900	1.059	0.40247857	104.58	207.85	0.503	
Bent 8	SEE	Bot.	-2652	0.0000514	0.00057070	11.09	499700	528600	1.058	0.37530659	105.02	207.85	0.505	
	244672597	141.5 SP		Stranger and	All and the second		THE REAL PROPERTY.	1000000000000	View Contraction	Shake and the	1 4 H (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No.	如此的1023年	

-Series1

0.6

0.4

Normal to Fault

100

Normal to Fault

Parallel to Fault

Normal to Fault

Parallel to Fault

Normal to Fault

Parallel to Fault

Normal to Fault

Parallel to Fault

- Standalone Structure (Hinge-to-hinge)
- Five groups of time history
- Time Histories are scaled so as similar to SEE ARS response
- Direct Hiber-Hughes-Talor Nonlinear Time History Analysis (HHT-NLTHA)

- (continue.)
- NLTHA is performed after non-linear dead load analysis
- Longitudinal Combination: 100% Long.+30% Tran.+30% Vert.
- Transverse Combination: 100% trans.+30% Long.+30% Vert.

 Group 2-Longitudinal Displacement vs. Time at Top of Bent 7 & Bent 8-U1 Direction

SAP2000 v15.1.0 - File:Seismic-NLTHA-U1 - Case:NLTH-2 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -1.708e+01 at 2.8890e+01 Max is 3.812e+01 at 1.7410e+01

Group 3-Longitudinal Displacement vs.
 Time at Top of Bent 7 & Bent 8-U1 Direction

SAP2000 v15.1.0 - File:Seismic-NLTHA-U1 - Case:NLTH-3 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -3.603e+01 at 1.1340e+01 Max is 2.661e+01 at 2.6610e+01

Group 4 - Longitudinal Displacement vs. Time at Top of Bent 7 & Bent 8-U1 Direction

SAP2000 v15.1.0 - File:Seismic-NLTHA-U1 - Case:NLTH-4 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -3.458e+01 at 5.3250e+00 Max is 1.440e+01 at 1.0260e+01

 Group 5 - Longitudinal Displacement vs. Time at Top of Bent 7 & Bent 8-U1 Direction

MOFFATT & NICHO

SAP2000 v15.1.0 - File:Seismic-NLTHA-U1 - Case:NLTH-5 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -9.671e+00 at 5.4950e+00 Max is 1.028e+01 at 4.3350e+00

 Group 6 - Longitudinal Displacement vs. Time at Top of Bent 7 & Bent 8-U1 Direction

SAP2000 v15.1.0 - File:Seismic-NLTHA-U1 - Case:NLTH-6 - Kip, in, F Ui Joint20, Joint30 Vs TIME Min is -3.154e+01 at 7.2850e+00 Max is 2.753e+01 at 5.9550e+00

Groups 2 & 3 - Transverse Displacement vs. Time at Top of Bents 7 & 8-U2 Direction

SAP2000 v15.1.0 - File:Seismic-NLTHA-U2 - Case:NLTH-2 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -6.171e+00 at 2.0410e+01 Max is 1.137e+01 at 1.7170e+01

SAP2000 v15.1.0 - File:Seismic-NLTHA-U2 - Case:NLTH-3 - Kip, in, F Units Joint20, Joint30 VS TIME Min is -1.466e+01 at 1.1330e+01 Max is 1.172e+01 at 2.6650e+01

Groups 4 & 5 Transverse Displacement vs. Time at Top of Bents 7 & 8-U2 Direction

Min is -1.483e+01 at 7.3200e+00 Max is 8.400e+00 at 1.0140e+01

SAP2000 v15.1.0 - File:Seismic-NLTHA-U2 - Case:NLTH-5 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -5.400e+00 at 9.9100e+00 Max is 5.164e+00 at 8.8650e+00

• Group 6 - Transverse Displacement vs. Time at Top of Bents 7 & 8-U2 Direction

SAP2000 v15.1.0 - File:Seismic-NLTHA-U2 - Case:NLTH-6 - Kip, in, F Units Joint20, Joint30 Vs TIME Min is -1.355e+01 at 7.2500e+00 Max is 9.121e+00 at 5.9200e+00

Summary of Non-linear Time History
 Transverse Displacement

U1	Wps2	Wps3	Wps4	Wps5	Wps6
Bent 7 (Jt30)	38.2	36.0	34.0	10.3	31.5
Bent 8 (Jt 20)	38.6	33.6	34.6	8.7	27.6

Summary of Non-linear Time History
 Longitudinal Displacement

U2	Wps2	Wps3	Wps4	Wps5	Wps6
Bent 7 (Jt30)	12.5	13.3	14.0	12.1	13.5
Bent 8 (Jt 20)	11.8	12.9	14.1	11.9	13.8

LINEAR ARS CURVE ANALYSIS by SAP 2000

ARS Curve (SEE)-same as NLTHA
Combination 1: 100% Transv. + 30% Longit.+30% Vert
Combination 2: 100% Longi. + 30% Transv.+ 30% Vert.
Results will be compared in Table below.

Non-LINEAR TIME HISTORY ANALYSIS by OPENSEES

OPENSEEs

The Open System for Earthquake Engineering Simulation (OpenSEES)developed by UC-Berkeley

- The same load case, same structure, same hinges are used.
- \succ Results are list in the following table.

NON-LINEAR PUSH-OVER ANALYSIS by SAP 2000

Push-over model-Forces are proportional to DL

NON-LINEAR PUSH-OVER ANALYSIS by SAP 2000

• Transverse Pushover Curve at Bent 7

SAP2000 v15.1.0, File: Seismic-NLTHA, Units: Kip, ft, F Analysis Case: B7-LPush-Y, Parameter Set Name: VDPO1

NON-LINEAR PUSH-OVER ANALYSIS by SAP 2000

Longitudinal Pushover Curve at Bent 7

SAP2000 v15.1.0, File: Seismic-NLTHA, Units: Kip, ft, F Analysis Case: B7-Push-X, Parameter Set Name: VDPO1

CALTRANS SDC CAPACITY

Caltrans Seismic Design Criteria (Caltrans SDC)

Caltrans SDC Equations are based on idealized Structure-Transverse

Figure 3.1 Local Displacement Capacity – Cantilever Column w/Fixed Base

CALTRANS SDC CAPACITY

Caltrans Seismic Design Criteria (Caltrans SDC)

Caltrans SDC Equations are based on idealized Structure-Longitudinal or Multi-column bents at transverse

Figure 3.2 Local Displacement Capacity – Framed Column, assumed as fixed-fixed

COMPARISON OF RESULTS

• Transverse

Category	Top of Bent 7 (Jt 30)	Top of Bent 8 (Jt 20)
NLTHA-SAP 2000	38.2	38.6
NLTHA-OpenSees	41.1	42.6
ARS Linear Analysis	23.4	17.6
Caltrans SDC, Dy	21.5	18.7
Non-Linear Push-over, Dy	10.2	9.0
Caltrans SDC, Du	79.3	68.6
Non-Linear Push-over, Du	45.5	45.0

COMPARISON OF RESULTS

Longitudinal

Category	Top of Bent 7 (Jt 30)	Top of Bent 8 (Jt 20)
NLTHA-SAP 2000	14.0	14.1
NLTHA-OpenSees	15.1	15.8
ARS Linear Analysis	17.8	17.4
Caltrans SDC, Dy	10.5	9.7
Non-Linear Push-over, Dy	5.5	13.0
Caltrans SDC, Du	41.3	38.4
Non-Linear Push-over, Du	48.4	44.0

DISCUSSIONS & CONCLUSIONS

- NLTHA: SAP 2000 vs. OpenSEES
 SAP 2000 provide more convenient input
 OpenSEES can provide multiple support earthquake excitations input options
 - OpenSEES usually provides higher demands than SAP 2000
 - ARS Curve analysis is good for elastic or lightly non-elastic performance analysis

DISCUSSIONS & CONCLUSIONS

- NL Capacity: SDC vs. Push-over
 Caltrans SDC provides convenient theoretical calculations
 - For Straight Structures, especially pre-stressed concrete box girder, superstructure is much stiffer than columns, SDC can provide acceptable results
 - For horizontally curved bridge, SDC is about 30% to 50% off from push-over results, push-over analysis is strongly recommended.

DISCUSSIONS & CONCLUSIONS

SAP 2000 and OpenSEES provide reasonable results for non-linear time history analysis
 SAP 2000 is easier for input

OpenSEES provides more options for earthquake excitation input as you write proper programs. This option is good for Long bridges.

It is strongly recommended performing 3-D pushover and structural analyses for horizontally curved bridges.

FURTHER STUDY

Different Curvatures analysis.

- RM Bridge and other programs (tools) possible for NLTHA.
- Further Investigate OpenSees Programs for NLTHA for most commonly used bridge structures

QUESTIONS ???

